A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics
Abstract
:1. Introduction
2. Material and Methods
2.1. Mouse Study
2.2. Pathological Analysis of Mouse Kidney, Liver, and Spleen
2.3. Flowcytometry Gating Strategy and Serology or Urine Analysis
2.4. B Cells Isolated from Mouse Splenocytes and Cultured with Feeder Cell
2.5. Proteomics Analysis
2.6. Western Blot Confirmation of Intracellular Proteins after Feeder Cells Co-Culture and Then after Nuclear–Plasma Separation of B Cells
2.7. Statistical Analysis
3. Results
3.1. Successful Induction of Lupus Presentation in Mice with Imiquimod Demonstrated by Histology and Serology
3.2. B Cells from Spleen via Negative Selection Method Demonstrated Activation and Proliferation with Pathology and Intracellular Protein Analysis
3.3. Proteomics Results Comparing B Cells from the Spleen of Imiquimod-Stimulated FBV/N Mice with the Reference from the Panther Classification System [29] and the STRING Database
3.4. Western Blot Confirmation of Intracellular Proteins of B Cells after CD40L+ Feeder Cells Co-Culture for 7 Days
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.F.; Wei, W.; Tangtanatakul, P.; Zheng, L.; Lei, Y.; Lin, Z.; Qian, C.; Qin, X.; Hou, F.; Zhang, X.; et al. Identification of Shared and Asian-Specific Loci for Systemic Lupus Erythematosus and Evidence for Roles of Type III Interferon Signaling and Lysosomal Function in the Disease: A Multi-Ancestral Genome-Wide Association Study. Arthritis Rheumatol. 2022, 74, 840–848. [Google Scholar] [CrossRef]
- Su, Y.-J.; Cheng, T.-T.; Chen, C.-J.; Chang, W.-N.; Tien-Tsai, C.; Kung, C.-T.; Wang, H.-C.; Lin, W.-C.; Huang, C.-C.; Chang, Y.-T.; et al. Investigation of the caspase-dependent mitochondrial apoptotic pathway in mononuclear cells of patients with systemic Lupus erythematosus. J. Transl. Med. 2014, 12, 303. [Google Scholar] [CrossRef] [Green Version]
- Ha, E.; Bae, S.C.; Kim, K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin. Immunopathol. 2021, 44, 29–46. [Google Scholar] [CrossRef]
- Su, Y.J.; Chiu, W.C.; Kuo, H.C. Inverse Association Between Antiviral Immunity and Lupus Disease Activity. Viral Immunol. 2018, 31, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Su, B.Y.; Su, C.Y.; Yu, S.F.; Chen, C.J. Incidental discovery of high systemic lupus erythematosus disease activity associated with cytomegalovirus viral activity. Med. Microbiol. Immunol. 2007, 196, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.F.; Wu, H.C.; Tsai, W.C.; Yen, J.H.; Chiang, W.; Yuo, C.Y.; Lu, S.N.; Chiang, L.C.; Chen, C.J. Detecting Epstein-Barr virus DNA from peripheral blood mononuclear cells in adult patients with systemic lupus erythematosus in Taiwan. Med. Microbiol. Immunol. 2005, 194, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Lin, K.H.; Lin, S.C.; Tsai, W.C.; Yen, J.H.; Chang, S.J.; Lu, S.N.; Liu, H.W. High prevalence of immunoglobulin A antibody against Epstein-Barr virus capsid antigen in adult patients with lupus with disease flare: Case control studies. J. Rheumatol. 2005, 32, 44–47. [Google Scholar]
- Izadi, S.; Najafizadeh, S.R.; Nejati, A.; Teymoori-Rad, M.; Shahmahmoodi, S.; Shirazi, F.G.; Shokri, F.; Marashi, S.M. Overall Status of Epstein-Barr virus Infection, IFN-a, and TLR-7/9 in Patients with Systemic Lupus Erythematous. Iran. J. Immunol. 2021, 18, 230–240. [Google Scholar] [PubMed]
- Shehab, M.; Sherri, N.; Hussein, H.; Salloum, N.; Rahal, E.A. Endosomal Toll-Like Receptors Mediate Enhancement of Interleukin-17A Production Triggered by Epstein-Barr Virus DNA in Mice. J. Virol. 2019, 93, e00987-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, V.M.; Koelsch, K.A.; Kurien, B.T.; Harley, I.T.W.; Wren, J.D.; Harley, J.B.; Scofield, R.H. Characterization of cxorf21 Provides Molecular Insight Into Female-Bias Immune Response in SLE Pathogenesis. Front. Immunol. 2019, 10, 2160. [Google Scholar] [CrossRef]
- McHugh, J. Belimumab slows organ damage progression. Nat. Rev. Rheumatol. 2019, 15, 126. [Google Scholar] [CrossRef]
- Nickerson, K.M.; Christensen, S.R.; Shupe, J.; Kashgarian, M.; Kim, D.; Elkon, K.; Shlomchik, M.J. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 2010, 184, 1840–1848. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.W.; Chiu, W.C.; Huang, Y.L.; Chen, J.F.; Hsu, C.Y.; Ko, C.H.; Yu, S.F.; Lai, H.M.; Chen, Y.C.; Cheng, T.T.; et al. Interferon Induced with Helicase C Domain 1 (IFIH1) Gene single nucleotide polymorphism rs1990760 and its correlation to lupus nephritis: A cross-sectional study. Formos. J. Rheumatol. 2019, 33, 13–20. [Google Scholar]
- Pothlichet, J.; Niewold, T.B.; Vitour, D.; Solhonne, B.; Crow, M.K.; Si-Tahar, M. A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients. EMBO Mol. Med. 2011, 3, 142–152. [Google Scholar] [CrossRef]
- Lenert, P. Nucleic acid sensing receptors in systemic lupus erythematosus: Development of novel DNA- and/or RNA-like analogues for treating lupus. Clin. Exp. Immunol. 2010, 161, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, S.; Meka, S.; Gamero, A.M. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021, 146, 155633. [Google Scholar] [CrossRef]
- Eugster, A.; Müller, D.; Gompf, A.; Reinhardt, S.; Lindner, A.; Ashton, M.; Zimmermann, N.; Beissert, S.; Bonifacio, E.; Günther, C. A Novel Type I Interferon Primed Dendritic Cell Subpopulation in TREX1 Mutant Chilblain Lupus Patients. Front. Immunol. 2022, 13, 897500. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Ji, J.; Xiong, X.; Lu, Y. Hsa_circ_0012919 regulates expression of MDA5 by miR-125a-3p in CD4+ T cells of systemic lupus erythematous. Lupus 2020, 29, 727–734. [Google Scholar] [CrossRef]
- Sun, W.; Wang, H.; Qi, C.F.; Wu, J.; Scott, B.; Bolland, S. Antiviral Adaptor MAVS Promotes Murine Lupus with a B Cell Autonomous Role. Front. Immunol. 2019, 10, 2452. [Google Scholar] [CrossRef]
- Sandling, J.K.; Pucholt, P.; Rosenberg, L.H.; Farias, F.H.G.; Kozyrev, S.V.; Eloranta, M.-L.; Alexsson, A.; Bianchi, M.; Padyukov, L.; Bengtsson, C.; et al. Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing. Ann. Rheum. Dis. 2021, 80, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Ghodke-Puranik, Y.; Niewold, T.B. Genetics of the type I interferon pathway in systemic lupus erythematosus. Int. J. Clin. Rheumtol. 2013, 8, 657–669. [Google Scholar] [CrossRef] [Green Version]
- Lovgren, T.; Eloranta, M.L.; Bave, U.; Alm, G.V.; Ronnblom, L. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 2004, 50, 1861–1872. [Google Scholar] [CrossRef] [PubMed]
- Wahadat, M.J.; Bodewes, I.L.; Maria, N.I.; van Helden-Meeuwsen, C.G.; van Dijk-Hummelman, A.; Steenwijk, E.C.; Kamphuis, S.; Versnel, M.A. Type I IFN signature in childhood-onset systemic lupus erythematosus: A conspiracy of DNA- and RNA-sensing receptors? Arthritis Res. Ther. 2018, 20, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Li, M.; Li, C.; Liu, K.; Zhu, Y.; Zhang, H. Friend or foe: RIG- I like receptors and diseases. Autoimmun. Rev. 2022, 21, 103161. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Sinicato, N.A.; Postal, M.; Appenzeller, S.; Niewold, T.B. Dysregulation of antiviral helicase pathways in systemic lupus erythematosus. Front. Genet. 2014, 5, 418. [Google Scholar] [CrossRef] [Green Version]
- Shrivastav, M.; Niewold, T.B. Nucleic Acid sensors and type I interferon production in systemic lupus erythematosus. Front. Immunol. 2013, 4, 319. [Google Scholar] [CrossRef] [Green Version]
- Yokogawa, M.; Takaishi, M.; Nakajima, K.; Kamijima, R.; Fujimoto, C.; Kataoka, S.; Terada, Y.; Sano, S. Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: A new model of systemic Lupus erythematosus. Arthritis Rheumatol. 2014, 66, 694–706. [Google Scholar] [CrossRef]
- Su, K.Y.; Watanabe, A.; Yeh, C.H.; Kelsoe, G.; Kuraoka, M. Efficient Culture of Human Naive and Memory B Cells for Use as APCs. J. Immunol. 2016, 197, 4163–4176. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Thomas, P. PANTHER pathway: An ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 2009, 563, 123–140. [Google Scholar]
- Benitez, A.A.; Panis, M.; Xue, J.; Varble, A.; Shim, J.V.; Frick, A.L.; López, C.B.; Sachs, D.; Tenoever, B.R. In Vivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus. Cell Rep. 2015, 11, 1714–1726. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.Y.; Chuang, J.H.; Wang, P.W.; Lin, T.K.; Wu, M.T.; Hsu, W.M.; Chuang, H.C. 5-aza-2’-Deoxycytidine Induces a RIG-I-Related Innate Immune Response by Modulating Mitochondria Stress in Neuroblastoma. Cells 2020, 9, 1920. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.K.; Singh, V.V.; Rai, R.; Rai, M.; Rai, G. Distinct autoantibody profiles in systemic lupus erythematosus patients are selectively associated with TLR7 and TLR9 upregulation. J. Clin. Immunol. 2013, 33, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.R.; Shupe, J.; Nickerson, K.; Kashgarian, M.; Flavell, R.A.; Shlomchik, M.J. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 2006, 25, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Izumi, T.; Morioka, Y.; Urayama, S.-I.; Motooka, D.; Tamura, T.; Kawagishi, T.; Kanai, Y.; Kobayashi, T.; Ono, C.; Morinaga, A.; et al. DsRNA Sequencing for RNA Virus Surveillance Using Human Clinical Samples. Viruses 2021, 13, 1310. [Google Scholar] [CrossRef]
- Santiago-Raber, M.-L.; Dunand-Sauthier, I.; Wu, T.; Li, Q.-Z.; Uematsu, S.; Akira, S.; Reith, W.; Mohan, C.; Kotzin, B.L.; Izui, S. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J. Autoimmun. 2010, 34, 339–348. [Google Scholar] [CrossRef]
- Hanten, J.A.; Vasilakos, J.P.; Riter, C.L.; Neys, L.; Lipson, K.E.; Alkan, S.S.; Birmachu, W. Comparison of human B cell activation by TLR7 and TLR9 agonists. BMC Immunol. 2008, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Barrat, F.J.; Meeker, T.; Gregorio, J.; Chan, J.H.; Uematsu, S.; Akira, S.; Chang, B.; Duramad, O.; Coffman, R.L.; Ghiringhelli, F.; et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 2005, 202, 1131–1139. [Google Scholar] [CrossRef] [Green Version]
- Simchoni, N.; Cunningham-Rundles, C. TLR7- and TLR9-responsive human B cells share phenotypic and genetic characteristics. J. Immunol. 2015, 194, 3035–3044. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Nguyen-Tien, D.; Ohshima, D.; Karyu, H.; Shimabukuro-Demoto, S.; Yoshida-Sugitani, R.; Toyama-Sorimachi, N. Human SLC15A4 is crucial for TLR-mediated type I interferon production and mitochondrial integrity. Int. Immunol. 2021, 33, 399–406. [Google Scholar] [CrossRef]
- Moradpour, D.; Penin, F.; Rice, C.M. Replication of hepatitis C virus. Nat. Rev. Microbiol. 2007, 5, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Te Velthuis, A.J.; Fodor, E. Influenza virus RNA polymerase: Insights into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 2016, 14, 479–493. [Google Scholar] [CrossRef] [PubMed]
Accession | Gene | Description | Fold Change | p-Value | Compartment |
---|---|---|---|---|---|
Q64282 | IFIT1 | Interferon-induced protein with tetratricopeptide repeats 1 | 5.02 | 0.04 | cytosol |
A0A1Y7VJN6 | IGHG3 | Immunoglobulin heavy constant gamma 3 | 4.54 | 0.01 | secreted |
Q64339 | ISG15 | Ubiquitin-like protein ISG15 | 3.99 | 0.02 | cytosol |
Q8VI93 | ALAD | 2′-5′-oligoadenylate synthase 3 | 3.66 | 0.00 | cytosol |
P11928 | OAS1A | 2′-5′-oligoadenylate synthase 1A | 3.42 | 0.02 | cytosol |
O70250 | PGAM2 | Phosphoglycerate mutase 2 | 3.12 | 0.04 | cytosol |
Q6NSU3 | GLT8D1 | Glycosyltransferase 8 domain-containing protein 1 | 2.86 | 0.02 | cytosol |
F8WIG5 | DIAPH3 | Protein diaphanous homolog 3 | 2.83 | 0.03 | cytosol |
A0A075B5R7 | IGHV14-2 | Immunoglobulin heavy variable 14-2 | 2.56 | 0.00 | secreted |
Q9Z0I7 | SLFN1 | Schlafen 1 | 2.51 | 0.04 | cytosol |
A0A140T8P2 | IGKV6-20 | Immunoglobulin kappa variable 6-20 | 2.48 | 0.05 | secreted |
A0A075B5M7 | IGKV5-39 | Immunoglobulin kappa variable 5-39 | 2.47 | 0.02 | secreted |
P01635 | IGKV12-41 | Ig kappa chain V-V region K2 | 2.45 | 0.03 | secreted |
Q8BPA8 | DPCD | Protein DPCD | 2.39 | 0.03 | cytosol |
Q91XL1 | LRG1 | Leucine-rich HEV glycoprotein | 2.39 | 0.05 | cytosol |
P43346 | DCK | Deoxycytidine kinase | 2.24 | 0.04 | cytosol |
Q8BJT9 | EDEM2 | ER degradation-enhancing alpha-mannosidase-like protein 2 | 2.22 | 0.05 | cytosol |
Q8BSK8 | RPS6KB1 | Ribosomal protein S6 kinase beta-1 | 2.08 | 0.05 | cytosol |
Q3U5Q7 | CMPK2 | UMP-CMP kinase 2, mitochondrial | 2.08 | 0.01 | cytosol |
Q99J87 | DHX58 | Probable ATP-dependent RNA helicase DHX58 | 2.08 | 0.02 | cytosol |
E9PZQ1 | DDX60 | DExD/H box helicase 60 | 2.02 | 0.03 | cytosol |
A0A171EBL2 | RNF213 | E3 ubiquitin-protein ligase RNF213 | 2.00 | 0.03 | cytosol |
Q62087 | PON3 | Serum paraoxonase/lactonase 3 | 1.95 | 0.04 | cytosol |
Q6NZP1 | ZRANB3 | DNA annealing helicase and endonuclease ZRANB3 | 1.85 | 0.04 | cytosol |
A0A140T8N3 | IGKV13-84 | Immunoglobulin kappa chain variable 13-84 | 1.85 | 0.04 | secreted |
Q9D020 | NT5C3A | Cytosolic 5′-nucleotidase 3A | 1.81 | 0.05 | cytosol |
Q922F4 | TUBB6 | Tubulin beta-6 chain | 1.76 | 0.03 | cytosol |
Q8R5F7 | IFIH1 | Interferon-induced helicase C domain-containing protein 1 | 1.74 | 0.04 | cytosol |
P09242 | ALPL | Alkaline phosphatase, tissue-nonspecific isozyme | 1.74 | 0.03 | cytosol |
A0A075B5K6 | IGKV2-109 | Immunoglobulin kappa variable 2-109 | 1.71 | 0.05 | secreted |
Q99LE1 | RILPL2 | RILP-like protein 2 | 1.67 | 0.04 | cytosol |
Q78XF5 | OSTC | Oligosaccharyltransferase complex subunit OSTC | 1.53 | 0.03 | cytosol |
Q6ZQJ5 | DNA2 | DNA replication ATP-dependent helicase/nuclease DNA2 | 1.53 | 0.05 | cytosol |
J3QNR8 | TRIM34B | Tripartite motif-containing 34B | 1.52 | 0.04 | cytosol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.-J.; Li, F.-A.; Sheu, J.J.-C.; Li, S.-C.; Weng, S.-W.; Shen, F.-C.; Chang, Y.-H.; Chen, H.-Y.; Liou, C.-W.; Lin, T.-K.; et al. A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics. Cells 2022, 11, 3350. https://doi.org/10.3390/cells11213350
Su Y-J, Li F-A, Sheu JJ-C, Li S-C, Weng S-W, Shen F-C, Chang Y-H, Chen H-Y, Liou C-W, Lin T-K, et al. A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics. Cells. 2022; 11(21):3350. https://doi.org/10.3390/cells11213350
Chicago/Turabian StyleSu, Yu-Jih, Fu-An Li, Jim Jinn-Chyuan Sheu, Sung-Chou Li, Shao-Wen Weng, Feng-Chih Shen, Yen-Hsiang Chang, Huan-Yuan Chen, Chia-Wei Liou, Tsu-Kung Lin, and et al. 2022. "A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics" Cells 11, no. 21: 3350. https://doi.org/10.3390/cells11213350
APA StyleSu, Y.-J., Li, F.-A., Sheu, J. J.-C., Li, S.-C., Weng, S.-W., Shen, F.-C., Chang, Y.-H., Chen, H.-Y., Liou, C.-W., Lin, T.-K., Chuang, J.-H., & Wang, P.-W. (2022). A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics. Cells, 11(21), 3350. https://doi.org/10.3390/cells11213350