The Paradox of Nuclear Lamins in Pathologies: Apparently Controversial Roles Explained by Tissue-Specific Mechanobiology
Abstract
:1. Introduction
2. Lamin Expression in Cancer: Tumor Suppressor or Oncogene?
3. Lamins and Their Role in the Tropism of Metastatic Cancer Cells: The Mechano-Environment Aspect in the “Seed and Soil” Theory
4. Discrepancy in Lamin Expression between In Vivo and In Vitro Experimentations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ho, C.Y.; Lammerding, J. Lamins at a Glance. J. Cell Sci. 2012, 125, 2087–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karoutas, A.; Akhtar, A. Functional Mechanisms and Abnormalities of the Nuclear Lamina. Nat. Cell Biol. 2021, 23, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Goldman, R.D.; Gruenbaum, Y.; Moir, R.D.; Shumaker, D.K.; Spann, T.P. Nuclear Lamins: Building Blocks of Nuclear Architecture. Genes Dev. 2002, 16, 533–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briand, N.; Collas, P. Lamina-Associated Domains: Peripheral Matters and Internal Affairs. Genome Biol. 2020, 21, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Jin, G.; Zhou, Z. Post-Translational Modification of Lamins: Mechanisms and Functions. Front. Cell Dev. Biol. 2022, 10, 722. [Google Scholar] [CrossRef]
- Osmanagic-Myers, S.; Dechat, T.; Foisner, R. Lamins at the Crossroads of Mechanosignaling. Genes Dev. 2015, 29, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Burke, B.; Stewart, C.L. The Nuclear Lamins: Flexibility in Function. Nat. Rev. Mol. Cell Biol. 2012, 14, 13–24. [Google Scholar] [CrossRef]
- Martino, F.; Perestrelo, A.R.; Vinarský, V.; Pagliari, S.; Forte, G. Cellular Mechanotransduction: From Tension to Function. Front. Physiol. 2018, 9, 824. [Google Scholar] [CrossRef]
- Uray, I.P.; Uray, K. Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. Int. J. Mol. Sci. 2021, 22, 11566. [Google Scholar] [CrossRef]
- Urciuoli, E.; Peruzzi, B. Involvement of the FAK Network in Pathologies Related to Altered Mechanotransduction. Int. J. Mol. Sci. 2020, 21, 9426. [Google Scholar] [CrossRef]
- Burridge, K.; Monaghan-Benson, E.; Graham, D.M. Mechanotransduction: From the Cell Surface to the Nucleus via RhoA. Philos. Trans. R. Soc. B 2019, 374, 20180229. [Google Scholar] [CrossRef] [PubMed]
- Astudillo, P. Extracellular Matrix Stiffness and Wnt/β-Catenin Signaling in Physiology and Disease. Biochem. Soc. Trans. 2020, 48, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S.; et al. Role of YAP/TAZ in Mechanotransduction. Nature 2011, 474, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Khilan, A.A.; Al-Maslamani, N.A.; Horn, H.F. Cell Stretchers and the LINC Complex in Mechanotransduction. Arch. Biochem. Biophys. 2021, 702, 108829. [Google Scholar] [CrossRef]
- Dahl, K.N.; Ribeiro, A.J.S.; Lammerding, J. Nuclear Shape, Mechanics, and Mechanotransduction. Circ. Res. 2008, 102, 1307–1318. [Google Scholar] [CrossRef] [Green Version]
- Prokocimer, M.; Davidovich, M.; Nissim-Rafinia, M.; Wiesel-Motiuk, N.; Bar, D.Z.; Barkan, R.; Meshorer, E.; Gruenbaum, Y. Nuclear Lamins: Key Regulators of Nuclear Structure and Activities. J. Cell. Mol. Med. 2009, 13, 1059–1085. [Google Scholar] [CrossRef]
- Andrés, V.; González, J.M. Role of A-Type Lamins in Signaling, Transcription, and Chromatin Organization. J. Cell Biol. 2009, 187, 945. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.Y.; Jaalouk, D.E.; Vartiainen, M.K.; Lammerding, J. Lamin A/C and Emerin Regulate MKL1-SRF Activity by Modulating Actin Dynamics. Nature 2013, 497, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Vahabikashi, A.; Adam, S.A.; Medalia, O.; Goldman, R.D. Nuclear Lamins: Structure and Function in Mechanobiology. APL Bioeng. 2022, 6, 011503. [Google Scholar] [CrossRef]
- Pennacchio, F.A.; Nastały, P.; Poli, A.; Maiuri, P. Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Front. Bioeng. Biotechnol. 2021, 8, 1474. [Google Scholar] [CrossRef]
- Comai, L.; Reddy, S. Recent Advances in Understanding the Role of Lamins in Health and Disease. F1000Research 2016, 5, 2536. [Google Scholar] [CrossRef]
- Atalaia, A.; Ben Yaou, R.; Wahbi, K.; De Sandre-Giovannoli, A.; Vigouroux, C.; Bonne, G. Laminopathies’ Treatments Systematic Review: A Contribution Towards a ‘Treatabolome’. J. Neuromuscul. Dis. 2021, 8, 419–439. [Google Scholar] [CrossRef] [PubMed]
- van Tienen, F.H.J.; Lindsey, P.J.; Kamps, M.A.F.; Krapels, I.P.; Ramaekers, F.C.S.; Brunner, H.G.; van den Wijngaard, A.; Broers, J.L.V. Assessment of Fibroblast Nuclear Morphology Aids Interpretation of LMNA Variants. Eur. J. Hum. Genet. 2019, 27, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Crasto, S.; My, I.; Di Pasquale, E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front. Physiol. 2020, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- Swift, J.; Ivanovska, I.L.; Buxboim, A.; Harada, T.; Dingal, P.C.; Pinter, J.; Pajerowski, J.D.; Spinler, K.R.; Shin, J.W.; Tewari, M.; et al. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science 2013, 341, 1240104. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.H.; Hale, C.M.; Panorchan, P.; Khatau, S.B.; George, J.P.; Tseng, Y.; Stewart, C.L.; Hodzic, D.; Wirtz, D. Nuclear Lamin A/C Deficiency Induces Defects in Cell Mechanics, Polarization, and Migration. Biophys. J. 2007, 93, 2542–2552. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Perugini, V.; González-Granado, J.M. Nuclear Envelope Lamin-A as a Coordinator of T Cell Activation. Nucleus 2014, 5, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Irianto, J.; Pfeifer, C.R.; Ivanovska, I.L.; Swift, J.; Discher, D.E. Nuclear Lamins in Cancer. Cell. Mol. Bioeng. 2016, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Dubik, N.; Mai, S. Lamin A/C: Function in Normal and Tumor Cells. Cancers 2020, 12, 3688. [Google Scholar] [CrossRef]
- Sakthivel, K.M.; Sehgal, P. A Novel Role of Lamins from Genetic Disease to Cancer Biomarkers. Oncol. Rev. 2016, 10, 65–71. [Google Scholar] [CrossRef]
- Foster, C.R.; Robson, J.L.; Simon, W.J.; Twigg, J.; Cruikshank, D.; Wilson, R.G.; Hutchison, C.J. The Role of Lamin A in Cytoskeleton Organization in Colorectal Cancer Cells: A Proteomic Investigation. Nucleus 2011, 2, 434–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willis, N.D.; Cox, T.R.; Rahman-Casañs, S.F.; Smits, K.; Przyborski, S.A.; van den Brandt, P.; van Engeland, M.; Weijenberg, M.; Wilson, R.G.; de Bruïne, A.; et al. Lamin A/C Is a Risk Biomarker in Colorectal Cancer. PLoS ONE 2008, 3, e2988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, S.; Wang, X.; Wang, X.; Huang, H.; Tao, H.; Xie, B.; Yang, A.; Qiu, M.; Tan, Z. Aberrant Nuclear Lamina Contributes to the Malignancy of Human Gliomas. J. Genet. Genomics 2022, 49, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Gatti, G.; Vilardo, L.; Musa, C.; Di Pietro, C.; Bonaventura, F.; Scavizzi, F.; Torcinaro, A.; Bucci, B.; Saporito, R.; Arisi, I.; et al. Role of Lamin A/C as Candidate Biomarker of Aggressiveness and Tumorigenicity in Glioblastoma Multiforme. Biomedicines 2021, 9, 1343. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Schäfer, G.; Bu, H.; Zhang, Y.; Zhang, Y.; Klocker, H. Lamin A/C Protein Is Overexpressed in Tissue-Invading Prostate Cancer and Promotes Prostate Cancer Cell Growth, Migration and Invasion through the PI3K/AKT/PTEN Pathway. Carcinogenesis 2012, 33, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Zuo, L.; Zhao, H.; Yang, R.; Wang, L.; Ma, H.; Xu, X.; Zhou, P.; Kong, L. Lamin A/C Might Be Involved in the EMT Signalling Pathway. Gene 2018, 663, 51–64. [Google Scholar] [CrossRef]
- Maresca, G.; Natoli, M.; Nardella, M.; Arisi, I.; Trisciuoglio, D.; Desideri, M.; Brandi, R.; D’Aguanno, S.; Nicotra, M.R.; D’Onofrio, M.; et al. LMNA Knock-Down Affects Differentiation and Progression of Human Neuroblastoma Cells. PLoS ONE 2012, 7, e45513. [Google Scholar] [CrossRef] [Green Version]
- Nardella, M.; Guglielmi, L.; Musa, C.; Iannetti, I.; Maresca, G.; Amendola, D.; Porru, M.; Carico, E.; Sessa, G.; Camerlingo, R.; et al. Down-Regulation of the Lamin A/C in Neuroblastoma Triggers the Expansion of Tumor Initiating Cells. Oncotarget 2015, 6, 32821–32840. [Google Scholar] [CrossRef]
- Wazir, U.; Ahmed, M.H.; Bridger, J.M.; Harvey, A.; Jiang, W.G.; Sharma, A.K.; Mokbel, K. The Clinicopathological Significance of Lamin A/C, Lamin B1 and Lamin B Receptor MRNA Expression in Human Breast Cancer. Cell. Mol. Biol. Lett. 2013, 18, 595–611. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, J.; He, L.; Gong, G.; Wu, X. Effect of Lamin-A Expression on Migration and Nuclear Stability of Ovarian Cancer Cells. Gynecol. Oncol. 2019, 152, 166–176. [Google Scholar] [CrossRef]
- Urciuoli, E.; Petrini, S.; D’oria, V.; Leopizzi, M.; Rocca, C.D.; Peruzzi, B. Nuclear Lamins and Emerin Are Differentially Expressed in Osteosarcoma Cells and Scale with Tumor Aggressiveness. Cancers 2020, 12, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urciuoli, E.; D’Oria, V.; Petrini, S.; Peruzzi, B. Lamin A/C Mechanosensor Drives Tumor Cell Aggressiveness and Adhesion on Substrates with Tissue-Specific Elasticity. Front. Cell Dev. Biol. 2021, 9, 712377. [Google Scholar] [CrossRef] [PubMed]
- Chiarini, F.; Paganelli, F.; Balestra, T.; Capanni, C.; Fazio, A.; Manara, M.C.; Landuzzi, L.; Petrini, S.; Evangelisti, C.; Lollini, P.-L.; et al. Lamin A and the LINC Complex Act as Potential Tumor Suppressors in Ewing Sarcoma. Cell Death Dis. 2022, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Capo-Chichi, C.D.; Cai, K.Q.; Smedberg, J.; Ganjei-Azar, P.; Godwin, A.K.; Xu, X.X. Loss of A-Type Lamin Expression Compromises Nuclear Envelope Integrity in Breast Cancer. Chin. J. Cancer 2011, 30, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Seng, S.; Sekine, M.; Hinton, C.; Fu, Y.; Avraham, H.K.; Avraham, S. Vascular Endothelial Growth Factor Mediates Intracrine Survival in Human Breast Carcinoma Cells through Internally Expressed VEGFR1/FLT1. PLoS Med. 2007, 4, e186. [Google Scholar] [CrossRef] [Green Version]
- Parajón, E.; Surcel, A.; Robinson, D.N. The Mechanobiome: A Goldmine for Cancer Therapeutics. Am. J. Physiol.Cell Physiol. 2021, 320, C306–C323. [Google Scholar] [CrossRef]
- Swift, J.; Discher, D.E. The Nuclear Lamina Is Mechano-Responsive to ECM Elasticity in Mature Tissue. J. Cell Sci. 2014, 127, 3005. [Google Scholar] [CrossRef] [Green Version]
- Ivanovska, I.L.; Swift, J.; Spinler, K.; Dingal, D.; Cho, S.; Discher, D.E. Cross-Linked Matrix Rigidity and Soluble Retinoids Synergize in Nuclear Lamina Regulation of Stem Cell Differentiation. Mol. Biol. Cell 2017, 28, 2010–2022. [Google Scholar] [CrossRef]
- Xia, Y.; Pfeifer, C.R.; Cho, S.; Discher, D.E.; Irianto, J. Nuclear Mechanosensing. Emerg. Top. life Sci. 2018, 2, 713–725. [Google Scholar] [CrossRef]
- Alhudiri, I.M.; Nolan, C.C.; Ellis, I.O.; Elzagheid, A.; Rakha, E.A.; Green, A.R.; Chapman, C.J. Expression of Lamin A/C in Early-Stage Breast Cancer and Its Prognostic Value. Breast Cancer Res. Treat. 2019, 174, 661–668. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhao, B.; Xu, Z.; Lv, Y. Suspension State Promotes Drug Resistance of Breast Tumor Cells by Inducing ABCC3 Overexpression. Appl. Biochem. Biotechnol. 2020, 190, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Tang, M.; Lv, Y. Shear Stress Regulates the Migration of Suspended Breast Cancer Cells by Nuclear Lamina Protein A/C and Large Tumor Suppressor through Yes-Associated Protein. Hum. Cell 2022, 35, 583–598. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.Y.H.; Tu, C.; Shen, S.; Xu, D.; Oursler, M.J.; Qu, J.; Yang, S. Comparative Characterization of Osteoclasts Derived from Murine Bone Marrow Macrophages and RAW 264.7 Cells Using Quantitative Proteomics. JBMR Plus 2018, 2, 328–340. [Google Scholar] [CrossRef]
- Norris, P.C.; Reichart, D.; Dumlao, D.S.; Glass, C.K.; Dennis, E.A. Specificity of Eicosanoid Production Depends on the TLR-4-Stimulated Macrophage Phenotype. J. Leukoc. Biol. 2011, 90, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Constantinescu, D.; Gray, H.L.; Sammak, P.J.; Schatten, G.P.; Csoka, A.B. Lamin A/C Expression Is a Marker of Mouse and Human Embryonic Stem Cell Differentiation. Stem Cells 2006, 24, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Dechat, T.; Adam, S.A.; Taimen, P.; Shimi, T.; Goldman, R.D. Nuclear Lamins. Cold Spring Harb. Perspect. Biol. 2010, 2, a000547. [Google Scholar] [CrossRef] [Green Version]
Cancer Type | Samples | Basal Lamin Expression | In Vitro Modification (Cancer Cell Lines) | Effects on Cells Mediated by Lamin in Vitro Modification | Ref |
---|---|---|---|---|---|
Colon adenocarcinoma | Normal colonic Mucosa | Lamin A expressed in the basal region of colonic crypts (stem cell niche) | [32] | ||
Cancer tissue | Worse prognosis for A-type lamin-expressing tumors | ||||
SW480 cell line | Lamin A/C Undetectable | Over-expression of Lamin A by stable transfection | ↑ cell motility and stem cell-like phenotype | ||
Glioma | Primary surgical Specimens | LMNA, LMB1, and LMNB2 genes are upregulated in glioma tissue compared with normal brain tissue | [33] | ||
U87-MG and U251 glioma cell lines | A- and B-type lamins detected | Silencing of LMNA, LMNB1, and LMNB2 genes by shRNA in cell line | ↓ growth and cell mobility of glioma cells. Regular nuclear shape restored | ||
Glioblastoma Multiforme | Primary GBM Tumors | Expression of LMNA gene correlates with reduced overall survival | [34] | ||
T98G GBM cell line | Moderate expression of lamin A/C, comparable to normal astrocytes | Over-expression of LMNA gene | ↑ cell aggressiveness and migratory ability | ||
Silencing of LMNA gene | ↓ cell aggressiveness and migratory ability | ||||
Prostate cancer | Benign and malignant prostate tissue | High lamin A/C in benign glands; weak lamin A/C in low-grade tumors; high lamin A/C in high-grade tumors | [35] | ||
PC3, DU145, and LNCaP PC cell lines | Lamin A/C detected | Over-expression of LMNA gene | ↑ cell growth and colony formation | ||
Silencing of LMNA gene | ↓ cell growth and colony formation | ||||
Neuroblastoma | Biopsies | LMNA gene expression inversely related to MYCN expression | |||
SH-SY5Y cell line | High Lamin A/C expression | LMNA knock-down | ↑ cell motility and invasion, tumor initiating cells developed, differentiation blocked | ||
Breast cancer | Normal breast and cancer tissues from patients | High levels of A-type lamin in non-cancerous tissue. Higher A-type lamin expression associated with better clinical outcome | [39] | ||
Ovarian cancer | Ovarian cancer tissues | High expression of lamin-A associated with better survival | [40] | ||
High-metastatic HO-8910 cell line | Lamin A/C Detected | Over-expression of LMNA gene | ↓ cell migration | ||
Silencing of LMNA gene | ↑ cell migration | ||||
Osteosarcoma | Specimens from osteosarcoma patients | Lamin A/C expression positively correlated with overall survival | [41,42] | ||
Normal human osteoblasts, SaOS-2, HOS, and 143B cell lines | Lamin A/C expression inversely related to aggressiveness | Silencing of LMNA gene in low-aggressive SaOS2 cell line | ↑ cell proliferation | ||
Over-expression of LMNA gene in metastatic 143B cell line | ↓ tumor aggressiveness ↑ adhesion on stiffer matrix | ||||
Ewing Sarcoma | Primary tumors and metastasis | Inverse correlation between LMNA gene expression and tumor Aggressiveness | [43] | ||
TC-61 and A-673 cell lines | Higher Lamin A/C expression in A-673 cell line in comparison to TC-61 cells. | Silencing of LMNA gene in A-673 cell line | ↑ cell aggressiveness | ||
Over-expression of LMNA gene in TC-71cell line | ↓ motility, migration, and metastatic load in the liver |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urciuoli, E.; Peruzzi, B. The Paradox of Nuclear Lamins in Pathologies: Apparently Controversial Roles Explained by Tissue-Specific Mechanobiology. Cells 2022, 11, 2194. https://doi.org/10.3390/cells11142194
Urciuoli E, Peruzzi B. The Paradox of Nuclear Lamins in Pathologies: Apparently Controversial Roles Explained by Tissue-Specific Mechanobiology. Cells. 2022; 11(14):2194. https://doi.org/10.3390/cells11142194
Chicago/Turabian StyleUrciuoli, Enrica, and Barbara Peruzzi. 2022. "The Paradox of Nuclear Lamins in Pathologies: Apparently Controversial Roles Explained by Tissue-Specific Mechanobiology" Cells 11, no. 14: 2194. https://doi.org/10.3390/cells11142194
APA StyleUrciuoli, E., & Peruzzi, B. (2022). The Paradox of Nuclear Lamins in Pathologies: Apparently Controversial Roles Explained by Tissue-Specific Mechanobiology. Cells, 11(14), 2194. https://doi.org/10.3390/cells11142194