Effect of Sperm Selection by Magnetic-Activated Cell Sorting in D-IUI: A Randomized Control Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Treatment Group Allocation: MACS and Control Group
2.3. Patient Protocol
2.4. Study of Semen Quality and DGC
2.5. MACS Sperm Selection Technique
2.6. Cycle Outcomes
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozcan, P.; Takmaz, T.; Yazici, M.G.K.; Alagoz, O.A.; Yesiladali, M.; Sevket, O.; Ficicioglu, C. Does the use of microfluidic sperm sorting for the sperm selection improve in vitro fertilization success rates in male factor infertility? J. Obstet. Gynaecol. Res. 2021, 47, 382–388. [Google Scholar] [CrossRef]
- Oseguera-López, I.; Ruiz-Díaz, S.; Ramos-Ibeas, P.; Pérez-Cerezales, S. Novel Techniques of Sperm Selection for Improving IVF and ICSI Outcomes. Front. Cell Dev. Biol. 2019, 7, 298. [Google Scholar] [CrossRef]
- Pacheco, A.; Blanco, A.; Bronet, F.; Cruz, M.; García-Fernández, J.; García-Velasco, J.A. Magnetic-Activated Cell Sorting (MACS): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm DNA Fragmentation. J. Clin. Med. 2020, 9, 3976. [Google Scholar] [CrossRef]
- Androni, D.A.; Dodds, S.; Tomlinson, M.; Maalouf, W.E. Is pre-freeze sperm preparation more advantageous than post-freeze? Reprod. Fertil. 2021, 2, 17–25. [Google Scholar] [CrossRef]
- Paasch, U.; Grunewald, S.; Wuendrich, K.; Jope, T.; Glander, H.J. Immunomagnetic removal of cryo-damaged human spermatozoa. Asian J. Androl. 2005, 7, 61–69. [Google Scholar] [CrossRef]
- Grunewald, S.; Paasch, U.; Said, T.M.; Rasch, M.; Agarwal, A.; Glander, H.-J. Magnetic-activated Cell Sorting before Cryopreservation Preserves Mitochondrial Integrity in Human Spermatozoa. Cell Tissue Bank. 2006, 7, 99–104. [Google Scholar] [CrossRef]
- Aziz, N.; Said, T.; Paasch, U.; Agarwal, A. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum. Reprod. 2007, 22, 1413–1419. [Google Scholar] [CrossRef] [Green Version]
- Sion, B.; Janny, L.; Boucher, D.; Grizard, G. Annexin V binding to plasma membrane predicts the quality of human cryopreserved spermatozoa. Int. J. Androl. 2004, 27, 108–114. [Google Scholar] [CrossRef]
- Seymour, F.I.; Koerner, A. Artificial Insemination. Present status in the United States as shown by a recent survey. J. Am. Med. Assoc. 1941, 116, 2747. [Google Scholar] [CrossRef]
- AL Kop, P.; Mochtar, M.H.; O’Brien, P.A.; Van der Veen, F.; van Wely, M. Intrauterine insemination versus intracervical insemination in donor sperm treatment. Cochrane Database Syst. Rev. 2018, 2018, 1–44. [Google Scholar] [CrossRef]
- Starosta, A.; Gordon, C.E.; Hornstein, M.D. Predictive factors for intrauterine insemination outcomes: A review. Fertil. Res. Pract. 2020, 6, 23. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. Int. J. Surg. 2011, 9, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Anbari, F.; Khalili, M.A.; Sultan Ahamed, A.M.; Mangoli, E.; Nabi, A.; Dehghanpour, F.; Sabour, M. Microfluidic sperm selection yields higher sperm quality compared to conventional method in ICSI program: A pilot study. Syst. Biol. Reprod. Med. 2021, 67, 137–143. [Google Scholar] [CrossRef]
- Gil Juliá, M.; Hervás, I.; Navarro-Gómez Lechón, A.; Quintana, F.; Amorós, D.; Pacheco, A.; González-Ravina, C.; Rivera-Egea, R.; Garrido, N. Sperm selection by magnetic-activated cell sorting before microinjection of autologous oocytes increases cumulative live birth rates with limited clinical impact: A retrospective study in unselected males. Biology 2021, 10, 430. [Google Scholar] [CrossRef]
- Gil, M.; Sar-Shalom, V.; Melendez Sivira, Y.; Carreras, R.; Checa, M.A. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2013, 30, 479–485. [Google Scholar] [CrossRef]
- Said, T.M.; Agarwal, A.; Zborowski, M.; Grunewald, S.; Glander, H.J.; Paasch, U. Utility of magnetic cell separation as a molecular sperm preparation technique. J. Androl. 2008, 29, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Ziarati, N.; Tavalaee, M.; Bahadorani, M.; Nasr Esfahani, M.H. Clinical outcomes of magnetic activated sperm sorting in infertile men candidate for ICSI. Hum. Fertil. 2019, 22, 118–125. [Google Scholar] [CrossRef]
- Mei, J.; Chen, L.-J.; Zhu, X.-X.; Yu, W.; Gao, Q.-Q.; Sun, H.-X.; Ding, L.-J.; Wang, J.-X. Magnetic-activated cell sorting of nonapoptotic spermatozoa with a high DNA fragmentation index improves the live birth rate and decreases transfer cycles of IVF/ICSI. Asian J. Androl. 2021. [Google Scholar] [CrossRef]
- Tavalaee, M.; Deemeh, M.R.; Arbabian, M.; Nasr-Esfahani, M.H. Density gradient centrifugation before or after magnetic-activated cell sorting: Which technique is more useful for clinical sperm selection? J. Assist. Reprod. Genet. 2012, 29, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Berteli, T.S.; Da Broi, M.G.; Martins, W.P.; Ferriani, R.A.; Navarro, P.A. Magnetic-activated cell sorting before density gradient centrifugation improves recovery of high-quality spermatozoa. Andrology 2017, 5, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-H.; Liu, C.-H.; Shih, Y.-T.; Tsao, H.-M.; Huang, C.-C.; Chen, H.-H.; Lee, M.-S. Magnetic-Activated Cell Sorting for Sperm Preparation Reduces Spermatozoa with Apoptotic Markers and Improves the Acrosome Reaction in Couples with Unexplained Infertility. Hum. Reprod. 2010, 25, 839–846. [Google Scholar] [CrossRef]
- Hozyen, M.; Hasanen, E.; Elqusi, K.; ElTanbouly, S.; Gamal, S.; Hussin, A.G.; AlKhader, H.; Zaki, H. Reproductive Outcomes of Different Sperm Selection Techniques for ICSI Patients with Abnormal Sperm DNA Fragmentation: A Randomized Controlled Trial. Reprod. Sci. 2022, 29, 220–228. [Google Scholar] [CrossRef]
- Pinto, S.; Carrageta, D.F.; Alves, M.G.; Rocha, A.; Agarwal, A.; Barros, A.; Oliveira, P.F. Sperm selection strategies and their impact on assisted reproductive technology outcomes. Andrologia 2021, 53, e13725. [Google Scholar] [CrossRef]
- Rappa, K.L.; Rodriguez, H.F.; Hakkarainen, G.C.; Anchan, R.M.; Mutter, G.L.; Asghar, W. Sperm processing for advanced reproductive technologies: Where are we today? Biotechnol. Adv. 2016, 34, 578–587. [Google Scholar] [CrossRef]
Basal | Before Insemination | |||||||
---|---|---|---|---|---|---|---|---|
Parameter (Unit) | MACSG (95% CI) | CG (95% CI) | MD (95% CI) | p | MACSG (95% CI) | CG (95% CI) | MD (95% CI) | p |
Volume (mL) | 1.65 (1.55 to 1.75) | 1.56 (1.44 to 1.67) | 0.10 (−0.06 to 0.25) | 0.22 | 0.44 (0.43 to 0.45) | 0.43 (0.42 to 0.44) | 0.01 (−0.004 to 0.03) | 0.15 |
Concentration (106 cells/mL) | 62.09 (57.96 to 66.23) | 64.64 (60.40 to 68.89) | −2.55 (−8.44 to 3.34) | 0.40 | 23.44 (19.84 to 27.04) | 36.76 (32.34 to 41.19) | −13.3 (−19.44 to −7.20) | <0.001 * |
Progressive motility (%) | 39.20 (37.12 to 41.28) | 39.30 (37.01 to 41.58) | −0.10 (−3.16 to 2.97) | 0.95 | 86.69 (84.94 to 88.44) | 82.51 (80.95 to 84.07) | 4.18 (1.82 to 6.55) | <0.001 * |
Nonprogressive motility (%) | 7.84 (6.61 to 9.08) | 8.88 (7.66 to 10.10) | −1.04 (−2.76 to 0.69) | 0.24 | 4.70 (3.74 to 5.67) | 5.15 (4.40 to 5.91) | −0.45 (−1.65 to 0.75) | 0.46 |
Morphology (%) | 7.08 (6.01 to 8.15) | 6.89 (5.84 to 7.94) | 0.19 (−1.30 to 1.67) | 0.80 | N/A | N/A |
MACSG | CG | RR (95% CI) | p | |
---|---|---|---|---|
Clinical pregnancy rate (%) | 26.7 | 26.4 | 1.01 (0.623 to 1.642) | 0.96 |
Live-birth rate (%) | 58.3 | 50 | 1.17 (0.69 to 1.97) | 0.56 |
Miscarriage rate (%) | 41.7 | 50 | 0.83 (1.45 to 1.55) | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Ravina, C.; Santamaría-López, E.; Pacheco, A.; Ramos, J.; Carranza, F.; Murria, L.; Ortiz-Vallecillo, A.; Fernández-Sánchez, M. Effect of Sperm Selection by Magnetic-Activated Cell Sorting in D-IUI: A Randomized Control Trial. Cells 2022, 11, 1794. https://doi.org/10.3390/cells11111794
González-Ravina C, Santamaría-López E, Pacheco A, Ramos J, Carranza F, Murria L, Ortiz-Vallecillo A, Fernández-Sánchez M. Effect of Sperm Selection by Magnetic-Activated Cell Sorting in D-IUI: A Randomized Control Trial. Cells. 2022; 11(11):1794. https://doi.org/10.3390/cells11111794
Chicago/Turabian StyleGonzález-Ravina, Cristina, Esther Santamaría-López, Alberto Pacheco, Julia Ramos, Francisco Carranza, Lucía Murria, Ana Ortiz-Vallecillo, and Manuel Fernández-Sánchez. 2022. "Effect of Sperm Selection by Magnetic-Activated Cell Sorting in D-IUI: A Randomized Control Trial" Cells 11, no. 11: 1794. https://doi.org/10.3390/cells11111794
APA StyleGonzález-Ravina, C., Santamaría-López, E., Pacheco, A., Ramos, J., Carranza, F., Murria, L., Ortiz-Vallecillo, A., & Fernández-Sánchez, M. (2022). Effect of Sperm Selection by Magnetic-Activated Cell Sorting in D-IUI: A Randomized Control Trial. Cells, 11(11), 1794. https://doi.org/10.3390/cells11111794