Energy Metabolism and Hyperactivation of Spermatozoa from Three Mouse Species under Capacitating Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sperm Collection
2.2. Sperm Parameters
2.3. Percentage of Hyperactivation
2.4. Data Analysis
3. Results
3.1. Viability and Motility
3.2. Capacitation
3.3. Sperm Swimming Parameters
3.4. ATP Content
3.5. Hyperactivation
3.6. Comparisons of Non-hyperactivated and Hyperactivated Subpopulations
Dependent Variable | Independent Variable | Mus musculus | M. spretus | M. spicilegus | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
VCL | Status | 215.217 | <0.001 | 59.995 | <0.001 | 1.507 | 0.223 |
Time | 1.856 | 0.142 | 0.921 | 0.433 | 5.03 | 0.003 | |
Interaction | 0.376 | 0.771 | 0.773 | 0.511 | 5.361 | 0.002 | |
VSL | Status | 3.589 | 0.061 | 37.789 | <0.001 | 111.676 | <0.001 |
Time | 9.063 | <0.001 | 8.13 | <0.001 | 16.04 | <0.001 | |
Interaction | 0.279 | 0.841 | 0.303 | 0.823 | 0.771 | 0.513 | |
LIN | Status | 20.994 | <0.001 | 125.778 | <0.001 | 179.422 | <0.001 |
Time | 13.285 | <0.001 | 17.541 | <0.001 | 17.741 | <0.001 | |
Interaction | 0.15 | 0.929 | 0.519 | 0.670 | 0.603 | 0.698 | |
ALH | Status | 2409.089 | <0.001 | 2132.668 | <0.001 | 2254.932 | <0.001 |
Time | 1.792 | 0.154 | 5.758 | 0.001 | 30.844 | <0.001 | |
Interaction | 0.726 | 0.539 | 6.662 | <0.001 | 0.129 | 0.943 | |
BCF | Status | 8.341 | 0.005 | 63.394 | <0.001 | 215.774 | <0.001 |
Time | 0.168 | 0.917 | 37.874 | <0.001 | 4.18 | 0.008 | |
Interaction | 0.268 | 0.849 | 0.018 | 0.997 | 1.772 | 0.128 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parker, G.A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 1970, 45, 525–567. [Google Scholar] [CrossRef]
- Parker, G.A. Sperm competition games: Sperm size and sperm number under adult control. Proc. R. Soc. B Boil. Sci. 1993, 253, 245–254. [Google Scholar] [CrossRef]
- Parker, G.A. Sperm competition games between related males. Proc. R. Soc. B Boil. Sci. 2000, 267, 1027–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, G.A. Conceptual developments in sperm competition: A very brief synspsis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20200061. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.A. How Soon hath time... A history of two “seminal” publications. Cells 2021, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Pitnick, S.; Hosken, D.J.; Birkhead, T.R. Sperm morphological diversity. In Sperm Biology. An Evolutionary Perspective; Birkhead, T.R., Hosken, D.J., Pitnick, S., Eds.; Academic Press: London, UK, 2009; pp. 69–149. [Google Scholar]
- Teves, M.E.; Roldan, E.R.S. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol. Rev. 2022, 102, 7–60. [Google Scholar] [CrossRef] [PubMed]
- Bedford, J.M. Enigmas of mammalian gamete form and function. Biol. Rev. 2004, 79, 429–460. [Google Scholar] [CrossRef]
- Roldan, E.R.S.; Teves, M.E. Understanding sperm physiology: Proximate and evolutionary explanations of sperm diversity. Mol. Cell. Endocrinol. 2020, 518, 110980. [Google Scholar] [CrossRef] [PubMed]
- Gomendio, M.; Roldan, E.R.S. Implications of diversity in sperm size and function for sperm competition and fertility. Int. J. Dev. Biol. 2008, 52, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Lupold, S.; Calhim, S.; Immler, S.; Birkhead, T.R. Sperm morphology and sperm velocity in passerine birds. Proc. R. Soc. B Boil. Sci. 2009, 276, 1175–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tourmente, M.; Gomendio, M.; Roldan, E.R.S. Sperm competition and the evolution of sperm design in mammals. BMC Evol. Biol. 2011, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varea-Sanchez, M.; Tourmente, M.; Bastir, M.; Roldan, E.R.S. Unraveling the sperm bauplan: Relationships between sperm sead morphology and sperm function in rodents. Biol. Reprod. 2016, 95, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hook, K.A.; Wilke, L.M.; Fisher, H.S. Apical sperm hook morphology is linked to sperm swimming performance and sperm aggregation in Peromyscus mice. Cells 2021, 10, 2279. [Google Scholar] [CrossRef]
- Roldan, E.R.S. Sperm competition and the evolution of sperm form and function in mammals. Reprod. Domest. Anim. 2019, 54 (Suppl. 4), 14–21. [Google Scholar] [CrossRef]
- Florman, H.M.; Fissore, R. Fertilization in mammals. In Knobil and Neill’s Physiology of Reproduction; Plant, T.M., Zeleznik, A.J., Eds.; Academic Press: London, UK, 2015; pp. 149–196. [Google Scholar]
- Austin, C.R. Observations on the penetration of the sperm into the mammalian egg. Aust. J. Biol. Sci. 1951, 4, 581–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, M.C. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 1951, 168, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Austin, C.R. The capacitation of the mammalian sperm. Nature 1952, 170, 326. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C. Development of fertilizing capacity of rabbit spermatozoa in the uterus. Nature 1955, 175, 1036–1037. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C. The meaning of sperm capacitation. A historical perspective. J. Androl. 1984, 5, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagimachi, R. Fertility of mammalian spermatozoa: Its development and relativity. Zygote 1994, 2, 371–372. [Google Scholar] [CrossRef]
- Suarez, S.S. Hyperactivated motility in sperm. J. Androl. 1996, 17, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Gervasi, M.G.; Visconti, P.E. Chang’s meaning of capacitation: A molecular perspective. Mol. Reprod. Dev. 2016, 83, 860–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santi, C.M.; Martinez-Lopez, P.; de la Vega-Beltran, J.L.; Butler, A.; Alisio, A.; Darszon, A.; Salkoff, L. The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett. 2010, 584, 1041–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarrete, F.A.; Garcia-Vazquez, F.A.; Alvau, A.; Escoffier, J.; Krapf, D.; Sanchez-Cardenas, C.; Salicioni, A.M.; Darszon, A.; Visconti, P.E. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J. Cell Physiol. 2015, 230, 1758–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visconti, P.E.; Ning, X.; Fornes, M.W.; Alvarez, J.G.; Stein, P.; Connors, S.A.; Kopf, G.S. Cholesterol efflux-mediated signal transduction in mammalian sperm: Cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev. Biol. 1999, 214, 429–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadella, B.M.; Harrison, R.A. The capacitating agent bicarbonate induces protein kinase A-dependent changes in phospholipid transbilayer behavior in the sperm plasma membrane. Development 2000, 127, 2407–2420. [Google Scholar] [CrossRef]
- Escoffier, J.; Krapf, D.; Navarrete, F.; Darszon, A.; Visconti, P.E. Flow cytometry analysis reveals a decrease in intracellular sodium during sperm capacitation. J. Cell. Sci. 2012, 125, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Goodson, S.G.; Qiu, Y.; Sutton, K.A.; Xie, G.; Jia, W.; O’Brien, D.A. Metabolic substrates exhibit differential effects on functional parameters of mouse sperm capacitation. Biol. Reprod. 2012, 87, 75. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Danshina, P.V.; Mohr, K.; Qu, W.; Goodson, S.G.; O’Connell, T.M.; O’Brien, D.A. Sperm function, protein phosphorylation, and metabolism differ in mice lacking successive sperm-specific glycolytic enzymes. Biol. Reprod. 2017, 97, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Puga Molina, L.C.; Luque, G.M.; Balestrini, P.A.; Marin-Briggiler, C.I.; Romarowski, A.; Buffone, M.G. Molecular basis of human sperm capacitation. Front. Cell. Dev. Biol. 2018, 6, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odet, F.; Gabel, S.; London, R.E.; Goldberg, E.; Eddy, E.M. Glycolysis and mitochondrial respiration in mouse LDHC-null sperm. Biol. Reprod. 2013, 88, 95. [Google Scholar] [CrossRef]
- Shi, Q.X.; Roldan, E.R. Bicarbonate/CO2 is not required for zona pellucida- or progesterone-induced acrosomal exocytosis of mouse spermatozoa but is essential for capacitation. Biol. Reprod. 1995, 52, 540–546. [Google Scholar] [CrossRef]
- Visconti, P.E.; Bailey, J.L.; Moore, G.D.; Pan, D.; Olds-Clarke, P. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorilation. Development 1995, 121, 1129–1137. [Google Scholar] [CrossRef]
- Visconti, P.E.; Kopf, G.S. Regulation of protein phosphorylation during sperm capacitation. Biol. Reprod. 1998, 59, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yanagimachi, R. The movement of golden hamster spermatozoa before and after capacitation. Reproduction 1970, 23, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.C.; Suarez, S.S. Hyperactivation of mammalian spermatozoa: Function and regulation. Reproduction 2001, 122, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Soler, C.; Yeung, C.H.; Cooper, T.G. Development of sperm motility patterns in the murine epididymis. Int. J. Androl. 1994, 17, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Salicioni, A.M.; Platt, M.D.; Wertheimer, E.V.; Arcelay, E.; Allaire, A.; Sosnik, J.; Visconti, P.E. Signalling pathways involved in sperm capacitation. In Spermatology; Roldan, E.R.S., Gomendio, M., Eds.; Nottingham University Press: Nottingham, UK, 2007; pp. 245–259. [Google Scholar]
- Fraser, L.R. The “switching on” of mammalian spermatozoa: Molecular events involved in promotion and regulation of capacitation. Mol. Reprod. Dev. 2010, 77, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Goodson, S.G.; Zhang, Z.; Tsuruta, J.K.; Wang, W.; O’Brien, D.A. Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol. Reprod. 2011, 84, 1207–1215. [Google Scholar] [CrossRef] [Green Version]
- Suarez, S.S. Control of hyperactivation in sperm. Hum. Reprod. Update 2008, 14, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Suarez, S.S. Two distinct Ca2+ signaling pathways modulate sperm flagellar beating patterns in mice. Biol. Reprod. 2011, 85, 296–305. [Google Scholar] [CrossRef] [Green Version]
- de Lamirande, E.; Leclerc, P.; Gagnon, C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol. Hum. Reprod. 1997, 3, 175–194. [Google Scholar] [CrossRef] [Green Version]
- Suarez, S.S.; Osman, R.A. Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. Biol. Reprod. 1987, 36, 1191–1198. [Google Scholar] [CrossRef]
- Suarez, S.S.; Dai, X. Hyperactivation enhances mouse sperm capacity for penetrating viscoelastic media. Biol. Reprod. 1992, 46, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cerezales, S.; Lopez-Cardona, A.P.; Gutierrez-Adan, A. Progesterone effects on mouse sperm kinetics in conditions of viscosity. Reproduction 2016, 151, 501–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichol, R.; Hunter, R.H.; Gardner, D.K.; Leese, H.J.; Cooke, G.M. Concentrations of energy substrates in oviductal fluid and blood plasma of pigs during the peri-ovulatory period. Reproduction 1992, 96, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Si, Y.; Olds-Clarke, P. Evidence for the involvement of calmodulin in mouse sperm capacitation. Biol. Reprod. 2000, 62, 1231–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzuk, M.M.; Lamb, D.J. The biology of infertility: Research advances and clinical challenges. Nat. Med. 2008, 14, 1197–1213. [Google Scholar] [CrossRef]
- Brukman, N.G.; Miyata, H.; Torres, P.; Lombardo, D.; Caramelo, J.J.; Ikawa, M.; Da Ros, V.G.; Cuasnicú, P.S. Fertilization defects in sperm fromCysteine-rich secretory protein 2(Crisp2) knockout mice: Implications for fertility disorders. Mol. Hum. Reprod. 2016, 22, 240–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, M.J.; Vijayaraghavan, S.; Fardilha, M. Signaling mechanisms in mammalian sperm motility. Biol. Reprod. 2016, 96, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Neill, J.M.; Olds-Clarke, P. A computer-assisted assay for mouse sperm hyperactivation demonstrates that bicarbonate but not bovine serum albumin is required. Gamete Res. 1987, 18, 121–140. [Google Scholar] [CrossRef]
- Baker, M.A.; Hetherington, L.; Aitken, R.J. Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J. Cell Sci. 2007, 119, 3182–3192. [Google Scholar] [CrossRef] [Green Version]
- Cosson, J. ATP: The sperm movement energizer. In Adenosine Triphosphate: Chemical Properties, Biosynthesis and Functions in Cells; Kuester, E., Traugott, G., Eds.; Nova Science Publishers, : Hauppauge, NY, USA, 2013; pp. 1–46. [Google Scholar]
- Giojalas, L.C.; Guidobaldi, H.A.; Sánchez, R. Sperm chemotaxis in mammals. In Flagellar Mechanics and Sperm Guidance; Cosson, J.J., Ed.; Bentham Science Publishers: Potomac, MD, USA, 2015; pp. 272–307. [Google Scholar]
- Jeulin, C.; Soufir, J.-C. Reversible intracellular ATP changes in intact rat spermatozoa and effects on flagellar sperm movement. Cell Motil. Cytoskelet. 1992, 21, 210–222. [Google Scholar] [CrossRef]
- Tourmente, M.; Villar-Moya, P.; Varea-Sánchez, M.; Luque-Larena, J.J.; Rial, E.; Roldan, E.R.S. Performance of Rodent Spermatozoa Over Time Is Enhanced by Increased ATP Concentrations: The Role of Sperm Competition1. Biol. Reprod. 2015, 93, 64. [Google Scholar] [CrossRef] [Green Version]
- Ford, W.C. Glycolysis and sperm motility: Does a spoonful of sugar help the flagellum go round? Hum. Reprod. Updat. 2006, 12, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Pesini, E.; Díez-Sánchez, C.; López-Pérez, M.J.; Enríquez, J.A. The Role of the Mitochondrion in Sperm Function: Is There a Place for Oxidative Phosphorylation or Is this a Purely Glycolytic Process? Curr. Top. Dev. Biol. 2007, 77, 3–19. [Google Scholar] [CrossRef]
- Storey, B.T. Mammalian sperm metabolism: Oxygen and sugar, friend and foe. Int. J. Dev. Biol. 2008, 52, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Van Dop, C.; Hutson, S.M.; Lardy, H.A. Pyruvate metabolism in bovine epididymal spermatozoa. J. Biol. Chem. 1977, 252, 1303–1308. [Google Scholar] [CrossRef]
- Hammerstedt, R.H.; Lardy, H.A. The effect of substrate cycling on the ATP yield of sperm glycolysis. J. Biol. Chem. 1983, 258, 8759–8768. [Google Scholar] [CrossRef]
- Ferramosca, A.; Focarelli, R.; Piomboni, P.; Coppola, L.; Zara, V. Oxygen uptake by mitochondria in demembranated human spermatozoa: A reliable tool for the evaluation of sperm respiratory efficiency. Int. J. Androl. 2008, 31, 337–345. [Google Scholar] [CrossRef]
- Cummins, J.M. Sperm motility and energetics. In Sperm Biology. An Evolutionary Perspective; Birkhead, T.R., Hosken, D.J., Pitnick, S., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 185–206. [Google Scholar]
- Travis, A.J.; Jorgez, C.J.; Merdiushev, T.; Jones, B.H.; Dess, D.M.; Diaz-Cueto, L.; Storey, B.T.; Kopf, G.S.; Moss, S.B. Functional Relationships between Capacitation-dependent Cell Signaling and Compartmentalized Metabolic Pathways in Murine Spermatozoa. J. Biol. Chem. 2001, 276, 7630–7636. [Google Scholar] [CrossRef]
- Narisawa, S.; Hecht, N.B.; Goldberg, E.; Boatright, K.M.; Reed, J.C.; Millán, J.L. Testis-Specific Cytochrome c -Null Mice Produce Functional Sperm but Undergo Early Testicular Atrophy. Mol. Cell. Biol. 2002, 22, 5554–5562. [Google Scholar] [CrossRef] [Green Version]
- Takei, G.L.; Miyashiro, D.; Mukai, C.; Okuno, M. Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm. J. Exp. Biol. 2014, 217, 1876–1886. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, V. Role of Glycolysis and Representation in Sperm Metabolism and Motility. Master’s Thesis, Kent State University, Kent, OH, USA, 2007. [Google Scholar]
- Miki, K.; Qu, W.; Goulding, E.H.; Willis, W.D.; Bunch, D.O.; Strader, L.F.; Perreault, S.D.; Eddy, E.M.; O’Brien, D.A. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl. Acad. Sci. USA 2004, 101, 16501–16506. [Google Scholar] [CrossRef] [Green Version]
- Mukai, C.; Okuno, M. Glycolysis Plays a Major Role for Adenosine Triphosphate Supplementation in Mouse Sperm Flagellar Movement. Biol. Reprod. 2004, 71, 540–547. [Google Scholar] [CrossRef]
- Tourmente, M.; Villar-Moya, P.; Rial, E.; Roldan, E.R.S. Differences in ATP Generation Via Glycolysis and Oxidative Phosphorylation and Relationships with Sperm Motility in Mouse Species. J. Biol. Chem. 2015, 290, 20613–20626. [Google Scholar] [CrossRef] [Green Version]
- Odet, F.; Duan, C.; Willis, W.D.; Goulding, E.H.; Kung, A.; Eddy, E.M.; Goldberg, E. Expression of the Gene for Mouse Lactate Dehydrogenase C (Ldhc) Is Required for Male Fertility1. Biol. Reprod. 2008, 79, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Danshina, P.V.; Geyer, C.B.; Dai, Q.; Goulding, E.H.; Willis, W.D.; Kitto, G.B.; McCarrey, J.R.; Eddy, E.M.; O’Brien, D.A. Phosphoglycerate Kinase 2 (PGK2) Is Essential for Sperm Function and Male Fertility in Mice1. Biol. Reprod. 2010, 82, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Odet, F.; Gabel, S.A.; Williams, J.; London, R.E.; Goldberg, E.; Eddy, E.M. Lactate Dehydrogenase C and Energy Metabolism in Mouse Sperm. Biol. Reprod. 2011, 85, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, N.; Dai, Q.; Williams, J.; Goulding, E.H.; Willis, W.D.; Brown, P.R.; Eddy, E.M. Disruption of a spermatogenic cell-specific mouse enolase 4 (eno4) gene causes sperm structural defects and male infertility. Biol. Reprod. 2013, 88, 90. [Google Scholar] [CrossRef]
- Williams, A.C.; Ford, W.C. The role of glucose in supporting motility and capacitation in human spermatozoa. J. Androl. 2001, 22, 680–695. [Google Scholar] [CrossRef] [PubMed]
- Travis, A.J.; Tutuncu, L.; Jorgez, C.J.; Ord, T.S.; Jones, B.H.; Kopf, G.S.; Williams, C.J. Requirements for Glucose Beyond Sperm Capacitation During In Vitro Fertilization in the Mouse1. Biol. Reprod. 2004, 71, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Hung, P.-H.; Miller, M.G.; Meyers, S.A.; VandeVoort, C.A. Sperm Mitochondrial Integrity Is Not Required for Hyperactivated Motility, Zona Binding, or Acrosome Reaction in the Rhesus Macaque1. Biol. Reprod. 2008, 79, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Gomendio, M.; Martin-Coello, J.; Crespo, C.; Magana, C.; Roldan, E.R.S. Sperm competition enhances functional capacity of mammalian spermatozoa. Proc. Natl. Acad. Sci. USA 2006, 103, 15113–15117. [Google Scholar] [CrossRef] [Green Version]
- Tourmente, M.; Rowe, M.; González-Barroso, M.M.; Rial, E.; Gomendio, M.; Roldan, E.R.S. Postcopulatory sexual selection increases atp content in rodent spermatozoa. Evolution 2013, 67, 1838–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montoto, L.G.; Magaña, C.; Tourmente, M.; Martín-Coello, J.; Crespo, C.; Luque-Larena, J.J.; Gomendio, M.; Roldan, E.R.S. Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents. PLoS ONE 2011, 6, e18173. [Google Scholar] [CrossRef] [Green Version]
- Montoto, L.G.; Sánchez, M.V.; Tourmente, M.; Martín-Coello, J.; Luque-Larena, J.J.; Gomendio, M.; Roldan, E.R.S. Sperm competition differentially affects swimming velocity and size of spermatozoa from closely related muroid rodents: Head first. Reproduction 2011, 142, 819–830. [Google Scholar] [CrossRef]
- Ward, C.R.; Storey, B.T. Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev. Biol. 1984, 104, 287–296. [Google Scholar] [CrossRef]
- Tourmente, M.; Roldan, E.R.S. Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals. PLoS ONE 2015, 10, e0138185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancel, A.M.; Lobdell, D.; Mendola, P.; Perreault, S.D. Objective evaluation of hyperactivated motility in rat spermatozoa using computer-assisted sperm analysis*. Hum. Reprod. 2000, 15, 1322–1328. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Nunome, M.; Kinoshita, G.; Aplin, K.P.; Vogel, P.; Kryukov, A.P.; Jin, M.-L.; Han, S.-H.; Maryanto, I.; Tsuchiya, K.; et al. Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA. Heredity 2013, 111, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Tourmente, M.; Varea-Sánchez, M.; Roldan, E.R.S. Faster and more efficient swimming: Energy consumption of murine spermatozoa under sperm competition. Biol. Reprod. 2019, 100, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.M.; Clift, L.E.; Andrlikova, P.; Jursova, M.; Flanagan, B.F.; Cummerson, J.A.; Stopka, P.; Dvorakova-Hortova, K. Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus). Reproduction 2007, 134, 739–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebkova, N.; Ded, L.; Vesela, K.; Dvorakova-Hortova, K. Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction 2014, 147, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Robertson, L.; Wolf, D.P.; Tash, J.S. Temporal Changes in Motility Parameters Related to Acrosomal Status: Identification and Characterization of Populations of Hyperactivated Human Sperm. Biol. Reprod. 1988, 39, 797–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urner, F.; Leppens-Luisier, G.; Sakkas, D. Protein Tyrosine Phosphorylation in Sperm During Gamete Interaction in the Mouse: The Influence of Glucose1. Biol. Reprod. 2001, 64, 1350–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visconti, P.E.; Westbrook, V.A.; Chertihin, O.; Demarco, I.; Sleight, S.; Diekman, A.B. Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J. Reprod. Immunol. 2002, 53, 133–150. [Google Scholar] [CrossRef]
- Visconti, P.E.; Krapf, D.; De La Vega-Beltrán, J.L.; Acevedo, J.J.; Darszon, A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J. Androl. 2011, 13, 395–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balbach, M.; Gervasi, M.G.; Hidalgo, D.M.; Visconti, P.E.; Levin, L.R.; Buck, J. Metabolic changes in mouse sperm during capacitation. Biol. Reprod. 2020, 103, 791–801. [Google Scholar] [CrossRef]
- Hidalgo, D.M.; Romarowski, A.; Gervasi, M.G.; Navarrete, F.; Balbach, M.; Salicioni, A.M.; Levin, L.R.; Buck, J.; Visconti, P.E. Capacitation increases glucose consumption in murine sperm. Mol. Reprod. Dev. 2020, 87, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Ishijima, S. Dynamics of flagellar force generated by a hyperactivated spermatozoon. Reproduction 2011, 142, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dependent Variable | Independent Variable | Mus musculus | M. spretus | M. spicilegus | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
Viability | Treatment | 0.083 | 0.775 | 4.609 | 0.037 | 0.342 | 0.563 |
Time | 4.059 | 0.013 | 0.887 | 0.455 | 0.371 | 0.774 | |
Interaction | 0.722 | 0.545 | 0.616 | 0.608 | 0.357 | 0.784 | |
Motility | Treatment | 0.430 | 0.515 | 42.760 | <0.001 | 50.392 | <0.001 |
Time | 46.125 | <0.001 | 32.808 | <0.001 | 32.820 | <0.001 | |
Interaction | 0.091 | 0.965 | 5.113 | 0.004 | 7.858 | <0.001 | |
VCL | Treatment | 9.589 | 0.003 | 44.188 | <0.001 | 43.855 | <0.001 |
Time | 1.565 | 0.212 | 0.616 | 0.608 | 12.069 | <0.001 | |
Interaction | 1.326 | 0.279 | 0.204 | 0.893 | 5.682 | 0.003 | |
VSL | Treatment | 46.589 | <0.001 | 38.894 | <0.001 | 102.109 | <0.001 |
Time | 10.256 | <0.001 | 7.257 | <0.001 | 26.792 | <0.001 | |
Interaction | 0.790 | 0.506 | 0.251 | 0.860 | 9.035 | <0.001 | |
LIN | Treatment | 29.628 | <0.001 | 27.362 | <0.001 | 115.201 | <0.001 |
Time | 13.164 | <0.001 | 10.630 | <0.001 | 28.892 | <0.001 | |
Interaction | 1.959 | 0.135 | 0.140 | 0.935 | 9.492 | <0.001 | |
ALH | Treatment | 10.003 | 0.003 | 33.020 | <0.001 | 39.547 | <0.001 |
Time | 0.492 | 0.690 | 2.510 | 0.070 | 21.088 | <0.001 | |
Interaction | 6.660 | 0.001 | 0.341 | 0.796 | 5.557 | 0.003 | |
BCF | Treatment | 26.949 | <0.001 | 1.918 | 0.172 | 0.225 | 0.638 |
Time | 0.831 | 0.484 | 17.848 | <0.001 | 9.697 | <0.001 | |
Interaction | 0.665 | 0.578 | 0.596 | 0.620 | 16.935 | <0.001 | |
ATP content | Treatment | 2.630 | 0.116 | 11.309 | 0.002 | 10.243 | 0.003 |
Time | 13.823 | <0.001 | 36.281 | <0.001 | 1.252 | 0.306 | |
Interaction | 0.456 | 0.715 | 6.299 | 0.001 | 1.802 | 0.016 | |
Capacitation (%) | Treatment | 94.367 | <0.001 | 112.084 | <0.001 | 88.798 | <0.001 |
Time | 1.713 | 0.187 | 13.238 | <0.001 | 2.769 | 0.060 | |
Interaction | 1.223 | 0.032 | 9.270 | <0.001 | 3.772 | 0.022 | |
Hyperactivation (%) | Treatment | 12.580 | 0.001 | 36.478 | <0.001 | 56.084 | <0.001 |
Time | 7.864 | <0.001 | 1.304 | 0.272 | 10.314 | <0.001 | |
Interaction | 7.462 | <0.001 | 0.103 | 0.958 | 13.293 | <0.001 |
Species | rxy | p |
---|---|---|
Mus musculus | 0.99 | 0.0084 |
Mus spretus | −0.04 | 0.8399 |
Mus spicilegus | 0.42 | 0.0426 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sansegundo, E.; Tourmente, M.; Roldan, E.R.S. Energy Metabolism and Hyperactivation of Spermatozoa from Three Mouse Species under Capacitating Conditions. Cells 2022, 11, 220. https://doi.org/10.3390/cells11020220
Sansegundo E, Tourmente M, Roldan ERS. Energy Metabolism and Hyperactivation of Spermatozoa from Three Mouse Species under Capacitating Conditions. Cells. 2022; 11(2):220. https://doi.org/10.3390/cells11020220
Chicago/Turabian StyleSansegundo, Ester, Maximiliano Tourmente, and Eduardo R. S. Roldan. 2022. "Energy Metabolism and Hyperactivation of Spermatozoa from Three Mouse Species under Capacitating Conditions" Cells 11, no. 2: 220. https://doi.org/10.3390/cells11020220
APA StyleSansegundo, E., Tourmente, M., & Roldan, E. R. S. (2022). Energy Metabolism and Hyperactivation of Spermatozoa from Three Mouse Species under Capacitating Conditions. Cells, 11(2), 220. https://doi.org/10.3390/cells11020220