A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics
Abstract
1. Introduction
2. Material and Methods
2.1. Mouse Study
2.2. Pathological Analysis of Mouse Kidney, Liver, and Spleen
2.3. Flowcytometry Gating Strategy and Serology or Urine Analysis
2.4. B Cells Isolated from Mouse Splenocytes and Cultured with Feeder Cell
2.5. Proteomics Analysis
2.6. Western Blot Confirmation of Intracellular Proteins after Feeder Cells Co-Culture and Then after Nuclear–Plasma Separation of B Cells
2.7. Statistical Analysis
3. Results
3.1. Successful Induction of Lupus Presentation in Mice with Imiquimod Demonstrated by Histology and Serology
3.2. B Cells from Spleen via Negative Selection Method Demonstrated Activation and Proliferation with Pathology and Intracellular Protein Analysis
3.3. Proteomics Results Comparing B Cells from the Spleen of Imiquimod-Stimulated FBV/N Mice with the Reference from the Panther Classification System [29] and the STRING Database
3.4. Western Blot Confirmation of Intracellular Proteins of B Cells after CD40L+ Feeder Cells Co-Culture for 7 Days
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.F.; Wei, W.; Tangtanatakul, P.; Zheng, L.; Lei, Y.; Lin, Z.; Qian, C.; Qin, X.; Hou, F.; Zhang, X.; et al. Identification of Shared and Asian-Specific Loci for Systemic Lupus Erythematosus and Evidence for Roles of Type III Interferon Signaling and Lysosomal Function in the Disease: A Multi-Ancestral Genome-Wide Association Study. Arthritis Rheumatol. 2022, 74, 840–848. [Google Scholar] [CrossRef]
- Su, Y.-J.; Cheng, T.-T.; Chen, C.-J.; Chang, W.-N.; Tien-Tsai, C.; Kung, C.-T.; Wang, H.-C.; Lin, W.-C.; Huang, C.-C.; Chang, Y.-T.; et al. Investigation of the caspase-dependent mitochondrial apoptotic pathway in mononuclear cells of patients with systemic Lupus erythematosus. J. Transl. Med. 2014, 12, 303. [Google Scholar] [CrossRef]
- Ha, E.; Bae, S.C.; Kim, K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin. Immunopathol. 2021, 44, 29–46. [Google Scholar] [CrossRef]
- Su, Y.J.; Chiu, W.C.; Kuo, H.C. Inverse Association Between Antiviral Immunity and Lupus Disease Activity. Viral Immunol. 2018, 31, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Su, B.Y.; Su, C.Y.; Yu, S.F.; Chen, C.J. Incidental discovery of high systemic lupus erythematosus disease activity associated with cytomegalovirus viral activity. Med. Microbiol. Immunol. 2007, 196, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.F.; Wu, H.C.; Tsai, W.C.; Yen, J.H.; Chiang, W.; Yuo, C.Y.; Lu, S.N.; Chiang, L.C.; Chen, C.J. Detecting Epstein-Barr virus DNA from peripheral blood mononuclear cells in adult patients with systemic lupus erythematosus in Taiwan. Med. Microbiol. Immunol. 2005, 194, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Lin, K.H.; Lin, S.C.; Tsai, W.C.; Yen, J.H.; Chang, S.J.; Lu, S.N.; Liu, H.W. High prevalence of immunoglobulin A antibody against Epstein-Barr virus capsid antigen in adult patients with lupus with disease flare: Case control studies. J. Rheumatol. 2005, 32, 44–47. [Google Scholar]
- Izadi, S.; Najafizadeh, S.R.; Nejati, A.; Teymoori-Rad, M.; Shahmahmoodi, S.; Shirazi, F.G.; Shokri, F.; Marashi, S.M. Overall Status of Epstein-Barr virus Infection, IFN-a, and TLR-7/9 in Patients with Systemic Lupus Erythematous. Iran. J. Immunol. 2021, 18, 230–240. [Google Scholar] [PubMed]
- Shehab, M.; Sherri, N.; Hussein, H.; Salloum, N.; Rahal, E.A. Endosomal Toll-Like Receptors Mediate Enhancement of Interleukin-17A Production Triggered by Epstein-Barr Virus DNA in Mice. J. Virol. 2019, 93, e00987-19. [Google Scholar] [CrossRef] [PubMed]
- Harris, V.M.; Koelsch, K.A.; Kurien, B.T.; Harley, I.T.W.; Wren, J.D.; Harley, J.B.; Scofield, R.H. Characterization of cxorf21 Provides Molecular Insight Into Female-Bias Immune Response in SLE Pathogenesis. Front. Immunol. 2019, 10, 2160. [Google Scholar] [CrossRef]
- McHugh, J. Belimumab slows organ damage progression. Nat. Rev. Rheumatol. 2019, 15, 126. [Google Scholar] [CrossRef]
- Nickerson, K.M.; Christensen, S.R.; Shupe, J.; Kashgarian, M.; Kim, D.; Elkon, K.; Shlomchik, M.J. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 2010, 184, 1840–1848. [Google Scholar] [CrossRef]
- Wang, Y.W.; Chiu, W.C.; Huang, Y.L.; Chen, J.F.; Hsu, C.Y.; Ko, C.H.; Yu, S.F.; Lai, H.M.; Chen, Y.C.; Cheng, T.T.; et al. Interferon Induced with Helicase C Domain 1 (IFIH1) Gene single nucleotide polymorphism rs1990760 and its correlation to lupus nephritis: A cross-sectional study. Formos. J. Rheumatol. 2019, 33, 13–20. [Google Scholar]
- Pothlichet, J.; Niewold, T.B.; Vitour, D.; Solhonne, B.; Crow, M.K.; Si-Tahar, M. A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients. EMBO Mol. Med. 2011, 3, 142–152. [Google Scholar] [CrossRef]
- Lenert, P. Nucleic acid sensing receptors in systemic lupus erythematosus: Development of novel DNA- and/or RNA-like analogues for treating lupus. Clin. Exp. Immunol. 2010, 161, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, S.; Meka, S.; Gamero, A.M. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021, 146, 155633. [Google Scholar] [CrossRef]
- Eugster, A.; Müller, D.; Gompf, A.; Reinhardt, S.; Lindner, A.; Ashton, M.; Zimmermann, N.; Beissert, S.; Bonifacio, E.; Günther, C. A Novel Type I Interferon Primed Dendritic Cell Subpopulation in TREX1 Mutant Chilblain Lupus Patients. Front. Immunol. 2022, 13, 897500. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Ji, J.; Xiong, X.; Lu, Y. Hsa_circ_0012919 regulates expression of MDA5 by miR-125a-3p in CD4+ T cells of systemic lupus erythematous. Lupus 2020, 29, 727–734. [Google Scholar] [CrossRef]
- Sun, W.; Wang, H.; Qi, C.F.; Wu, J.; Scott, B.; Bolland, S. Antiviral Adaptor MAVS Promotes Murine Lupus with a B Cell Autonomous Role. Front. Immunol. 2019, 10, 2452. [Google Scholar] [CrossRef]
- Sandling, J.K.; Pucholt, P.; Rosenberg, L.H.; Farias, F.H.G.; Kozyrev, S.V.; Eloranta, M.-L.; Alexsson, A.; Bianchi, M.; Padyukov, L.; Bengtsson, C.; et al. Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing. Ann. Rheum. Dis. 2021, 80, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Ghodke-Puranik, Y.; Niewold, T.B. Genetics of the type I interferon pathway in systemic lupus erythematosus. Int. J. Clin. Rheumtol. 2013, 8, 657–669. [Google Scholar] [CrossRef]
- Lovgren, T.; Eloranta, M.L.; Bave, U.; Alm, G.V.; Ronnblom, L. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 2004, 50, 1861–1872. [Google Scholar] [CrossRef] [PubMed]
- Wahadat, M.J.; Bodewes, I.L.; Maria, N.I.; van Helden-Meeuwsen, C.G.; van Dijk-Hummelman, A.; Steenwijk, E.C.; Kamphuis, S.; Versnel, M.A. Type I IFN signature in childhood-onset systemic lupus erythematosus: A conspiracy of DNA- and RNA-sensing receptors? Arthritis Res. Ther. 2018, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, M.; Li, C.; Liu, K.; Zhu, Y.; Zhang, H. Friend or foe: RIG- I like receptors and diseases. Autoimmun. Rev. 2022, 21, 103161. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Sinicato, N.A.; Postal, M.; Appenzeller, S.; Niewold, T.B. Dysregulation of antiviral helicase pathways in systemic lupus erythematosus. Front. Genet. 2014, 5, 418. [Google Scholar] [CrossRef]
- Shrivastav, M.; Niewold, T.B. Nucleic Acid sensors and type I interferon production in systemic lupus erythematosus. Front. Immunol. 2013, 4, 319. [Google Scholar] [CrossRef]
- Yokogawa, M.; Takaishi, M.; Nakajima, K.; Kamijima, R.; Fujimoto, C.; Kataoka, S.; Terada, Y.; Sano, S. Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: A new model of systemic Lupus erythematosus. Arthritis Rheumatol. 2014, 66, 694–706. [Google Scholar] [CrossRef]
- Su, K.Y.; Watanabe, A.; Yeh, C.H.; Kelsoe, G.; Kuraoka, M. Efficient Culture of Human Naive and Memory B Cells for Use as APCs. J. Immunol. 2016, 197, 4163–4176. [Google Scholar] [CrossRef]
- Mi, H.; Thomas, P. PANTHER pathway: An ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 2009, 563, 123–140. [Google Scholar]
- Benitez, A.A.; Panis, M.; Xue, J.; Varble, A.; Shim, J.V.; Frick, A.L.; López, C.B.; Sachs, D.; Tenoever, B.R. In Vivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus. Cell Rep. 2015, 11, 1714–1726. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chuang, J.H.; Wang, P.W.; Lin, T.K.; Wu, M.T.; Hsu, W.M.; Chuang, H.C. 5-aza-2’-Deoxycytidine Induces a RIG-I-Related Innate Immune Response by Modulating Mitochondria Stress in Neuroblastoma. Cells 2020, 9, 1920. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.K.; Singh, V.V.; Rai, R.; Rai, M.; Rai, G. Distinct autoantibody profiles in systemic lupus erythematosus patients are selectively associated with TLR7 and TLR9 upregulation. J. Clin. Immunol. 2013, 33, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.R.; Shupe, J.; Nickerson, K.; Kashgarian, M.; Flavell, R.A.; Shlomchik, M.J. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 2006, 25, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Izumi, T.; Morioka, Y.; Urayama, S.-I.; Motooka, D.; Tamura, T.; Kawagishi, T.; Kanai, Y.; Kobayashi, T.; Ono, C.; Morinaga, A.; et al. DsRNA Sequencing for RNA Virus Surveillance Using Human Clinical Samples. Viruses 2021, 13, 1310. [Google Scholar] [CrossRef]
- Santiago-Raber, M.-L.; Dunand-Sauthier, I.; Wu, T.; Li, Q.-Z.; Uematsu, S.; Akira, S.; Reith, W.; Mohan, C.; Kotzin, B.L.; Izui, S. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J. Autoimmun. 2010, 34, 339–348. [Google Scholar] [CrossRef]
- Hanten, J.A.; Vasilakos, J.P.; Riter, C.L.; Neys, L.; Lipson, K.E.; Alkan, S.S.; Birmachu, W. Comparison of human B cell activation by TLR7 and TLR9 agonists. BMC Immunol. 2008, 9, 39. [Google Scholar] [CrossRef]
- Barrat, F.J.; Meeker, T.; Gregorio, J.; Chan, J.H.; Uematsu, S.; Akira, S.; Chang, B.; Duramad, O.; Coffman, R.L.; Ghiringhelli, F.; et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 2005, 202, 1131–1139. [Google Scholar] [CrossRef]
- Simchoni, N.; Cunningham-Rundles, C. TLR7- and TLR9-responsive human B cells share phenotypic and genetic characteristics. J. Immunol. 2015, 194, 3035–3044. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nguyen-Tien, D.; Ohshima, D.; Karyu, H.; Shimabukuro-Demoto, S.; Yoshida-Sugitani, R.; Toyama-Sorimachi, N. Human SLC15A4 is crucial for TLR-mediated type I interferon production and mitochondrial integrity. Int. Immunol. 2021, 33, 399–406. [Google Scholar] [CrossRef]
- Moradpour, D.; Penin, F.; Rice, C.M. Replication of hepatitis C virus. Nat. Rev. Microbiol. 2007, 5, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Te Velthuis, A.J.; Fodor, E. Influenza virus RNA polymerase: Insights into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 2016, 14, 479–493. [Google Scholar] [CrossRef] [PubMed]
Accession | Gene | Description | Fold Change | p-Value | Compartment |
---|---|---|---|---|---|
Q64282 | IFIT1 | Interferon-induced protein with tetratricopeptide repeats 1 | 5.02 | 0.04 | cytosol |
A0A1Y7VJN6 | IGHG3 | Immunoglobulin heavy constant gamma 3 | 4.54 | 0.01 | secreted |
Q64339 | ISG15 | Ubiquitin-like protein ISG15 | 3.99 | 0.02 | cytosol |
Q8VI93 | ALAD | 2′-5′-oligoadenylate synthase 3 | 3.66 | 0.00 | cytosol |
P11928 | OAS1A | 2′-5′-oligoadenylate synthase 1A | 3.42 | 0.02 | cytosol |
O70250 | PGAM2 | Phosphoglycerate mutase 2 | 3.12 | 0.04 | cytosol |
Q6NSU3 | GLT8D1 | Glycosyltransferase 8 domain-containing protein 1 | 2.86 | 0.02 | cytosol |
F8WIG5 | DIAPH3 | Protein diaphanous homolog 3 | 2.83 | 0.03 | cytosol |
A0A075B5R7 | IGHV14-2 | Immunoglobulin heavy variable 14-2 | 2.56 | 0.00 | secreted |
Q9Z0I7 | SLFN1 | Schlafen 1 | 2.51 | 0.04 | cytosol |
A0A140T8P2 | IGKV6-20 | Immunoglobulin kappa variable 6-20 | 2.48 | 0.05 | secreted |
A0A075B5M7 | IGKV5-39 | Immunoglobulin kappa variable 5-39 | 2.47 | 0.02 | secreted |
P01635 | IGKV12-41 | Ig kappa chain V-V region K2 | 2.45 | 0.03 | secreted |
Q8BPA8 | DPCD | Protein DPCD | 2.39 | 0.03 | cytosol |
Q91XL1 | LRG1 | Leucine-rich HEV glycoprotein | 2.39 | 0.05 | cytosol |
P43346 | DCK | Deoxycytidine kinase | 2.24 | 0.04 | cytosol |
Q8BJT9 | EDEM2 | ER degradation-enhancing alpha-mannosidase-like protein 2 | 2.22 | 0.05 | cytosol |
Q8BSK8 | RPS6KB1 | Ribosomal protein S6 kinase beta-1 | 2.08 | 0.05 | cytosol |
Q3U5Q7 | CMPK2 | UMP-CMP kinase 2, mitochondrial | 2.08 | 0.01 | cytosol |
Q99J87 | DHX58 | Probable ATP-dependent RNA helicase DHX58 | 2.08 | 0.02 | cytosol |
E9PZQ1 | DDX60 | DExD/H box helicase 60 | 2.02 | 0.03 | cytosol |
A0A171EBL2 | RNF213 | E3 ubiquitin-protein ligase RNF213 | 2.00 | 0.03 | cytosol |
Q62087 | PON3 | Serum paraoxonase/lactonase 3 | 1.95 | 0.04 | cytosol |
Q6NZP1 | ZRANB3 | DNA annealing helicase and endonuclease ZRANB3 | 1.85 | 0.04 | cytosol |
A0A140T8N3 | IGKV13-84 | Immunoglobulin kappa chain variable 13-84 | 1.85 | 0.04 | secreted |
Q9D020 | NT5C3A | Cytosolic 5′-nucleotidase 3A | 1.81 | 0.05 | cytosol |
Q922F4 | TUBB6 | Tubulin beta-6 chain | 1.76 | 0.03 | cytosol |
Q8R5F7 | IFIH1 | Interferon-induced helicase C domain-containing protein 1 | 1.74 | 0.04 | cytosol |
P09242 | ALPL | Alkaline phosphatase, tissue-nonspecific isozyme | 1.74 | 0.03 | cytosol |
A0A075B5K6 | IGKV2-109 | Immunoglobulin kappa variable 2-109 | 1.71 | 0.05 | secreted |
Q99LE1 | RILPL2 | RILP-like protein 2 | 1.67 | 0.04 | cytosol |
Q78XF5 | OSTC | Oligosaccharyltransferase complex subunit OSTC | 1.53 | 0.03 | cytosol |
Q6ZQJ5 | DNA2 | DNA replication ATP-dependent helicase/nuclease DNA2 | 1.53 | 0.05 | cytosol |
J3QNR8 | TRIM34B | Tripartite motif-containing 34B | 1.52 | 0.04 | cytosol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.-J.; Li, F.-A.; Sheu, J.J.-C.; Li, S.-C.; Weng, S.-W.; Shen, F.-C.; Chang, Y.-H.; Chen, H.-Y.; Liou, C.-W.; Lin, T.-K.; et al. A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics. Cells 2022, 11, 3350. https://doi.org/10.3390/cells11213350
Su Y-J, Li F-A, Sheu JJ-C, Li S-C, Weng S-W, Shen F-C, Chang Y-H, Chen H-Y, Liou C-W, Lin T-K, et al. A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics. Cells. 2022; 11(21):3350. https://doi.org/10.3390/cells11213350
Chicago/Turabian StyleSu, Yu-Jih, Fu-An Li, Jim Jinn-Chyuan Sheu, Sung-Chou Li, Shao-Wen Weng, Feng-Chih Shen, Yen-Hsiang Chang, Huan-Yuan Chen, Chia-Wei Liou, Tsu-Kung Lin, and et al. 2022. "A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics" Cells 11, no. 21: 3350. https://doi.org/10.3390/cells11213350
APA StyleSu, Y.-J., Li, F.-A., Sheu, J. J.-C., Li, S.-C., Weng, S.-W., Shen, F.-C., Chang, Y.-H., Chen, H.-Y., Liou, C.-W., Lin, T.-K., Chuang, J.-H., & Wang, P.-W. (2022). A Study on MDA5 Signaling in Splenic B Cells from an Imiquimod-Induced Lupus Mouse Model with Proteomics. Cells, 11(21), 3350. https://doi.org/10.3390/cells11213350