Biostimulation of Maize (Zea mays) and Irrigation Management Improved Crop Growth and Water Use under Controlled Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Site
2.2. Irrigation Treatments and Biostimulant Applications
2.3. Data Collection and Analysis
- Leaf area (LA) measured by a portable LAI-3000C (LI-COR; Lincoln, NE, USA);
- Plant height, measured as the height (cm) above the soil with a Vernier caliper;
- Fresh weight of shoots and roots, measured as green shoots and roots, and clipped at the soil surface to assess biomass accumulation;
- Fresh and dry weights at harvest, the cobs from each plant being removed from stalks and weighed separately, followed by drying in an oven at 70 °C for 6 days;
- Healthy, fully expanded mature leaves from the middle to upper portion of each plant were used to determine total chlorophyll (TC) content using a soil-plant analysis development (SPAD) analyzer (SPAD-502 Chlorophyll Meter, Konica Minolta, Tokyo, Japan); and
- WUE parameters were calculated per treatment using the following formulae:
- WUEi [28] was evaluated by calculating the net photosynthetic rate (µmol·m−2·s−1) divided by the transpiration rate (mmol·m−2·s−1). Both transpiration rate and net photosynthetic rate (µmol·m−2·s−1) of the leaves were determined using a portable photosynthesis system (GFS-3000, Walz, Germany) from 10:00 to 16:00 in a typical irrigation period. The second or third mature and expanded leaves with an LA of 3 cm2 were clipped by the clip-pad (3 cm2) from the GFS-3000 system. The measurement was conducted in the above-mentioned environmentally controlled room under 25 °C and 1000 µmol·m−2·s−1.
- WUEyield [29] was calculated as the economic production (g) per treatment divided by the total irrigation water supplied (kg·m−3).
- WUEbiomass was calculated as the total dry weight (g) per treatment divided by the total irrigation water supplied (kg·m−3).
2.4. Statistical Analysis
3. Results and Discussion
3.1. Comparisons between Betaine-Treated and–Untreated Plants under FI and RDI (Experiment 1)
3.2. Comparisons between Chitin-Treated and–Untreated Plants Subjected to FI and RDI (Experiment 2)
3.3. Effects of Betaine and Chitin Treatments on Plant Physiology and Morphology under FI and RDI (Experiment 3)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Garces-Restrepo, C.; Giovanni, M. Irrigation Management Transfer: Worldwide Efforts and Results; Water Reports; FAO: Rome, Italy, 2008; p. 32. [Google Scholar]
- Payero, J.O.; Tarkalson, D.D.; Irmak, S.; Davison, D.; Petersen, J.L. Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass. Agric. Water Manag. 2009, 96, 1387–1397. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.X.; Liu, C.M.; Zhang, L. Water-saving agriculture in China: An overview. Adv. Agron. 2002, 75, 135–171. [Google Scholar]
- Mansouri-Far, C.; Sanavy, S.A.M.M.; Saberali, S.F. Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agric. Water Manag. 2010, 97, 12–22. [Google Scholar] [CrossRef]
- Yi, L.; Yang, S.J.; Li, S.Q.; Chen, X.; Chen, F. Growth and development of maize (Zea mays L.) in response to different field water management practices: Resource capture and use efficiency. Agric. For. Meteorol. 2010, 150, 606–613. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Rathje, W.R.; Martin, D.L.; Eisenhauer, D.E. Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Am. Soc. Agri. Biol. Eng. 2013, 56, 273–293. [Google Scholar]
- Souza, T.C. Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. Acta Physiol. Plant. 2013, 35, 3201–3321. [Google Scholar] [CrossRef]
- Paredes, P.; de Melo-Abreu, J.P.; Alves, I.; Pereira, L.S. Assessing the performance of the FAO Aqua Crop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric. Water Manag. 2014, 144, 81–97. [Google Scholar] [CrossRef]
- Kresovic, B.; Tapanarova, A.; Tomić, Z.; Životić, L.; Vujović, D.; Sredojević, Z. Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate. Agric. Water Manag. 2016, 169, 34–43. [Google Scholar] [CrossRef]
- Comas, L.H.; Thomas, J.T.; Kendall, C.D.; Zhang, H.; Gleason, S.M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 2019, 212, 433–440. [Google Scholar] [CrossRef]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Marsal, J.; Casadesus, J.; Lopez, G.; Mata, M.; Bellvert, J.; Girona, J. Sustainability of regulated deficit irrigation in a mid-maturing peach cultivar. Irrig. Sci. 2016, 34, 201–208. [Google Scholar] [CrossRef]
- Galindo, A.; Collado-Gonzalez, J.; Grinan, I.; Corell, M.; Centeno, A.; Martin-Palomo, M.J. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric. Water Manag. 2018, 202, 311–324. [Google Scholar] [CrossRef]
- Fereres, E.; Goldhamer, D.A.; Sadras, V.O. Yield response to water of fruit trees and vines: Guidelines. In Crop Yield Response to Water Irrigation and Drainage Paper, 2nd ed.; Steduto, P., Hsiao, T.C., Fereres, E., Raes, D., Eds.; FAO: Rome, Italy, 2012; pp. 246–295. [Google Scholar]
- Roccuzzo, G.; Villalobos, F.J.; Testi, L.; Fereres, E. Effects of water deficits on whole tree water use efficiency of orange. Agric. Water Manag. 2014, 140, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.W.; Cheng, Z.Y.; Zhao, X. Effect of regulated deficit drip irrigation on yield and quality of wine grape in desert oasis. J. Arid. Land. Res. Environ. 2015, 4, 184–188. [Google Scholar]
- Rop, D.K.; Kipkorir, E.C.; Taragon, J.K. Effects of deficit irrigation on yield and quality of onion crop. J. Agric. Sci. 2016, 8, 112–126. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 31–41. [Google Scholar] [CrossRef]
- Patrick, D.J. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [Green Version]
- Pruszyński, S. Place biostimulators in crop protection and fertilization. Wieś Jutra 2008, 5, 23–25. [Google Scholar]
- Ahmad, R.; Lim, C.J.; Kwon, S. Glycine betaine: A versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol. Rep. 2013, 7, 49–57. [Google Scholar] [CrossRef]
- Hidangmayum, A.; Padmanabh, D.; Deepmala, K.; Akhouri, H. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plant. 2019, 25, 313–326. [Google Scholar] [CrossRef]
- Rady, M.O.A.; Semida, W.M.; El-Mageed, T.A.; Hemida, K.A.; Rady, M.M. Up-regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress. Sci. Hortic. 2018, 240, 614–622. [Google Scholar] [CrossRef]
- Katiyar, D.; Hemantaranjan, A.; Singh, B. Chitosan as a promising natural compound to enhance potential physiological responses in plant: A review. Indian J. Plant Physiol. 2015, 20, 1–9. [Google Scholar] [CrossRef]
- Sharif, R.; Mujtaba, M.; Rahman, M.; Shalmani, A.; Ahmad, H.; Anwar, T.; Tianchan, D.; Wang, X. The multifunctional role of chitosan in horticultural crops: A review. Molecules 2018, 23, 872. [Google Scholar] [CrossRef]
- Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- You, L.; Song, Q.; Wu, Y.; Li, S.; Jiang, C.; Chang, L.; Yang, X.; Zhang, J. Accumulation of glycine betaine in transplastomic potato plants expressing choline oxidase confers improved drought tolerance. Planta 2019, 249, 1963–1975. [Google Scholar]
- Wakrim, R.; Wahbi, S.; Tahi, H.; Aganchich, B.; Serraj, R. Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgaris L.). Agric. Ecosyst. Environ. 2005, 106, 275–287. [Google Scholar] [CrossRef]
- Fischer, R.A.; Turner, N.C. Plant productivity in the arid and semiarid zones. Annu. Rev. Plant Physiol. 1978, 29, 277–317. [Google Scholar] [CrossRef]
- Amor, F.M.D.; Cuadra-Crespo, P.; Walker, D.J.; Camara, J.M.; Madrid, R. Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2, and water stress. J. Plant Physiol. 2010, 167, 1232–1238. [Google Scholar] [CrossRef]
- Wutipraditkul, N.; Wongwean, P.; Buaboocha, T. Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycine betaine. Biol. Plant. 2015, 59, 547–553. [Google Scholar] [CrossRef]
- Wang, N.; Cao, F.; Marvin, E.; Ambrose, R.; Qiu, C.; Wu, F. Foliar application of betaine improves water deficit stress tolerance in barley (Hordeum vulgare L.). Plant Growth Regul. 2019, 89, 109–118. [Google Scholar] [CrossRef]
- Ali, S.; Chaudhary, A.; Rizwan, M.; Anwar, H.T.; Adrees, M.; Farid, M.; Irshad, M.K.; Hayat, T.; Anjum, S.A. Alleviation of chromium toxicity by glycine betaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ. Sci. Pollut. Res. 2015, 22, 10669–10678. [Google Scholar] [CrossRef]
- Shams, M.; Yildirim, E.; Ekinci, M.; Turan, M.; Dursun, A.; Parlakova, F.; Kul, R. Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress. Hortic. Environ. Biotechnol. 2016, 57, 225–231. [Google Scholar] [CrossRef]
- Jabeen, N.; Abbas, Z.; Iqbal, M.; Rizwan, M.; Jabbar, A.; Farid, M.; Ali, S.; Ibrahim, M.; Abbas, F. Glycine betaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch. Agron. Soil Sci. 2016, 62, 648–662. [Google Scholar] [CrossRef]
- Yao, W.; Xu, T.; Farooq, S.U.; Jin, P.; Zheng, Y. Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L.) by modulating antioxidant enzymes and membrane fatty acid metabolism. Postharv. Biol. Technol. 2018, 144, 20–28. [Google Scholar] [CrossRef]
- Wani, S.H.; Singh, N.B.; Haribhushan, A.; Mir, J.I. Compatible solute engineering in plants for abiotic stress tolerance - role of glycine betaine. Curr. Genom. 2013, 14, 157–165. [Google Scholar] [CrossRef]
- Korkmaz, A.; Deger, O.; Kocacinar, F. Alleviation of water stress effects on pepper seedlings by foliar application of glycine betaine. N. Z. J. Crop Hortic. Sci. 2015, 43, 18–31. [Google Scholar] [CrossRef]
- Chaum, S.; Samphumphuang, T.; Kirdmanee, C. Glycine betaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. Aust. J. Crop Sci. 2013, 7, 213–218. [Google Scholar]
- Hamid, R.M.; Mohammad, A. The interaction effect of drought and exogenous application of glycine betaine on corn (Zea mays L.). Eur. J. Exp. Biol. 2013, 3, 197–206. [Google Scholar]
- Yu, J.; Shainberg, I.; Yan, Y.L.; Shi, J.G.; Levy, G.J.; Mamedov, A.I. Super absorbents and semiarid soil properties affecting water absorption. Soil Sci. Soc. Am. J. 2011, 75, 2305–2313. [Google Scholar] [CrossRef]
- Martins, M.; Carvalho, M.; Carvalho, D.T.; Barbosa, S.; Doriguetto, A.C.; Magalhaes, P.C.; Ribeiro, C. Physicochemical characterization of chitosan and its effects on early growth, cell cycle and root anatomy of transgenic and non-transgenic maize hybrids. Aust. J. Crop. Sci. 2018, 12, 56. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhang, X.; Merewitz, E.; Peng, Y.; Ma, X.; Yan, Y. Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J. Proteom. Res. 2017, 16, 3039–3052. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Malekpoor, F.; Salimi, A.; Golparvar, A. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci. Hortic. 2017, 217, 114–122. [Google Scholar] [CrossRef]
- Khan, W.M.; Prithiviraj, B.; Smiyh, D.L. Effect of foliar application of chitinoligosaccharides on photosynthesis of maize and soybean. Photosynth 2002, 40, 621–624. [Google Scholar] [CrossRef]
- Dos Reis, C.O.; Magalhaes, P.C.; Roniel, G.A.; Lorena, G.A.; Valquiria, M.R.; Diogo, T.C. Action of N-Succinyl and N,O-Dicarboxymethyl Chitosan Derivatives on Chlorophyll Photosynthesis and Fluorescence in Drought-Sensitive Maize. J. Plant Growth Regul. 2019, 38, 619–630. [Google Scholar] [CrossRef]
- Rabêlo, V.M.; Magalhães, P.C.; Bressanin, L.A.; Carvalho, D.T. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci. Rep. 2019, 9, 8164. [Google Scholar] [CrossRef]
- Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. 2006, 8, 203–226. [Google Scholar] [CrossRef]
- Rahbarian, R.; Khavari-Nejad, R.; Ali, G.; Abdolreza, B.; Farzaneh, N. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer Arietinum L.) genotypes. Acta Biol. Crac. Ser. Bot. 2011, 53, 47–56. [Google Scholar] [CrossRef]
- Bonneville, M.; Fyles, J.W. Assessing variations in SPAD-502 Chlorophyll meter measurements and their relationships with nutrient content of trembling aspen foliage. Commun. Soil Sci. Plant Anal. 2006, 37, 525–539. [Google Scholar] [CrossRef]
Irrigation Treatment | Betaine Concentration (mM) | Plant Height (cm) | Leaf Area (cm2) | Fresh Weight (g·per Plant) | Dry Weight (g·per Plant) | Total Water Irrigation (mL) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 Weeks | 8 Weeks | Shoot | Root | Cob | Total | Cob | Total | ||||
FI | 0 | 22.80 a | 208.80 ab | 2036.10 a | 270.37 a | 98.54 a | 67.55 a | 368.90 a | 35.11 b | 111.64 a | 23,700 |
FI | 50 | 21.93 a | 209.98 ab | 2077.26 a | 253.46 a | 77.27 b | 73.10 a | 330.73 ab | 48.25 a | 107.98 a | 20,050 |
FI | 100 | 22.17 a | 216.62 a | 2182.33 a | 241.96 a | 97.39 a | 81.58 a | 339.34 ab | 51.42 a | 112.49 a | 19,600 |
RDI | 0 | 22.42 a | 143.20 c | 948.91 c | 90.88 c | 30.20 d | 0.00 c | 121.08 d | 0.00 d | 38.83 c | 8050 |
RDI | 50 | 23.33 a | 144.93 c | 1619.77 b | 180.76 b | 53.40 c | 21.04 b | 234.16 c | 11.65 c | 44.74 c | 5200 |
RDI | 100 | 22.90 a | 179.72 b | 2068.90 a | 238.79 a | 69.87 bc | 74.36 a | 308.66 b | 38.78 b | 84.65 b | 6400 |
Source of variation | |||||||||||
Irrigation treatments (I) | *** | *** | *** | *** | *** | *** | *** | *** | |||
Betaine concentration (B) | ns | *** | ** | * | *** | ** | *** | * | |||
I × B | ns | ** | *** | * | *** | *** | * | * |
Irrigation Treatment | Betaine Concentration (mM) | 0 Weeks | 8 Weeks | WUEyield (kg·m−3) | WUEbiomass (kg·m−3) | ||||
---|---|---|---|---|---|---|---|---|---|
Transpiration (µmol m−2·s−1) | Net Photosynthesis (mmol m−2·s−1) | WUEi (mmol CO2·mol−1 H2O) | Transpiration (µmol m−2·s−1) | Net Photosynthesis (mmol m−2·s−1) | WUEi (mmol CO2·mol−1 H2O ) | ||||
FI | 0 | 0.98 a | 14.83 a | 16.25 a | 0.96 a | 12.17 b | 15.78 c | 2.85 c | 1.48 b |
FI | 50 | 1.05 a | 15.39 a | 16.85 a | 0.80 ab | 15.97 ab | 22.55 b | 3.65 bc | 2.41 b |
FI | 100 | 0.93 a | 14.77 a | 18.78 a | 0.82 ab | 17.01 a | 24.93 b | 4.16 b | 2.62 b |
RDI | 0 | 1.10 a | 15.09 a | 14.28 a | 0.45 ab | 9.41 c | 22.27 b | 0.00 d | 0.00 c |
RDI | 50 | 1.06 a | 14.82 a | 15.80 a | 0.52 b | 15.09 ab | 46.21 a | 4.05 b | 2.24 b |
RDI | 100 | 1.03 a | 14.90 a | 14.71 a | 0.74 ab | 16.18 ab | 28.16 b | 11.62 a | 6.06 a |
Source of variation | |||||||||
Irrigation treatment (I) | * | ns | * | * | * | ||||
betaine concentration (B) | ns | ** | * | * | * | ||||
I × B | ns | ns | ns | ns | ns |
Irrigation Treatment | Chitin Concentration (g/kg) | Plant Height (cm) | Leaf Area (cm2) | Fresh Weight (g·per Plant) | Dry Weight (g·per Plant) | Total Water Irrigation (mL) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 Weeks | 8 Weeks | Shoot | Root | Cob | Total | Cob | Total | ||||
FI | 0 | 16.33 a | 94.63 c | 530.62 c | 47.16 b | 7.97 b | 8.49 b | 63.63 b | 2.38 b | 15.26 b | 13,500 |
FI | 2 | 16.13 a | 95.20 c | 827.49 b | 78.35 a | 10.44 a | 24.27 a | 113.06 a | 4.63 a | 17.03 b | 9000 |
FI | 4 | 16.01 a | 101.02 b | 1001.47 a | 87.19 a | 12.07 a | 29.37 a | 128.63 a | 5.38 a | 21.83 a | 9300 |
RDI | 0 | 16.00 a | 48.72 d | 190.53 d | 22.00 c | 3.03 c | 1.72 c | 26.75 c | 0.55 c | 6.25 c | 3150 |
RDI | 2 | 16.35 a | 128.29 a | 1057.29 a | 86.27 a | 10.09 a | 27.81 a | 124.08 a | 6.07 a | 22.30 a | 2050 |
RDI | 4 | 16.67 a | 114.17 b | 1046.13 a | 81.06 a | 10.89 a | 24.20 a | 116.15 a | 5.73 a | 20.94 a | 2350 |
Source of variation | |||||||||||
Irrigation treatment (I) | * | * | ns | ns | ns | ns | ns | ns | |||
Chitin concentration (C) | *** | *** | *** | * | *** | *** | *** | *** | |||
I × C | *** | ** | ns | ns | ns | ns | ns | *** |
Irrigation Treatments | Chitin Concentration (g/kg) | SPAD Value | Transpiration (µmol m−2·s−1) | Net Photosynthesis (mmol m−2·s−1) | WUEi (mmol CO2·mol−1 H2O) | WUEyield(kg m−3) | WUEbiomass(kg m−3) |
---|---|---|---|---|---|---|---|
FI | 0 | 17.27 b | 1.05 a | 10.63 b | 10.09 c | 0.63 c | 1.13 b |
FI | 2 | 35.53 a | 1.13 a | 14.43 ab | 12.96 b | 2.70 b | 1.89 b |
FI | 4 | 36.02 a | 1.21 a | 16.85 a | 14.05 ab | 3.16 b | 2.35 b |
RDI | 0 | 10.72 c | 0.55 b | 3.80 c | 7.97 d | 0.55 c | 1.98 b |
RDI | 2 | 31.45 a | 0.98 a | 16.19 a | 16.85 a | 13.56 a | 10.88 a |
RDI | 4 | 33.95 a | 1.08 a | 15.49 a | 14.46 ab | 10.30 a | 8.91 a |
Source of variation | |||||||
Irrigation treatment (I) | * | ns | ns | ns | ns | ns | |
chitin concentration (C) | *** | ** | *** | *** | * | * | |
I × C | ns | ns | * | * | ns | ns |
Irrigation Treatment | Betaine (mM) | Chitin (g/kg) | Plant Height (cm) | Leaf Area (cm2) | Fresh Weight (g·per Plant) | Dry Weight (g·per Plant) | Total Water Irrigation (mL) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Weeks | 8 Weeks | Shoot | Root | Cob | Total | Cob | Total | |||||
FI | 0 | 0 | 16.32 a | 94.65 b | 530.61 c | 47.14 b | 7.99 ab | 8.46 c | 63.69 c | 2.36 b | 15.24 b | 13,503 |
RDI | 0 | 0 | 16.02 a | 48.70 c | 190.55 d | 22.03 c | 3.04 c | 1.70 d | 26.74 d | 0.57 c | 6.23 c | 3148 |
RDI | 50 | 0 | 16.35 a | 88.80 b | 561.63 b | 48.49 b | 5.89 bc | 8.71 c | 63.03 c | 3.15 b | 18.00 ab | 2150 |
RDI | 0 | 2 | 16.30 a | 128.25 a | 1057.26 a | 86.26 a | 10.06 a | 27.80 a | 124.07a | 6.04 a | 22.34 a | 2055 |
RDI | 50 | 2 | 16.27 a | 84.58 b | 867.46 ab | 59.13 b | 6.55 b | 17.03 b | 82.71 b | 3.60 b | 15.51 b | 1800 |
Source of variation | ||||||||||||
Irrigation treatment (I) | *** | ** | ** | ** | * | ** | * | *** | ||||
Betaine concentration (B) | ns | * | ns | ns | ns | ns | ns | ns | ||||
Chitin concentration (C) | ** | *** | *** | ns | *** | *** | ** | * | ||||
B × C | ** | * | * | ns | *** | ** | ** | ** |
Irrigation Treatments | Betaine (mM) | Chitin (g/kg) | SPAD Value | Transpiration (µmol m−2·s−1) | Net Photosynthesis (mmol m−2·s−1) | WUEi (mmol CO2·mol−1 H2O) | WUEyield (kg m−3 ) | WUEbiomass (kg·m−3) |
---|---|---|---|---|---|---|---|---|
FI | 0 | 0 | 17.29 d | 1.04 a | 10.69 b | 10.10 b | 0.61 c | 0.18 b |
RDI | 0 | 0 | 10.72 e | 0.55 b | 3.80 c | 7.97 c | 0.55 c | 0.17 b |
RDI | 50 | 0 | 22.18 c | 0.97 a | 13.16 b | 14.30 a | 4.05 b | 1.47 a |
RDI | 0 | 2 | 31.47 a | 0.96 a | 16.20 a | 16.86 a | 13.54 a | 2.96 a |
RDI | 50 | 2 | 26.23 b | 1.05 a | 12.13 b | 11.64 b | 9.46 a | 2.00 a |
Source of variation | ||||||||
Irrigation treatments (I) | * | ** | *** | * | * | * | ||
betaine concentration (B) | ns | ns | * | * | ns | ns | ||
chitin concentration (C) | *** | ns | ** | * | ns | ns | ||
B × C | *** | ns | *** | *** | * | * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.-H.; Lin, F.-W.; Wu, C.-W.; Chang, Y.-S. Biostimulation of Maize (Zea mays) and Irrigation Management Improved Crop Growth and Water Use under Controlled Environment. Agronomy 2019, 9, 559. https://doi.org/10.3390/agronomy9090559
Lin K-H, Lin F-W, Wu C-W, Chang Y-S. Biostimulation of Maize (Zea mays) and Irrigation Management Improved Crop Growth and Water Use under Controlled Environment. Agronomy. 2019; 9(9):559. https://doi.org/10.3390/agronomy9090559
Chicago/Turabian StyleLin, Kuan-Hung, Furn-Wei Lin, Chun-Wei Wu, and Yu-Sen Chang. 2019. "Biostimulation of Maize (Zea mays) and Irrigation Management Improved Crop Growth and Water Use under Controlled Environment" Agronomy 9, no. 9: 559. https://doi.org/10.3390/agronomy9090559
APA StyleLin, K.-H., Lin, F.-W., Wu, C.-W., & Chang, Y.-S. (2019). Biostimulation of Maize (Zea mays) and Irrigation Management Improved Crop Growth and Water Use under Controlled Environment. Agronomy, 9(9), 559. https://doi.org/10.3390/agronomy9090559