ING Tumour Suppressors and ING Splice Variants as Coregulators of the Androgen Receptor Signalling in Prostate Cancer
Abstract
1. Introduction
1.1. ING Expression Levels in PC
1.2. Tumour Suppressive Pathways of ING Factors
1.3. ING Factors Regulate EMT
2. ING Proteins as Coregulators of AR
3. INGs Expression Profile in Benign Prostate Tissue and Malignant Prostate Tissue
4. The Role of ING Isoforms and Splice Variants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Esmaeili, M.; Jennek, S.; Ludwig, S.; Klitzsch, A.; Kraft, F.; Melle, C.; Baniahmad, A. The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. J. Mol. Cell Biol. 2016, 8, 207–220. [Google Scholar] [CrossRef]
- Berger, P.L.; Frank, S.; Schulz, V.V.; Nollet, E.A.; Edick, M.J.; Holly, B.; Chang, T.-T.A.; Hostetter, G.; Kim, S.; Miranti, C.K. Transient induction of ING4 by myc drives prostate epithelial cell differentiation and its disruption drives prostate tumorigenesis. Cancer Res. 2014, 74, 3357–3368. [Google Scholar] [CrossRef]
- Watson, M.J.; Berger, P.L.; Banerjee, K.; Frank, S.B.; Tang, L.; Ganguly, S.S.; Hostetter, G.; Winn, M.; Miranti, C.K. Aberrant CREB1 activation in prostate cancer disrupts normal prostate luminal cell differentiation. Oncogene 2021, 40, 3260–3272. [Google Scholar] [CrossRef] [PubMed]
- Barlak, N.; Capik, O.; Sanli, F.; Kilic, A.; Aytatli, A.; Yazici, A.; Ortucu, S.; Ittmann, M.; Karatas, O.F.; Kilinc, A. ING5 inhibits cancer aggressiveness by inhibiting Akt and activating p53 in prostate cancer. Cell Biol. Int. 2020, 44, 242–252. [Google Scholar] [CrossRef] [PubMed]
- McClurg, U.; Nabbi, A.; Ricordel, C.; Korolchuk, S.; McCracken, S.; Heer, R.; Wilson, L.; Butler, L.; Irving, B.K.; Pedeux, R.; et al. Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein. Br. J. Cancer 2018, 118, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Nabbi, A.; McClurg, U.; Thalappilly, S.; Almami, A.; Mobahat, M.; Bismar, T.A.; Binda, O.; Riabowol, K.T. ING3 promotes prostate cancer growth by activating the androgen receptor. BMC Med. 2017, 15, 103. [Google Scholar] [CrossRef]
- Almami, A.; Hegazy, S.A.; Nabbi, A.; Alshalalfa, M.; Salman, A.; Abou-Ouf, H.; Riabowol, K.; Bismar, T.A. ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients. Tumor Biol. 2016, 37, 9731–9738. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Singla, A.K.; Chen, J.; Tran, U.; Yang, Y.; Salazar, C.; Magliocco, A.; Klimowicz, A.; Jirik, F.R.; Riabowol, K. Reduced ING1 levels in breast cancer promotes metastasis. Oncotarget 2014, 5, 4244–4256. [Google Scholar] [CrossRef]
- Nouman, G.S.; Anderson, J.J.; Lunec, J.; Angus, B. The role of the tumour suppressor p33ING1b in human neoplasia. J. Clin. Pathol. 2003, 56, 491–496. [Google Scholar] [CrossRef][Green Version]
- Tallen, G.; Kaiser, I.; Krabbe, S.; Lass, U.; Hartmann, C.; Riabowol, K.; von Deimling, A. NoING1 mutations in human brain tumours but reduced expression in high malignancy grades of astrocytoma. Int. J. Cancer 2004, 109, 476–479. [Google Scholar] [CrossRef]
- Kuligina, E.S.; Sokolenko, A.P.; Bizin, I.V.; Romanko, A.; Zagorodnev, K.A.; Anisimova, M.O.; Krylova, D.D.; Anisimova, E.I.; Mantseva, M.A.; Varma, A.K.; et al. Exome sequencing study of Russian breast cancer patients suggests a predisposing role for USP39. Breast Cancer Res. Treat. 2020, 179, 731–742. [Google Scholar] [CrossRef]
- Zhang, H.-K.; Pan, K.; Wang, H.; Weng, D.-S.; Song, H.-F.; Zhou, J.; Huang, W.; Li, J.-J.; Chen, M.-S.; Xia, J.-C. Decreased expression of ING2 gene and its clinicopathological significance in hepatocellular carcinoma. Cancer Lett. 2008, 261, 183–192. [Google Scholar] [CrossRef]
- Ythier, D.; Brambilla, E.; Binet, R.; Nissou, D.; Vesin, A.; de Fraipont, F.; Moro-Sibilot, D.; Lantuejoul, S.; Brambilla, C.; Gazzeri, S.; et al. Expression of candidate tumor suppressor gene ING2 is lost in non-small cell lung carcinoma. Lung Cancer 2010, 69, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Q.; Zhang, M.; Luo, Y.; Fu, Y. Downregulation of nuclear ING3 expression and translocaliza-tion to cytoplasm promotes tumorigenesis and progression in head and neck squamous cell carcinoma (HNSCC). Histol. Histopathol. 2020, 35, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, D.L.; Martinka, M.; Li, G. Prognostic significance of nuclear ING3 expression in human cutaneous melanoma. Clin. Cancer Res. 2007, 13, 4111–4116. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-Y.; Liu, H.-L.; Tian, L.-T.; Song, R.-P.; Song, X.; Yin, D.-L.; Liang, Y.-J.; Qu, L.-D.; Jiang, H.; Liu, J.-R.; et al. Expression and prognostic value of ING3 in human primary hepatocellular carcinoma. Exp. Biol. Med. 2012, 237, 352–361. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Hou, P.; Zhang, Z.; Zhang, Y.; Wang, W.; Sun, G.; Xu, L.; Zhou, J.; Bai, J.; et al. ING4 suppresses tumor angiogenesis and functions as a prognostic marker in human colorectal cancer. Oncotarget 2016, 7, 79017–79031. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Han, Y.; Wu, H.; Zhao, W.; Tong, D.; Wei, L.; Zhong, Z.; An, R.; Wang, Y. Reduced ING4 Expression Is Associated with the Malignancy of Human Bladder. Urol. Int. 2015, 94, 464–471. [Google Scholar] [CrossRef]
- Cengiz, B.; Gunduz, E.; Gunduz, M.; Beder, L.B.; Tamamura, R.; Bagci, C.; Yamanaka, N.; Shimizu, K.; Nagatsuka, H. Tumor-specific mutation and downregulation of ING5 detected in oral squamous cell carcinoma. Int. J. Cancer 2010, 127, 2088–2094. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, X.-F.; Shen, D.-F.; Gao, Y.; Shi, S.; Wu, J.-C.; Liu, H.-X.; Sun, H.-Z.; Su, R.-J.; Zheng, H.-C. The down-regulated ING5 expression in lung cancer: A potential target of gene therapy. Oncotarget 2016, 7, 54596–54615. [Google Scholar] [CrossRef][Green Version]
- Vieyra, D.; Senger, D.L.; Toyama, T.; Muzik, H.; Brasher, P.M.; Johnston, R.N.; Riabowol, K.; Forsyth, P.A. Al-tered subcellular localization and low frequency of mutations of ING1 in human brain tumors. Clin. Cancer Res. 2003, 9, 5952–5961. [Google Scholar]
- Russell, M.W.; Soliman, M.A.; Schriemer, D.; Riabowol, K. ING1 protein targeting to the nucleus by karyopherins is necessary for activation of p21. Biochem. Biophys. Res. Commun. 2008, 374, 490–495. [Google Scholar] [CrossRef]
- Han, X.-R.; Bai, X.-Z.; Sun, Y.; Yang, Y. Nuclear ING2 expression is reduced in osteosarcoma. Oncol. Rep. 2014, 32, 1967–1972. [Google Scholar] [CrossRef]
- Zhou, R.; Rotte, A.; Li, G.; Chen, X.; Chen, G.; Bhandaru, M. Nuclear localization of ING3 is required to suppress melanoma cell migration, invasion and angiogenesis. Biochem. Biophys. Res. Commun. 2020, 527, 418–424. [Google Scholar] [CrossRef]
- Kichina, J.V.; Zeremski, M.; Aris, L.; Gurova, K.V.; Walker, E.; Franks, R.; Nikitin, A.Y.; Kiyokawa, H.; Gudkov, A.V. Targeted disruption of the mouse ing1 locus results in reduced body size, hypersensitivity to radiation and elevated incidence of lymphomas. Oncogene 2006, 25, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Kumamoto, K.; Robles, A.; Horikawa, I.; Furusato, B.; Okamura, S.; Goto, A.; Yamashita, T.; Nagashima, M.; Lee, T.-L.; et al. Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas. PLoS ONE 2010, 5, e15541. [Google Scholar] [CrossRef]
- Fink, D.; Yau, T.; Nabbi, A.; Wagner, B.; Wagner, C.; Hu, S.M.; Lang, V.; Handschuh, S.; Riabowol, K.; Rülicke, T. Loss of Ing3 expression results in growth retardation and embryonic death. Cancers 2019, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Coles, A.H.; Gannon, H.; Cerny, A.; Kurt-Jones, E.; Jones, S.N. Inhibitor of growth-4 promotes IkappaB promoter activation to suppress NF-kappaB signaling and innate immunity. Proc. Natl. Acad. Sci. USA 2010, 107, 11423–11428. [Google Scholar] [CrossRef]
- Yang, H.-C.; Sheng, W.-H.; Xie, Y.-F.; Miao, J.-C.; Wei, W.-X.; Yang, J.-C. In vitro and in vivo inhibitory effect of Ad-ING4 gene on proliferation of human prostate cancer PC-3 cells. Ai Zheng 2009, 28, 1149–1157. [Google Scholar] [CrossRef]
- Cheung, K.J., Jr.; Li, G. p33 (ING1) enhances UVB-induced apoptosis in melanoma cells. Exp. Cell Res. 2002, 279, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, G. ING3 Promotes UV-induced apoptosis via Fas/Caspase-8 pathway in melanoma cells. J. Biol. Chem. 2006, 281, 11887–11893. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, X.; Wang, F.; Pan, J.; Liu, J.; Chen, H.; Wang, Y.; Cai, L. ING4 Inhibits proliferation and induces apoptosis in human melanoma A375 cells via the Fas/Caspase-8 apoptosis pathway. Dermatology 2016, 232, 265–272. [Google Scholar] [CrossRef]
- Pungsrinont, T.; Baniahmad, A. Cellular senescence by the epigenetic regulators inhibitor of growth. J. Aging Sci. 2016, 4. [Google Scholar] [CrossRef]
- Abad, M.; Moreno, A.; Palacios, A.; Narita, M.; Blanco, F.; Moreno-Bueno, G.; Narita, M.; Palmero, I. The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell 2010, 10, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, Q.; Cao, X.; Zhao, G.; Xue, L.; Tong, T. The tumor suppressor p33ING1bupregulates p16INK4aexpression and induces cellular senescence. FEBS Lett. 2011, 585, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, C.; Abad, M.; Gómez-Cabello, D.; Moreno, A.; Palmero, I. ING proteins in cellular senescence. Curr. Drug Targets 2009, 10, 406–417. [Google Scholar] [CrossRef]
- Goeman, F.; Thormeyer, D.; Abad, M.; Serrano, M.; Schmidt, O.; Palmero, I.; Baniahmad, A. Growth inhibition by the tumor suppressor p33ING1 in immortalized and primary cells: Involvement of two silencing domains and effect of ras. Mol. Cell. Biol. 2005, 25, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, M.; Pungsrinont, T.; Schaefer, A.; Baniahmad, A. A novel crosstalk between the tumor suppressors ING1 and ING2 regulates androgen receptor signaling. J. Mol. Med. 2016, 94, 1167–1179. [Google Scholar] [CrossRef]
- Melekhova, A.; Leeder, M.; Pungsrinont, T.; Schmäche, T.; Kallenbach, J.; Ehsani, M.; Mirzakhani, K.; Rasa, S.; Neri, F.; Baniahmad, A. A novel splice variant of the inhibitor of growth 3 lacks the plant homeodomain and regulates epithelial–mesenchymal transition in prostate cancer cells. Biomolecules 2021, 11, 1152. [Google Scholar] [CrossRef]
- Tallen, G.; Farhangi, S.; Tamannai, M.; Holtkamp, N.; Mangoldt, D.; Shah, S.; Suzuki, K.; Truss, M.; Henze, G.; Riabowol, K.; et al. The inhibitor of growth 1 (ING1) proteins suppress angiogenesis and differentially regulate angiopoietin expression in glioblastoma cells. Oncol. Res. 2009, 18, 95–105. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, R.; Xu, M.; Huang, Y.; Sun, G.; Xu, L.; YanSu, C.; Rui, F.; Mengdie, X.; Yefei, H.; et al. N -methyl- N -nitro- N -nitrosoguanidine-mediated ING4 downregulation contributed to the angiogenesis of transformed human gastric epithelial cells. Life Sci. 2018, 199, 179–187. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Zhao, J.; Jiang, M.-L.; Zhang, L.-C. ING5 inhibits cell proliferation and invasion in esophageal squamous cell carcinoma through regulation of the Akt/NF-kappaB/MMP-9 signaling pathway. Biochem. Biophys. Res. Commun. 2018, 496, 387–393. [Google Scholar] [CrossRef]
- Gou, W.-F.; Shen, D.-F.; Yang, X.-F.; Zhao, S.; Liu, Y.-P.; Sun, H.-Z.; Su, R.-J.; Luo, J.-S.; Zheng, H.-C. ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: A good marker for carcinogenesis and subsequent progression. Oncotarget 2015, 6, 19552–19579. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Nisticò, P.; Bissell, M.J.; Radisky, D.C. Epithelial-mesenchymal transition: General principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb. Perspect. Biol. 2012, 4, a011908. [Google Scholar] [CrossRef]
- Li, J.; Martinka, M.; Li, G. Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis 2008, 29, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xie, L.; Lv, J.; Zhang, W.; Lv, J.; Liang, Y.; Geng, Y.; Li, X. Inhibitor of growth 4 inhibits cell proliferation, migration, and induces apoptosis of renal cell carcinoma cells. J. Cell. Biochem. 2019, 120, 6709–6717. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-J.; Yang, N.; Luo, Y.-W. Recombinant ING4 suppresses the migration of SW579 thyroid cancer cells via epithelial to mesenchymal transition. Exp. Ther. Med. 2015, 10, 603–607. [Google Scholar] [CrossRef]
- Liu, X.; Meng, J.; Zhang, X.; Liang, X.; Zhang, F.; Zhao, G.; Zhang, T. ING5 inhibits lung cancer invasion and epithelial–mesenchymal transition by inhibiting the WNT/beta-catenin pathway. Thorac. Cancer 2019, 10, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-L.; Zhang, X.-T.; Meng, J.; Zhang, H.-F.; Zhao, Y.; Li, C.; Sun, Y.; Mei, Q.-B.; Zhang, F.; Zhang, T. ING5 knockdown enhances migration and invasion of lung cancer cells by inducing EMT via EGFR/PI3K/Akt and IL-6/STAT3 signaling pathways. Oncotarget 2017, 8, 54265–54276. [Google Scholar] [CrossRef]
- Qian, F.; Hu, Q.; Tian, Y.; Wu, J.; Li, D.; Tao, M.; Qin, L.; Shen, B.; Xie, Y. ING4 suppresses hepatocellular carcinoma via a NF-kappaB/miR-155/FOXO3a signaling axis. Int. J. Biol. Sci. 2019, 15, 369–385. [Google Scholar] [CrossRef]
- Lu, L.; Li, J.; Le, Y.; Jiang, H. Inhibitor of growth 4 (ING4) inhibits hypoxia-induced EMT by decreasing HIF-1alpha and snail in HK2 cells. Acta Histochem. 2019, 121, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Balk, S.P.; Knudsen, K.E. AR, the cell cycle, and prostate cancer. Nucl. Recept. Signal. 2008, 6, e001. [Google Scholar] [CrossRef]
- A Perlmutter, M.; Lepor, H. Androgen Deprivation Therapy in the Treatment of Advanced Prostate Cancer. Rev. Urol. 2007, 9, S3–S8. [Google Scholar] [PubMed]
- Crawford, E.D. Hormonal therapy in prostate cancer: Historical approaches. Rev. Urol. 2004, 6, S3–S11. [Google Scholar] [PubMed]
- Perner, S.; Cronauer, M.V.; Schrader, A.J.; Klocker, H.; Culig, Z.; Baniahmad, A. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget 2015, 6, 35542–35555. [Google Scholar] [CrossRef]
- Ehsani, M.; David, F.; Baniahmad, A. Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers 2021, 13, 1534. [Google Scholar] [CrossRef]
- Bartsch, S.; Mirzakhani, K.; Neubert, L.; Stenzel, A.; Ehsani, M.; Esmaeili, M.; Pungsrinont, T.; Kacal, M.; Rasa, S.M.M.; Kallenbach, J.; et al. Antithetic hTERT regulation by androgens in prostate cancer cells: hTERT inhibition is mediated by the ING1 and ING2 tumor suppressors. Cancers 2021, 13, 4025. [Google Scholar] [CrossRef]
- Marshall, C.H.; Tunacao, J.; Danda, V.; Tsai, H.; Barber, J.; Gawande, R.; Weiss, C.R.; Denmeade, S.R.; Joshu, C. Reversing the effects of androgen-deprivation therapy in men with metastatic castration-resistant prostate cancer. BJU Int. 2021, 128, 366–373. [Google Scholar] [CrossRef]
- Satpathy, S.; Guérillon, C.; Kim, T.-S.; Bigot, N.; Thakur, S.; Bonni, S.; Riabowol, K.; Pedeux, R. SUMOylation of the ING1b tumor suppressor regulates gene transcription. Carcinogenesis 2014, 35, 2214–2223. [Google Scholar] [CrossRef]
- Scott, M.; Boisvert, F.-M.; Vieyra, D.; Johnston, R.N.; Bazett-Jones, D.P.; Riabowol, K. UV induces nucleolar translocation of ING1 through two distinct nucleolar targeting sequences. Nucleic Acids Res. 2001, 29, 2052–2058. [Google Scholar] [CrossRef]
- Blencowe, B.J. Alternative Splicing: New Insights from Global Analyses. Cell 2006, 126, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Dantas, A.; Al Shueili, B.; Yang, Y.; Nabbi, A.; Fink, D.; Riabowol, K. Biological functions of the ING proteins. Cancers 2019, 11, 1817. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.; Martinka, M.; Mitchell, D.; Dai, D.; Li, G. Mutations of the ING1 tumor suppressor gene detected in human melanoma abrogate nucleotide excision repair. Int. J. Oncol. 2004, 25, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, M.; Ouchida, M.; Fukushima, K.; Hanafusa, H.; Etani, T.; Nishioka, S.; Nishizaki, K.; Shimizu, K. Genomic structure of the human ING1 gene and tumor-specific mutations detected in head and neck squamous cell carcinomas. Cancer Res. 2000, 60, 3143–3146. [Google Scholar]
- Hung, T.; Binda, O.; Champagne, K.S.; Kuo, A.J.; Johnson, K.; Chang, H.Y.; Simon, M.D.; Kutateladze, T.; Gozani, O. ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol. Cell 2009, 33, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Welm, A.L.; Bishop, J.M. A Dominant Mutant Allele of the ING4 Tumor suppressor found in human cancer cells exacerbates myc-initiated mouse mammary tumorigenesis. Cancer Res. 2010, 70, 5155–5162. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Li, G. Leucine zipper-like domain is required for tumor suppressor ING2-mediated nucleotide excision repair and apoptosis. FEBS Lett. 2006, 580, 3787–3793. [Google Scholar] [CrossRef]
- Schwarze, S.R.; DePrimo, S.E.; Grabert, L.M.; Fu, V.X.; Brooks, J.D.; Jarrard, D.F. Novel pathways associated with bypassing cellular senescence in human prostate epithelial cells. J. Biol. Chem. 2002, 277, 14877–14883. [Google Scholar] [CrossRef]
- Soliman, M.A.; Berardi, P.; Pastyryeva, S.; Bonnefin, P.; Feng, X.; Colina, A.; Young, D.; Riabowol, K. ING1a expression increases during replicative senescence and induces a senescent phenotype. Aging Cell 2008, 7, 783–794. [Google Scholar] [CrossRef]
- Scott, M.; Bonnefin, P.; Vieyra, D.; Boisvert, F.-M.; Young, D.; Bazett-Jones, D.P.; Riabowol, K. UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J. Cell Sci. 2001, 114, 3455–3462. [Google Scholar] [CrossRef]
- Skowyra, D.; Zeremski, M.; Neznanov, N.; Li, M.; Choi, Y.; Uesugi, M.; Hauser, C.A.; Gu, W.; Gudkov, A.; Qin, J. Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J. Biol. Chem. 2001, 276, 8734–8739. [Google Scholar] [CrossRef]
- Vieyra, D.; Loewith, R.; Scott, M.; Bonnefin, P.; Boisvert, F.-M.; Cheema, P.; Pastyryeva, S.; Meijer, M.; Johnston, R.N.; Bazett-Jones, D.P.; et al. Human ING1 proteins differentially regulate histone acetylation. J. Biol. Chem. 2002, 277, 29832–29839. [Google Scholar] [CrossRef] [PubMed]
- Goeman, F.; Otto, K.; Kyrylenko, S.; Schmidt, O.; Baniahmad, A. ING2 recruits histone methyltransferase activity with methylation site specificity distinct from histone H3 lysines 4 and 9. Biochim. Biophys. Acta 2008, 1783, 1673–1680. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abad, M.; Menéndez, M.D.C.; Füchtbauer, A.; Serrano, M.; Füchtbauer, E.-M.; Palmero, I. Ing1 Mediates p53 Accumulation and Chromatin Modification in Response to Oncogenic Stress. J. Biol. Chem. 2007, 282, 31060–31067. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-H.; Li, D.; Liu, C.; Zhang, M.-M.; Guan, X.-J.; Fu, Y.-P. p33ING1b regulates acetylation of p53 in oral squamous cell carcinoma via SIR2. Cancer Cell Int. 2020, 20, 398. [Google Scholar] [CrossRef] [PubMed]
- Thalappilly, S.; Feng, X.; Pastyryeva, S.; Suzuki, K.; Muruve, D.; Larocque, D.; Richard, S.; Truss, M.; von Deimling, A.; Riabowol, K.; et al. The p53 Tumor Suppressor Is Stabilized by Inhibitor of Growth 1 (ING1) by Blocking Polyubiquitination. PLoS ONE 2011, 6, e21065. [Google Scholar] [CrossRef][Green Version]
- Liu, J.-Y.; Wu, B.-Q.; Zheng, J.; You, J.-F.; Zhong, H.-H.; Wang, J.-L. Effects of two variants of ING1 expression on tumor cell growth regulation. Zhonghua Bing Li Xue Za Zhi 2003, 32, 48–51. [Google Scholar]
- Zhu, Z.; Luo, Z.; Li, Y.; Ni, C.; Li, H.; Zhu, M. Human inhibitor of growth 1 inhibits hepatoma cell growth and influences p53 stability in a variant-dependent manner. Hepatology 2008, 49, 504–512. [Google Scholar] [CrossRef]
- Unoki, M.; Shen, J.C.; Zheng, Z.-M.; Harris, C.C. Novel Splice Variants of ING4 and Their Possible Roles in the Regulation of Cell Growth and Motility. J. Biol. Chem. 2006, 281, 34677–34686. [Google Scholar] [CrossRef]
ING Factor | ING Isoforms 1 | Lack of Functional Domain(s) 2 | Amino Acids | Mass in kDa |
---|---|---|---|---|
ING1 | ING1a | - | 279 | 33 |
ING1b | PIP, PBD | 210 | 24 | |
ING1c | PIP, PBD | 235 | 27 | |
ING1d | PIP, PBD | 422 | 47 | |
ING1e | PIP, PBD | 262 | 30 | |
ING2 | p33ING2a (isoform 1) | - | 280 | 33 |
p28ING2b (isoform 2) | LZL | 240 | 28 | |
ING3 | p47ING3 (isoform 1) | - | 418 | 47 |
p43ING3 (ING3Δex11) | PHD | 405 | 43 | |
p11ING3 (isoform 3) | NLS, PHD | 92 | 11 | |
ING4 | p29ING4 (isoform 9, ING4_v1) | - | 249 | 29 |
p28ING4 (isoform 4, ING4_v4) | NLS | 245 | 28 | |
p28ING4 (isoform 1, ING4_v2) | NLS | 248 | 28 | |
p28ING4 (isoform 3, ING4_v3) | NLS | 246 | 28 | |
p25ING4 (isoform 5, ING4Δex2) | LZL, NLS | 225 | 25 | |
p20ING4 (isoform 6, ING4ΔEx6A) | PHD | 179 | 20 | |
ING5 | p28ING5 (isoform 1) | - | 240 | 28 |
p28ING5 (isoform 2) | PHD | 254 | 28 | |
p26ING5 (isoform 3) | PHD | 226 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melekhova, A.; Baniahmad, A. ING Tumour Suppressors and ING Splice Variants as Coregulators of the Androgen Receptor Signalling in Prostate Cancer. Cells 2021, 10, 2599. https://doi.org/10.3390/cells10102599
Melekhova A, Baniahmad A. ING Tumour Suppressors and ING Splice Variants as Coregulators of the Androgen Receptor Signalling in Prostate Cancer. Cells. 2021; 10(10):2599. https://doi.org/10.3390/cells10102599
Chicago/Turabian StyleMelekhova, Anna, and Aria Baniahmad. 2021. "ING Tumour Suppressors and ING Splice Variants as Coregulators of the Androgen Receptor Signalling in Prostate Cancer" Cells 10, no. 10: 2599. https://doi.org/10.3390/cells10102599
APA StyleMelekhova, A., & Baniahmad, A. (2021). ING Tumour Suppressors and ING Splice Variants as Coregulators of the Androgen Receptor Signalling in Prostate Cancer. Cells, 10(10), 2599. https://doi.org/10.3390/cells10102599