ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus
Abstract
1. Introduction
2. ANXA1 and Inflammatory Processes
3. ANXA1 in the Placenta
4. ANXA1 and Cell Survival
5. ANXA1 in the Nucleus
ANXA1 in Nucleus | ||
---|---|---|
Model | Functions | Ref. |
Ischemia-reperfusion injury | Nuclear translocation induced neuron and retinal ganglion cell apoptosis | [85,86,87] |
Ischemic stroke | Nuclear translocation reduced BID expression and inhibited the activation of the caspase-3 apoptotic pathway, attenuating neuronal apoptosis | [88] |
Cellular stress | Gene expression levels increased, and translocation of annexin I from the cytoplasm to the nucleus initiated, in cells treated under stress conditions | [90] |
Oral and esophageal squamous cell carcinoma | Patients with low nuclear ANXA1 expression had better prognoses than those with high protein expression | [67,91] |
Gastric adenocarcinoma | Nuclear location correlated with the advanced stage of the disease and peritoneal dissemination | [92] |
6. Perspective and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flower, R.; Gaddum, E. Lipocortin and the mechanism of action of the glucocorticoids. Br. J. Pharmacol. 1988, 94, 987–1015. [Google Scholar] [CrossRef] [PubMed]
- Perretti, M.; Gavins, F. Annexin 1: An endogenous anti- inflammatory protein. Physiology 2003, 18, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Munn, T.Z.; Mues, G.I. Human lipocortin similar to ras gene products. Nature 1986, 322, 314. [Google Scholar] [CrossRef]
- Lizarbe, M.A.; Barrasa, J.I.; Olmo, N.; Gavilanes, F.; Turnay, J. Annexin-phospholipid interactions. Functional implications. Int. J. Mol. Sci. 2013, 14, 2652–2683. [Google Scholar] [CrossRef] [PubMed]
- Berg Klenow, M.; Iversen, C.; Wendelboe Lund, F.; Mularski, A.; Busk Heitmann, A.S.; Dias, C.; Nylandsted, J.; Simonsen, A.C. Annexins A1 and A2 Accumulate and Are Immobilized at Cross-Linked Membrane–Membrane Interfaces. Biochemistry 2021, 60, 1248–1259. [Google Scholar] [CrossRef]
- McNeil, A.K.; Rescher, U.; Gerke, V.; McNeil, P.L. Requirement for Annexin A1 in Plasma Membrane Repair. J. Biol. Chem. 2006, 281, 35202–35207. [Google Scholar] [CrossRef]
- Raynal, P.; Pollard, H.B. Annexins: The problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 1994, 1, 63–93. [Google Scholar] [CrossRef]
- D’acquisto, F.; Perretti, M.; FLOWER, R.J. Annexin-A1: A pivotal regulator of the innate and adaptive immune systems. Br. J. Pharmacol. 2008, 155, 152–169. [Google Scholar] [CrossRef]
- Hannon, R.; Croxtall, J.D.; Getting, S.J.; Roviezzo, F.; Yona, S.; Paul-Clark, M.J.; Gavins, F.N.; Perretti, M.; Morris, J.F.; Buckingham, J.C.; et al. Aberrant inflammation and resistance to glucocorticoids in annexin 1−/− mouse. FASEB J. 2003, 17, 253–255. [Google Scholar] [CrossRef]
- Parente, L.; Solito, E. Annexin 1: More than an anti-phospholipase protein. Inflamm. Res. 2004, 4, 125–132. [Google Scholar] [CrossRef]
- Gimenes, A.D.; Andrade, T.R.M.; Mello, C.B.; Ramos, L.; Gil, C.D.; Oliani, S.M. Beneficial effect of annexin A1 in a model of experimental allergic conjunctivitis. Exp. Eye Res. 2015, 134, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.A.; Vago, J.P.; Teixeira, M.M.; Sousa, L.P. Annexin A1 and the resolution of inflammation: Modulation of neutrophil recruitment, apoptosis, and clearance. J. Immunol. Res. 2016, 2016, 8239258. [Google Scholar] [CrossRef] [PubMed]
- De Paula-Silva, M.; Barrios, B.E.; Macció-Maretto, L.; Sena, A.A.; Farsky, S.H.; Correa, S.G.; Oliani, S.M. Role of the protein annexin A1 on the efficacy of anti-TNF treatment in a murine model of acute colitis. Biochem. Pharmacol. 2016, 115, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.A.P.; Mimura, K.K.; Araujo, L.P.; Greco, K.V.; Oliani, S.M. The essential role of annexin A1 mimetic peptide in the skin allograft survival. J. Tissue Eng. Regen. Med. 2016, 10, E44–E53. [Google Scholar] [CrossRef]
- Sinniah, A.; Yazid, S.; Bena, S.; Oliani, S.M.; Perretti, M.; Flower, R.J. Endogenous annexin-A1 negatively regulates mast cell-mediated allergic reactions. Front. Pharmacol. 2019, 10, 1313. [Google Scholar] [CrossRef]
- Han, P.F.; Che, X.D.; Li, H.Z.; Gao, Y.Y.; Wei, X.C.; Li, P.C. Annexin A1 involved in the regulation of inflammation and cell signaling pathways. Chin. J. Traumatol. 2020, 23, 96–101. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, W.; Li, X.; Li, H.; Li, J.; Li, H.; He, F. ANXA1 enhances tumor proliferation and migration by regulating epithelial-mesenchymal transition and IL-6/JAK2/STAT3 pathway in papillary thyroid carcinoma. J. Cancer 2021, 12, 1295–1306. [Google Scholar] [CrossRef]
- Sheikh, M.H.; Solito, E. Annexin A1: Uncovering the many talents of an old protein. Int. J. Mol. Sci. 2018, 19, 1045. [Google Scholar] [CrossRef]
- Gavins, F.N.E.; Dalli, J.; Flower, R.J.; Granger, D.N.; Perretti, M. Activation of the annexin 1 counter-regulatory circuit affords protection in the mouse brain microcirculation. FASEB J. 2007, 21, 1751–1758. [Google Scholar] [CrossRef]
- Facio, F.N., Jr.; Sena, A.A.; Araújo, L.P.; Mendes, G.E.; Castro, I.; Luz, M.A.; Yu, L.; Oliani, S.M.; Burdmann, E.A. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. J. Mol. Med. 2011, 89, 51–63. [Google Scholar] [CrossRef]
- Patel, H.B.; Kornerup, K.N.; Sampaio, A.L.; D’Acquisto, F.; Seed, M.P.; Girol, A.P. The impact of endogenous annexin A1 on glucocorticoid control of inflammatory arthritis. Ann. Rheum. Dis. 2012, 71, 1872–1880. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, J.Z.; Drewes, C.C.; Mimura, K.K.O.; Zanon, C.F.; Ansari, T.; Gil, C.D. Annexin A12-26 treatment improves skin heterologous transplantation by modulating inflammation and angiogenesis processes. Front. Pharmacol. 2018, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Cardin, L.T.; Sonehara, N.M.; Mimura, K.K.O.; Dos Santos, A.R.D.; da Silva Junior, W.A.; Sobral, L.M.; Leopoldino, A.M.; Cunha, B.R.; Tajara, E.H.; Oliani, S.M. Annexin A1 peptide and endothelial cell-conditioned medium modulate cervical tumorigenesis. FEBS Open Bio 2019, 9, 668–681. [Google Scholar] [CrossRef]
- Marmorato, M.P.; Gimenes, A.D.; Andrade, F.E.C.; Oliani, S.M.; Gil, C.D. Involvement of the annexin A1-Fpr anti-inflammatory system in the ocular allergy. Eur. J. Pharmacol. 2019, 842, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Prates, J.; Moreli, J.B.; Gimenes, A.D.; Biselli, J.M.; Pires D’Avila, S.; Sandri, S.; Farsky, S.; Rodrigues-Lisoni, F.C.; Oliani, S.M. Cisplatin treatment modulates Annexin A1 and inhibitor of differentiation to DNA 1 expression in cervical cancer cells. Biomed. Pharmacother. 2020, 129, 110331. [Google Scholar] [CrossRef]
- Adel, F.W.; Rikhi, A.; Wan, S.H.; Iyer, S.R.; Chakraborty, H.; McNulty, S.; Tang, W.; Felker, G.M.; Givertz, M.M.; Chen, H.H. Annexin A1 is a Potential Novel Biomarker of Congestion in Acute Heart Failure. J. Card. Fail. 2020, 26, 727–732. [Google Scholar] [CrossRef]
- Xu, J.; Yu, C.; Luo, J.; Guo, Y.; Cheng, C.; Zhang, H. The Role and Mechanism of the annexin A1 Peptide Ac2-26 in rats with cardiopulmonary bypass Lung injury. Basic Clin. Pharmacol. Toxicol. 2021, 128, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, I.; Sutti, S.; Jindal, A.; Vacchiano, M.; Bozzola, C.; Reutelingsperger, C.; Kusters, D.; Bena, S.; Parola, M.; Paternostro, C.; et al. Endogenous Annexin A1 Is a Novel Protective Determinant in Nonalcoholic Steatohepatitis in Mice. Hepatology 2014, 60, 531–544. [Google Scholar] [CrossRef]
- Ferraro, B.; Leoni, G.; Hinkel, R.; Ormanns, S.; Paulin, N.; Ortega-Gomez, A.; Viola, J.R.; de Jong, R.; Bongiovanni, D.; Bozoglu, T.; et al. Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. J. Am. Coll. Cardiol. 2019, 73, 2990–3002. [Google Scholar] [CrossRef]
- McArthur, S.; Juban, G.; Gobbetti, T.; Desgeorges, T.; Theret, M.; Gondin, J.; Toller-Kawahisa, J.E.; Reutelingsperger, C.P.; Chazaud, B.; Perretti, M.; et al. Annexin A1 Drives Macrophage Skewing to Accelerate Muscle Regeneration through AMPK Activation. J. Clin. Investig. 2020, 130, 1156–1167. [Google Scholar] [CrossRef]
- Sanches, J.M.; Correia-Silva, R.D.; Duarte, G.; Fernandes, A.; Sánchez-Vinces, S.; Carvalho, P.O.; Oliani, S.M.; Bortoluci, K.R.; Moreira, V.; Gil, C.D. Role of Annexin A1 in NLRP3 Inflammasome Activation in Murine Neutrophils. Cells 2021, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Stuqui, B.; De Paula-Silva, M.; Carlos, C.P.; Ullah, A.; Arni, R.K.; Gil, C.D.; Oliani, S.M. Ac2-26 Mimetic Peptide of Annexin A1 Inhibits Local and Systemic Inflammatory Processes induced by Bothrops moojeni venom and the Lys- 49 phospholipase A2 in a rat model. PLoS ONE 2015, 10, e0130803. [Google Scholar] [CrossRef] [PubMed]
- Oliani, S.M.; Paul-Clark, M.J.; Christian, H.C.; Flower, R.J.; Perretti, M. Neutrophil Interaction with Inflamed Postcapillary Venule Endothelium Alters Annexin 1 Expression. Am. J. Pathol. 2001, 158, 603–615. [Google Scholar] [CrossRef]
- Oliani, S.M.; Ciocca, G.A.; Pimentel, T.A.; Damazo, A.S.; Gibbs, L.; Perretti, M. Fluctuation of annexin-A1 positive mast cells in chronic granulomatous inflammation. Inflamm. Res. 2008, 57, 450–456. [Google Scholar] [CrossRef]
- Costa, M.B.; Mimura, K.; Freitas, A.A.; Hungria, E.M.; Sousa, A.; Oliani, S.M.; Stefani, M. Mast cell heterogeneity and anti-inflammatory annexin A1 expression in leprosy skin lesions. Microb. Pathog. 2018, 118, 277–284. [Google Scholar] [CrossRef]
- Parisi, J.; Corrêa, M.; Gil, C. Lack of endogenous Annexin A1 increases mast cell activation and exacerbates experimental atopic dermatitis. Cells 2019, 8, 51. [Google Scholar] [CrossRef]
- Oliani, S.M.; Damazo, A.S.; Perretti, M. Annexin 1 localization in tissue eosinophils as detected by electron microscopy. Mediat. Inflamm. 2002, 11, 287–292. [Google Scholar] [CrossRef]
- Ng, F.S.; Wong, K.Y.; Guan, S.P. Annexin-1-deficient mice exhibit spontaneous airway hyperresponsiveness and exacerbated allergen-specific antibody responses in a mouse model of asthma. Clin. Exp. Allergy 2011, 41, 1793–1803. [Google Scholar] [CrossRef]
- Solito, E.; Romero, I.; Marullo, S.; Russo-Marie, F.; Weksler, B. Annexin 1 binds to U937 monocytic cells and inhibits their adhesion to microvascular endothelium: Involvement of the α4β1 integrin. J. Immunol. 2000, 165, 1573–1581. [Google Scholar] [CrossRef]
- Bergström, I.; Lundberg, A.K.; Jönsson, S.; Särndahl, E.; Ernerudh, J.; Jonasson, L. Annexin A1 in blood mononuclear cells from patients with coronary artery disease: Its association with inflammatory status and glucocorticoid sensitivity. PLoS ONE 2017, 12, e0174177. [Google Scholar] [CrossRef]
- Ribeiro, A.; Caloi, C.; Pimenta, S.; Seshayyan, S.; Govindarajulu, S.; Souto, F.; Damazo, A. Expression of annexin-A1 in blood and tissue leukocytes of leprosy patients. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200277. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zhou, Y.; Liu, Z.; Zhang, P. Interaction between ANXA1 and GATA-3 in Immunosuppression of CD4+ T Cells. Mediat. Inflamm. 2016, 2016, 1701059. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Li, X. Identification of ANXA1 as a potential prognostic biomarker and correlating with immune infiltrates in colorectal cancer. Autoimmunity 2021, 2, 7–87. [Google Scholar] [CrossRef] [PubMed]
- Gastardelo, T.S.; Cunha, B.R.; Raposo, L.S. Inflammation and cancer: Role of annexin A1 and FPR2/ALX in proliferation and metastasis in human laryngeal squamous cell carcinoma. PLoS ONE 2014, 9, e111317. [Google Scholar] [CrossRef] [PubMed]
- Perretti, M.; Getting, S.J.; Solito, E.; Murphy, P.M.; Gao, J.-L. Involvement of the Receptor for Formylated Peptides in the in Vivo Anti-Migratory Actions of Annexin 1 and Its Mimetics. Am. J. Pathol. 2001, 158, 1969–1973. [Google Scholar] [CrossRef]
- Ernst, S.; Lange, C.; Wilbers, A.; Goebeler, V.; Gerke, V.; Rescher, U. An Annexin 1 N-Terminal Peptide Activates Leukocytes by Triggering Different Members of the Formyl Peptide Receptor Family. J. Immunol. 2004, 172, 7669–7676. [Google Scholar] [CrossRef]
- Gavins, F.N.; Yona, S.; Kamal, A.M.; Flower, R.J.; Perretti, M. Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood 2003, 101, 4140–4147. [Google Scholar] [CrossRef]
- Perretti, M.; Godson, C. Formyl peptide receptor type 2 agonists to kick-start resolution pharmacology. Br. J. Pharmacol. 2020, 177, 4595–4600. [Google Scholar] [CrossRef]
- Headland, S.E.; Norling, L.V. The resolution of inflammation: Principles and challenges. Semin. Immunol. 2015, 27, 149–160. [Google Scholar] [CrossRef]
- Headland, S.E.; Jones, H.R.; Norling, L.V. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatoryarthritis. Sci. Transl. Med. 2015, 7, 315ra190. [Google Scholar] [CrossRef]
- Molás, R.B.; De Paula-Silva, M.; Masood, R.; Ullah, A.; Gimenes, A.D.; Oliani, S.M. Ac2-26 peptide and serine protease of Bothrops atrox similarly induces angiogenesis without triggering local and systemic inflammation in a murine model of dorsal skinfold chamber. Toxicon 2017, 137, 7–14. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Cardoso, M.F.; Moreli, J.B.; Gomes, A.O.; De Freitas Zanon, C.; Silva, A.E.; Paulesu, L.R. Annexin A1 peptide is able to induce an anti-parasitic effect in human placental explants infected by Toxoplasma gondii. Microb. Pathog. 2018, 123, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Molás, R.B.; Ribeiro, M.R.; Ramalho Dos Santos, M.J.C. The involvement of annexin A1 in human placental response to maternal Zika virus infection. Antiviral Res. 2020, 179, 104809. [Google Scholar] [CrossRef] [PubMed]
- Gauster, M.; Desoye, G.; Tötsch, M.; Hiden, U. The placenta and gestational diabetes mellitus. Curr. Diabetes Rep. 2012, 12, 16–23. [Google Scholar] [CrossRef]
- Sun, M.; Liu, Y.; Gibb, W. Distribution of annexin I and II in term human fetal membranes, decidua and placenta. Placenta 1996, 17, 181–184. [Google Scholar] [CrossRef]
- Myatt, L.; Hirth, J.; Everson, W.V. Changes in annexin (lipocortin) content in human amnion and chorion at parturition. J. Cell. Biochem. 1992, 50, 363–373. [Google Scholar] [CrossRef]
- Hebeda, C.B.; Sandri, S.; Benis, C.M.; Paula-Silva, M.; Loiola, R.A.; Reutelingsperger, C.; Perretti, M.; Farsky, S.H.P. Annexin A1/Formyl Peptide Receptor Pathway Controls Uterine Receptivity to the Blastocyst. Cells 2020, 9, 1188. [Google Scholar] [CrossRef]
- Moreli, J.B.; Hebeda, C.B.; Machado, I.D.; Reif-Silva, I.; Oliani, S.M.; Perretti, M.; Bevilacqua, E.; Farsky, S.H.P. The role of endogenous annexin A1 (AnxA1) in pregnancy. Placenta 2017, 51, 121. [Google Scholar] [CrossRef]
- Feng, J.; Wang, X.; Li, H.; Wang, L.; Tang, Z. Silencing of Annexin A1 suppressed the apoptosis and inflammatory response of preeclampsia rat trophoblasts. Int. J. Mol. Med. 2018, 42, 3125–3134. [Google Scholar] [CrossRef]
- Ruikar, K.; Aithal, M.; Shetty, P. Placental Expression and Relative Role of Anti-inflammatory Annexin A1 and Animal Lectin Galectin-3 in the Pathogenesis of Preeclampsia. Indian J. Clin. Biochem. 2022, 37, 60–68. [Google Scholar] [CrossRef]
- Behrouz, G.F.; Farzaneh, G.S.; Leila, J.; Jaleh, Z.; Eskandar, K.S. Presence of auto-antibody against two placental proteins, annexin A1 and vitamin D binding protein, in sera of women with pre-eclampsia. J. Reprod. Immunol. 2013, 99, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Perucci, L.O.; Carneiro, F.S.; Ferreira, C.N. Annexin A1 Is Increased in the Plasma of Preeclamptic Women. PLoS ONE 2015, 10, e0138475. [Google Scholar] [CrossRef] [PubMed]
- Moreli, J.; Paula-Silva, M.; Calderon, I.; Farsky, S.; Oliani, S.; Bevilacqua, E. Annexin A1 Localization and Relevance in Human Placenta from Pregnancies Complicated by Gestational Diabetes Mellitus. Preliminary Results. Placenta 2016, 45, 108–109. [Google Scholar] [CrossRef]
- Arora, S.; Lim, W.; Bist, P.; Perumalsamy, R.; Lukman, H.M.; Li, F.; Welker, L.B.; Yan, B.; Sethi, G.; Tambyah, P.A.; et al. Influenza A virus enhances its propagation through the modulation of Annexin-A1 dependent endosomal trafficking and apoptosis. Cell Death Differ. 2016, 23, 1243–1256. [Google Scholar] [CrossRef]
- Swa, H.L.; Blackstock, W.P.; Lim, L.H.; Gunaratne, J. Quantitative proteomics profiling of murine mammary gland cells unravels impact of annexin-1 on DNA damage response, cell adhesion, and migration. Mol. Cell Proteom. 2012, 11, 381–393. [Google Scholar] [CrossRef]
- Vago, J.P.; Nogueira, C.R.; Tavares, L.P. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J. Leukoc. Biol. 2012, 92, 249–258. [Google Scholar] [CrossRef]
- Han, G.; Tian, Y.; Duan, B.; Sheng, H.; Gao, H.J. Association of nuclear annexin A1 with prognosis of patients with esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2014, 7, 751–759. [Google Scholar]
- Friedberg, E. DNA damage and repair. Nature 2003, 421, 436. [Google Scholar] [CrossRef]
- Berra, C.; Menck, C.; Mascio, P. Oxidative stress, genome lesions and signaling pathways in cell cycle control. Quím. Nova 2006, 29, 1340–1344. [Google Scholar] [CrossRef][Green Version]
- Su, N.; Xu, X.Y.; Chen, H.; Gao, W.C.; Ruan, C.P.; Wang, Q.; Sun, Y.P. Increased expression of annexin A1 is correlated with K-ras mutation in colorectal cancer. Tohoku J. Exp. Med. 2010, 222, 243–250. [Google Scholar] [CrossRef]
- Nair, S.; Hande, M.P.; Lim, L.H. Annexin-1 protects MCF7 breast cancer cells against heat-induced growth arrest and DNA damage. Cancer Lett. 2010, 294, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.M.; Chiganças, V.; Galhardo Rda, S.; Carvalho, H.; Menck, C.F. The eukaryotic nucleotide excision repair pathway. Biochimie 2003, 85, 1083–1099. [Google Scholar] [CrossRef] [PubMed]
- Hublarova, P.; Greplova, K.; Holcakova, J.; Vojtesek, B.; Hrstka, R. Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases. Cell Mol. Biol. Lett. 2010, 15, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Sgarbosa, F.; Barbisan, L.; Brasil, M.; Costa, E.; Calderon, I.; Gonçalves, C.; Bevilacqua, E.; Rudge, M. Changes in apoptosis and Bcl-2 expression in human hyperglycemic, term placental trophoblast. Diabetes Res. Clin. Pract. 2006, 73, 143–149. [Google Scholar] [CrossRef]
- Choi, S.; Srivas, R.; Fu, K.Y.; Hood, B.L.; Dost, B.; Gibson, G.A.; Watkins, S.C.; Van Houten, B.; Bandeira, N.; Conrads, T.P.; et al. Quantitative proteomics reveal ATM kinase-dependent exchange in DNA damage response complexes. J. Proteome Res. 2012, 11, 4983–4991. [Google Scholar] [CrossRef]
- Mckanna, J.A. Lipocortin 1 in apoptosis: Mammary regression. Anat. Rec. 1995, 242, 1–10. [Google Scholar] [CrossRef]
- Sakamoto, T.; Repasky, W.; Uchida, K.; Hirata, A.; Hirata, F. Modulation of cell death pathways to apoptosis and necrosis of H2O2-treated rat thymocytes by lipocortin I. Biochem. Biophys. Res. Commun. 1996, 220, 643–647. [Google Scholar] [CrossRef]
- Solito, E.; Kamal, A.; Russo-Marie, F.; Buckingham, J.; Marullo, S.; Perretti, M. A novel calcium-dependent proapoptotic effect of annexin 1 on human neutrophils. FASEB J. 2003, 17, 1544–1546. [Google Scholar] [CrossRef]
- Debret, R.; Btaouri, H.; Duca, L.; Rahman, I.; Radke, S.; Haye, B.; Sallenave, J.; Antonicelli, F. Annexin A1 processing is associated with caspase-dependent apoptosis in BZR cells. FEBS Lett. 2003, 546, 195–202. [Google Scholar] [CrossRef]
- Oliani, S.M.; Perretti, M. Cell localization of the anti-inflammatory protein annexin 1 during experimental inflammatory response. Ital. J. Anat. Embryol. 2001, 106, 69–77. [Google Scholar]
- Mussunoor, S.; Murray, G.I. The role of annexins in tumour development and progression. J. Pathol. J. Pathol. Soc. G. B. Irel. 2008, 216, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Oudhraa, Z.; Bouchon, B.; Viallard, C.; D’incan, M.; Degoul, F. Annexin A1 localization and its relevance to cancer. Clin. Sci. 2016, 130, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.H.K.; Pervaiz, S. Annexin 1: The New Face of an Old Molecule. FASEB J. 2007, 21, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Anbalagan, D.; Lee, L.H.; Samy, R.P.; Shanmugam, M.K.; Kumar, A.P.; Sethi, G.; Lobie, P.E.; Lim, L.H. ANXA1 inhibits miRNA-196a in a negative feedback loop through NF-kB and c-Myc to reduce breast cancer proliferation. Oncotarget 2016, 7, 27007–27020. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Gong, J.; Li, L.; Chen, L.; Zheng, L.; Chen, Z.; Shi, J.; Zhang, H. Annexin A1 nuclear translocation induces retinal ganglion cell apoptosis after ischemia-reperfusion injury through the p65/IL-1β pathway. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 1350–1358. [Google Scholar] [CrossRef]
- Luo, J.; Wang, S.; Zhou, Z.; Zhao, Y. Ad-and AAV8-mediated ABCA1 gene therapy in a murine model with retinal ischemia/reperfusion injuries. Mol. Ther.-Methods Clin. Dev. 2021, 20, 551–558. [Google Scholar] [CrossRef]
- Li, X.; Zheng, L.; Xia, Q.; Liu, L.; Mao, M.; Zhou, H.; Zhao, Y.; Shi, J. A novel cell-penetrating peptide protects against neuron apoptosis after cerebral ischemia by inhibiting the nuclear translocation of annexin A1. Cell Death Differ. 2019, 26, 260–275. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Xia, Q.; Zheng, L.; Liu, L.; Zhao, B.; Shi, J. Nuclear translocation of annexin 1 following oxygen-glucose deprivation-reperfusion induces apoptosis by regulating Bid expression via p53 binding. Cell Death Dis. 2016, 7, e2356. [Google Scholar] [CrossRef]
- Xia, Q.; Li, X.; Zhou, H.; Zheng, L.; Shi, J. S100A11protects against neuronal cell apoptosis induced by cerebral ischemia via inhibiting the nuclear translocation of annexin A1. Cell Death Dis. 2019, 9, 657. [Google Scholar] [CrossRef]
- Rhee, H.; Kim, G.; Huh, J.; Kkim, S.; Na, D. Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent. Eur. J. Biochem. 2000, 267, 3220–3225. [Google Scholar] [CrossRef]
- Lin, C.Y.; Jeng, Y.M.; Chou, H.Y.; Hsu, H.C.; Yuan, R.H.; Chiang, C.P.; Kuo, M.Y. Nuclear localization of annexin A1 is a prognostic factor in oral squamous cell carcinoma. J. Surg. Oncol. 2008, 97, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Xu, C.; Jiang, Z.; Jin, M.; Wang, L.; Zeng, S.; Teng, L.; Cao, J. Nuclear localization of annexin A1 correlates with advanced disease and peritoneal dissemination in patients with gastric carcinoma. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2010, 293, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Corcoran, G.B.; Hirata, F. Carcinogenic heavy metals, As3+ and Cr6+, increase affinity of nuclear mono-ubiquitinated annexin A1 for DNA containing 8-oxo-guanosine, and promote translesion DNA synthesis. Toxicol. Appl. Pharmacol. 2011, 252, 159–164. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, S.O.d.; Santos, M.R.d.; Teixeira, S.C.; Ferro, E.A.V.; Oliani, S.M. ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus. Cells 2022, 11, 2057. https://doi.org/10.3390/cells11132057
Sousa SOd, Santos MRd, Teixeira SC, Ferro EAV, Oliani SM. ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus. Cells. 2022; 11(13):2057. https://doi.org/10.3390/cells11132057
Chicago/Turabian StyleSousa, Stefanie Oliveira de, Mayk Ricardo dos Santos, Samuel Cota Teixeira, Eloisa Amália Vieira Ferro, and Sonia Maria Oliani. 2022. "ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus" Cells 11, no. 13: 2057. https://doi.org/10.3390/cells11132057
APA StyleSousa, S. O. d., Santos, M. R. d., Teixeira, S. C., Ferro, E. A. V., & Oliani, S. M. (2022). ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus. Cells, 11(13), 2057. https://doi.org/10.3390/cells11132057