Reactivities of a Prostanoid EP2 Agonist, Omidenepag, Are Useful for Distinguishing between 3D Spheroids of Human Orbital Fibroblasts without or with Graves’ Orbitopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and 3D Cultures of Human Orbital Fibroblasts (HOFs) without Graves’ Orbitopathy (GO) (n-HOFs)
2.2. Micro-Indentation Force Measurement
2.3. Quantitative PCR
2.4. Statistical Analysis
3. Results
3.1. Effects of an EP2 Agonist, OMD and the ROCK Inhibitor, Rip on Physical Properties, Size and Stiffness of the 3D Spheroid Obtained from Non-GO-Related Human Orbital Fibroblast (n-HOFs) and GO-Related Human Orbital Fibroblast (GHOF)
3.2. The Effects of an EP2 Agonist, OMD, and the ROCK Inhibitor, Rip, on mRNA Expression of ECM, ECM Regulatory Genes and Inflammatory Cytokine of the 3D Spheroid Obtained from Non-GO-Related Human Orbital Fibroblast (n-HOFs) and GO-Related Human Orbital Fibroblast (GHOF)
3.3. Effects of TSH Receptor Stimulation by M22, and/or IGF-1 Receptor Stimulation of 3D n-HOFs Spheroid on the Physical Properties in the Presence of OMD
3.4. Comparison of Several mRNA Expressions of ECM, ECM Modulators, Inflammatory Cytokines, and ER Stress-Related Genes among n-HOFs, GHOFs and M22/IGF-1-Stimulated n-HOFs 3D Spheroids
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, T.J.; Hegedüs, L. Graves’ Disease. N. Engl. J. Med. 2016, 375, 1552–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahn, R.S. Graves’ ophthalmopathy. N. Engl. J. Med. 2010, 362, 726–738. [Google Scholar] [CrossRef] [Green Version]
- Turcu, A.F.; Kumar, S.; Neumann, S.; Coenen, M.; Iyer, S.; Chiriboga, P.; Gershengorn, M.C.; Bahn, R.S. A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J. Clin. Endocrinol. Metab. 2013, 98, 2153–2159. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J. TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy. Nat. Rev. Endocrinol. 2015, 11, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Peplinski, L.S.; Albiani Smith, K. Deepening of lid sulcus from topical bimatoprost therapy. Optom. Vis. Sci. 2004, 81, 574–577. [Google Scholar] [CrossRef]
- Serrero, G.; Lepak, N.M. Prostaglandin F2α-receptor (FP Receptor) agonists are potent adipose differentiation inhibitors for primary culture of adipocyte precursors in defined medium. Biochem. Biophys. Res. Commun. 1997, 233, 200–202. [Google Scholar] [CrossRef]
- Draman, M.S.; Morris, D.S.; Evans, S.; Haridas, A.; Pell, M.J.; Greenwood, M.R.; Foy, C.; Taylor, P.; Pooprasert, M.P.; Muller, I.; et al. Prostaglandin F2-Alpha Eye Drops (Bimatoprost) in Graves’ Orbitopathy: A Randomized Controlled Double-Masked Crossover Trial (BIMA Trial). Thyroid 2019, 29, 563–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuwa, M.; Toris, C.B.; Fan, S.; Taniguchi, T.; Ichikawa, M.; Odani-Kawabata, N.; Iwamura, R.; Yoneda, K.; Matsugi, T.; Shams, N.K.; et al. Effects of a Novel Selective EP2 Receptor Agonist, Omidenepag Isopropyl, on Aqueous Humor Dynamics in Laser-Induced Ocular Hypertensive Monkeys. J. Ocul. Pharmacol. Ther. 2018, 34, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Taniguchi, T.; Inazumi, T.; Iwamura, R.; Yoneda, K.; Odani-Kawabata, N.; Matsugi, T.; Sugimoto, Y.; Shams, N.K. Effects of the Selective EP2 Receptor Agonist Omidenepag on Adipocyte Differentiation in 3T3-L1 Cells. J. Ocul. Pharmacol. Ther. 2020, 36, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Hikage, F.; Atkins, S.; Kahana, A.; Smith, T.J.; Chun, T.-H. HIF2A–LOX pathway promotes fibrotic tissue remodeling in thyroid-associated orbitopathy. Endocrinology 2019, 160, 20–35. [Google Scholar] [CrossRef] [Green Version]
- Ichioka, H.; Ida, Y.; Watanabe, M.; Ohguro, H.; Hikage, F. Prostaglandin F2α and EP2 agonists, and a ROCK inhibitor modulate the formation of 3D organoids of Grave’s orbitopathy related human orbital fibroblasts. Exp. Eye Res. 2021, 205, 108489. [Google Scholar] [CrossRef]
- Ida, Y.; Hikage, F.; Itoh, K.; Ida, H.; Ohguro, H. Prostaglandin F2α agonist-induced suppression of 3T3-L1 cell adipogenesis affects spatial formation of extra-cellular matrix. Sci. Rep. 2020, 10, 7958. [Google Scholar] [CrossRef]
- Krieger, C.C.; Neumann, S.; Place, R.F.; Marcus-Samuels, B.; Gershengorn, M.C. Bidirectional TSH and IGF-1 Receptor Cross Talk Mediates Stimulation of Hyaluronan Secretion by Graves’ Disease Immunoglobins. J. Clin. Endocrinol. Metab. 2015, 100, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Tsui, S.; Naik, V.; Hoa, N.; Hwang, C.J.; Afifiyan, N.F.; Hikim, A.S.; Gianoukakis, A.G.; Douglas, R.S.; Smith, T.J. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: A tale of two antigens implicated in graves’ disease. J. Immunol. 2008, 181, 4397–4405. [Google Scholar] [CrossRef]
- Zhang, L.; Grennan-Jones, F.; Draman, M.S.; Lane, C.; Morris, D.; Dayan, C.; Tee, A.; Ludgate, M. Possible Targets for Nonimmunosuppressive Therapy of Graves’ Orbitopathy. J. Clin. Endocrinol. Metab. 2014, 99, E1183–E1190. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Hikage, F.; Ida, Y.; Ohguro, H. Prostaglandin F2α agonists negatively modulate the size of 3d organoids from primary human orbital fibroblasts. Investig. Opthalmol. Vis. Sci. 2020, 61, 13. [Google Scholar] [CrossRef]
- Ida, Y.; Hikage, F.; Umetsu, A.; Ida, H.; Ohguro, H. Omidenepag, a non-prostanoid EP2 receptor agonist, induces enlargement of the 3D organoid of 3T3-L1 cells. Sci. Rep. 2020, 10, 16018. [Google Scholar] [CrossRef]
- Kaneko, Y.; Ohta, M.; Inoue, T.; Mizuno, K.; Isobe, T.; Tanabe, S.; Tanihara, H. Effects of K-115 (Ripasudil), a novel ROCK inhibitor, on trabecular meshwork and Schlemm’s canal endothelial cells. Sci. Rep. 2016, 6, 19640. [Google Scholar] [CrossRef] [PubMed]
- Alm, A.; Grierson, I.; Shields, M.B. Side Effects Associated with Prostaglandin Analog Therapy. Surv. Ophthalmol. 2008, 53 (Suppl. 1), S93–S105. [Google Scholar] [CrossRef]
- Nakakura, S.; Terao, E.; Nagatomi, N.; Matsuo, N.; Shimizu, Y.; Tabuchi, H.; Kiuchi, Y. Cross-sectional study of the association between a deepening of the upper eyelid sulcus-like appearance and wide-open eyes. PLoS ONE 2014, 9, e96249. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Lee, N.; Lefebvre, D.; Kronberg, B.; Loomis, S.; Brauner, S.C.; Turalba, A.; Rhee, D.J.; Freitag, S.K.; Pasquale, L.R. A cross-sectional survey of the association between bilateral topical prostaglandin analogue use and ocular adnexal features. PLoS ONE 2013, 8, e61638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, D.; Hamilton, G.A.; Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011, 21, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Chun, T.-H.; Hotary, K.B.; Sabeh, F.; Saltiel, A.; Allen, E.D.; Weiss, S.J. A Pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 2006, 125, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-B.; Hou, T.-Y.; Kau, H.-C.; Tsai, C.-C. Effect of Pirfenidone on TGF-β1-induced myofibroblast differentiation and extracellular matrix homeostasis of human orbital fibroblasts in graves’ ophthalmopathy. Biomolecules 2021, 11, 1424. [Google Scholar] [CrossRef] [PubMed]
- Virakul, S.; Somparn, P.; Pisitkun, T.; van der Spek, P.J.; Dalm, V.A.S.H.; Paridaens, D.; van Hagen, P.M.; Hirankarn, N.; Palaga, T.; Dik, W.A. Integrative analysis of proteomics and DNA methylation in orbital fibroblasts from graves’ ophthalmopathy. Front. Endocrinol. 2020, 11, 619989. [Google Scholar] [CrossRef]
- Roztocil, E.; Hammond, C.L.; Gonzalez, M.O.; Feldon, S.E.; Woeller, C.F. The aryl hydrocarbon receptor pathway controls matrix metalloproteinase-1 and collagen levels in human orbital fibroblasts. Sci. Rep. 2020, 10, 8477. [Google Scholar] [CrossRef] [PubMed]
- Galgoczi, E.; Jeney, F.; Gazdag, A.; Erdei, A.; Katko, M.; Nagy, D.M.; Ujhelyi, B.; Steiber, Z.; Gyory, F.; Berta, E.; et al. Cell density-dependent stimulation of PAI-1 and hyaluronan synthesis by TGF-β in orbital fibroblasts. J. Endocrinol. 2016, 229, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ida, Y.; Watanabe, M.; Ohguro, H.; Hikage, F. Simultaneous Use of ROCK Inhibitors and EP2 Agonists Induces Unexpected Effects on Adipogenesis and the Physical Properties of 3T3-L1 Preadipocytes. Int. J. Mol. Sci. 2021, 22, 4648. [Google Scholar] [CrossRef]
- Delcourt, N.; Bockaert, J.; Marin, P. GPCR-jacking: From a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol. Sci. 2007, 28, 602–607. [Google Scholar] [CrossRef]
- Pyne, N.J.; Pyne, S. Receptor tyrosine kinase–G-protein-coupled receptor signalling platforms: Out of the shadow? Trends Pharmacol. Sci. 2011, 32, 443–450. [Google Scholar] [CrossRef]
- Santisteban, P.; Kohn, L.D.; Di Lauro, R. Thyroglobulin gene expression is regulated by insulin and insulin-like growth factor I, as well as thyrotropin, in FRTL-5 thyroid cells. J. Biol. Chem. 1987, 262, 4048–4052. [Google Scholar] [CrossRef]
- Rapoport, B.; McLachlan, S.M. The Thyrotropin Receptor in Graves’ Disease. Thyroid 2007, 17, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Hegedüs, L.; Douglas, R.S. Role of insulin-like growth factor-1 (IGF-1) pathway in the pathogenesis of Graves’ orbitopathy. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 291–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.J.; Hoa, N. Immunoglobulins from patients with graves’ disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, insulin-like growth factor-I receptor. J. Clin. Endocrinol. Metab. 2004, 89, 5076–5080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sequence | Exon Location | RefSeq Number | ||
---|---|---|---|---|
human RPLP0 | Probe | 5′-/56-FAM/CCCTGTCTT/ZEN/CCCTGGGCATCAC/3IABkFQ/-3′ | 2-3 | NM_001002 |
Forward | 5′-TCGTCTTTAAACCCTGCGTG-3′ | |||
Reverse | 5′-TGTCTGCTCCCACAATGAAAC-3′ | |||
human COL1A1 | Probe | 5′-/56-FAM/TCGAGGGCC/ZEN/AAGACGAAGACATC/3IABkFQ/-3′ | 1-2 | NM_000088 |
Forward | 5′-GACATGTTCAGCTTTGTGGAC-3′ | |||
Reverse | 5′-TTCTGTACGCAGGTGATTGG-3′ | |||
human COL4A1 | Probe | 5′-/56-FAM/TCATACAGA/ZEN/CTTGGCAGCGGCT/3IABkFQ/-3′ | 51-52 | NM_001845 |
Forward | 5′-AGAGAGGAGCGAGATGTTCA-3′ | |||
Reverse | 5′-TGAGTCAGGCTTCATTATGTTCT-3′ | |||
human COL6A1 | Forward | 5′-CCTCGTGGACAAAGTCAAGT-3′ | 2-3 | NM_001848 |
Reverse | 5′-GTGAGGCCTTGGATGATCTC-3′ | |||
human FN1 | Forward | 5′-CGTCCTAAAGACTCCATGATCTG-3′ | 3-4 | NM_212482 |
Reverse | 5′-ACCAATCTTGTAGGACTGACC-3′ | |||
human LOX | Forward | 5′-ACATTCGCTACACAGGACATC-3′ | 6-7 | NM_002317 |
Reverse | 5′-TTCCCACTTCAGAACACCAG-3′ | |||
human CTGF | Forward | 5′-GAAGCTGACCTGGAAGAGAAC-3′ | 4-5 | NM_001901 |
Reverse | 5′-GCTCGGTATGTCTTCATGCTG-3′ | |||
human EPAS1 | Forward | 5′-AGCCTATGAATTCTACCATGCG-3′ | 7-8 | NM_001430 |
Reverse | 5′-CTTTGCGAGCATCCGGTA-3′ | |||
human IL-1β | Probe | 5′-/56-FAM/AGAAGTACC/ZEN/TGAGCTCGCCAGTGA/3IABkFQ/-3′ | 1-3 | NM_000576 |
Forward | 5′-CAGCCAATCTTCATTGCTCAAG-3′ | |||
Reverse | 5′-GAACAAGTCATCCTCATTGCC-3′ | |||
human IL-6 | Probe | 5′-/56-FAM/CAACCACAA/ZEN/ATGCCAGCCTGCT/3IABkFQ/-3′ | 4-5 | NM_000600 |
Forward | 5′-GCAGATGAGTACAAAAGTCCTGA-3′ | |||
human GRP78 | Forward | 5′-CATCACGCCGTCCTATGTCG-3′ | NM_005347 | |
Reverse | 5′-CGTCAAAGACCGTGTTCTCG-3′ | |||
human GRP94 | Forward | 5′-CTGGGACTGGGAACTTATGAATG-3′ | NM_003299 | |
Reverse | 5′-TCCATATTCGTCAAACAGACCAC-3′ | |||
human CHOP | Forward | 5′-GGAGAACCAGGAAACGGAAAC-3′ | NM_004083 | |
Reverse | 5′-TCTCCTTCATGCGCTGCTTT-3′ | |||
human tXBP | Forward | 5′-AGTAGCAGCTCAGACTGCCA-3′ | NM_005080 | |
Reverse | 5′-CCTGGTTCTCAACTACAAGGC-3′ | |||
human sXBP | Forward | 5′-GGTCTGCTGAGTCCGCAGCAGG-3′ | AB076384 | |
Reverse | 5′-GGGCTTGGTATATATGTGG-3′ |
GHOFs* | n-HOFs | M22/IGF-1 HOFs | |||
---|---|---|---|---|---|
Physical Properties | Size | OMD | ↑ | (−) | ↑ |
Rip | ↑ | ↑ | |||
Stiffness | OMD | (−) | ↓ | (−) | |
Rip | ↓ | ↓ | |||
ECM genes | COL1 | OMD | ↓ | (−) | (−) |
Rip | ↓ | (−) | |||
COL4 | OMD | (−) | ↓ | (−) | |
Rip | (−) | (−) | |||
COL6 | OMD | (−) | ↓ | (−) | |
Rip | (−) | (−) | |||
FN | OMD | ↓ | ↓ | ||
Rip | ↓ | (−) | |||
Other genes | LOX | OMD | ↓ | (−) | (−) |
Rip | (−) | (−) | |||
CTGF | OMD | (−) | ↓ | (−) | |
Rip | ↓ | ↓ | |||
IL1β | OMD | ↑ | (−) | ↑ | |
Rip | (−) | (−) | |||
IL6 | OMD | ↑ | ↑ | ||
Rip | (−) | (−) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ida, Y.; Ichioka, H.; Furuhashi, M.; Hikage, F.; Watanabe, M.; Umetsu, A.; Ohguro, H. Reactivities of a Prostanoid EP2 Agonist, Omidenepag, Are Useful for Distinguishing between 3D Spheroids of Human Orbital Fibroblasts without or with Graves’ Orbitopathy. Cells 2021, 10, 3196. https://doi.org/10.3390/cells10113196
Ida Y, Ichioka H, Furuhashi M, Hikage F, Watanabe M, Umetsu A, Ohguro H. Reactivities of a Prostanoid EP2 Agonist, Omidenepag, Are Useful for Distinguishing between 3D Spheroids of Human Orbital Fibroblasts without or with Graves’ Orbitopathy. Cells. 2021; 10(11):3196. https://doi.org/10.3390/cells10113196
Chicago/Turabian StyleIda, Yosuke, Hanae Ichioka, Masato Furuhashi, Fumihito Hikage, Megumi Watanabe, Araya Umetsu, and Hiroshi Ohguro. 2021. "Reactivities of a Prostanoid EP2 Agonist, Omidenepag, Are Useful for Distinguishing between 3D Spheroids of Human Orbital Fibroblasts without or with Graves’ Orbitopathy" Cells 10, no. 11: 3196. https://doi.org/10.3390/cells10113196
APA StyleIda, Y., Ichioka, H., Furuhashi, M., Hikage, F., Watanabe, M., Umetsu, A., & Ohguro, H. (2021). Reactivities of a Prostanoid EP2 Agonist, Omidenepag, Are Useful for Distinguishing between 3D Spheroids of Human Orbital Fibroblasts without or with Graves’ Orbitopathy. Cells, 10(11), 3196. https://doi.org/10.3390/cells10113196