Whole-Systems Analysis of Environmental and Economic Sustainability in Arable Cropping Systems: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Framework
- Improving soil structure and biological function through organic matter amendments (42 t ha−1 green waste municipal compost, crop residue incorporation, cover cropping and legume undersowing) [25], non-inversion tillage and tied ridging in potatoes to improve water infiltration and reduce losses [26,27];
- Enhancing biodiversity through reduced reliance on crop protection chemicals (threshold applications) together with the use of Integrated Pest and Disease Management strategies [28], targeted control of competitive weeds to allow a small understory of dicotyledonous weeds in fields [29] and diverse wildflower mixes sown in field margins to provide resource for beneficial insects [30] and;
- Reducing environmental pollution by using less mineral fertiliser (ca. 70% of the standard rate based on soil nutrient supply) and replacing with nutrients from cover crops and undersown legumes [31,32], increasing efficiency of resource use through field management (1 and 2 above) and crop varieties selected for better resource use efficiency [33,34].
2.2. DEXi-CSC Framework
2.3. Case Study Systems for Sustainability Assessment
3. Results
3.1. Effect of Cropping System on Sustainability
- Pesticide dependency—the value of product (sale price of harvested crop and straw) relative to the amount spent on pesticides to produce that crop. This scored low for all cropping systems except for conventionally managed beans, potato and winter oilseed rape where more pesticide was used per tonne of harvested product than in the integrated treatment;
- Economic independence—the combined effect of direct subsidies supporting economic sustainability (set as none here, but see Section 3.2 for alternative scenarios) and gross margin (the difference between production value (yield and sale price) and production cost (fertilisers, pesticides, fuel, seeds and irrigation)). Economic independence was high for integrated bean crops, conventional winter barley and conventional winter wheat, low for conventional potatoes and medium for all other cropping systems.
3.2. Sensitivity Trials
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carof, M.; Colomb, B.; Aveline, A. A guide for choosing the most appropriate method for multi-criteria assessment of agricultural systems according to decision-makers’ expectations. Agric. Syst. 2013, 115, 51–62. [Google Scholar] [CrossRef]
- Bergez, J.-E.; Colbach, N.; Crespo, O.; Garcia, F.; Jeuffroy, M.H.; Justes, E.; Loyce, C.; Munier-Jolain, N.; Sadok, W. Designing crop management systems by simulation. Eur. J. Agron. 2010, 32, 3–9. [Google Scholar] [CrossRef]
- Colomb, B.; Carof, M.; Aveline, A.; Bergez, J.-E. Stockless organic farming: Strengths and weaknesses evidenced by a multicriteria sustainability assessment model. Agron. Sustain. Dev. 2013, 33, 593–608. [Google Scholar] [CrossRef]
- National Research Council. Toward Sustainability: A Plan for Collaborative Research on Agriculture and Natural Resource Management; National Academy: Washington, DC, USA, 1991; p. 147. [Google Scholar]
- Craheix, D.; Angevin, F.; Dore, T.; de Tourdonnet, S. Using a multicriteria assessment model to evaluate the sustainability of conservation agriculture at the cropping system level in France. Eur. J. Agron. 2016, 76, 75–86. [Google Scholar] [CrossRef]
- Sadok, W.; Angevin, F.; Bergez, J.-E.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Dore, T. Ex ante assessment of the sustainability of alternative cropping systems: Implications for using multi-criteria decision-aid methods: A review. Agron. Sustain. Dev. 2008, 28, 163–174. [Google Scholar] [CrossRef]
- Bohanec, M.; Cortet, J.; Griffiths, B.; Znidarsic, M.; Debeljak, M.; Caul, S.; Thompson, J.; Krogh, P.H. A qualitative multi-attribute model for assessing the impact of cropping systems on soil quality. Pedobiologia 2007, 51, 239–250. [Google Scholar] [CrossRef]
- Bohanec, M.; Messean, A.; Scatasta, S.; Angevin, F.; Griffiths, B.; Krogh, P.H.; Znidarsic, M.; Dzeroski, S. A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops. Ecol. Model. 2008, 215, 247–261. [Google Scholar] [CrossRef]
- Castoldi, N.; Bechini, L. Integrated sustainability assessment of cropping systems with agro-ecological and economic indicators in northern Italy. Eur. J. Agron. 2010, 32, 59–72. [Google Scholar] [CrossRef]
- Belcher, K.W.; Boehm, M.M.; Fulton, M.E. Agroecosystem sustainability: A system simulation model approach. Agric. Syst. 2004, 79, 225–241. [Google Scholar] [CrossRef]
- Sadok, W.; Angevin, F.; Bergez, J.-E.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Messean, A.; Dore, T. MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. Dev. 2009, 29, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, B.S.; Ball, B.C.; Daniell, T.J.; Hallett, P.; Neilson, R.; Wheatley, R.E.; Oslerc, G.; Bohanec, M. Integrating soil quality changes to arable agricultural systems following organic matter addition, or adoption of a ley-arable rotation. Appl. Soil Ecol. 2010, 46, 43–53. [Google Scholar] [CrossRef]
- Pelzer, E.; Fortino, G.; Bockstaller, C.; Angevin, F.; Lamine, C.; Moonen, C.; Vasileiadis, V.; Guerin, D.; Guichard, L.; Reau, R.; et al. Assessing innovative cropping systems with DEXiPM, a qualitative multi-criteria assessment tool derived from DEXi. Ecol. Indic. 2012, 18, 171–182. [Google Scholar] [CrossRef]
- Vasileidas, V.P.; Dachbrodt-Saaydeh, S.; Judsk, P.; Colnenne-David, C.; Leprince, F.; Holb, I.J.; Kierzek, R.; Furlan, L.; Loddo, D.; Melander, B.; et al. Sustainability of European winter wheat- and maize-based cropping systems: Economic, environmental and social ex-post assessment of conventional and IPM-based systems. Crop Prot. 2017, 97, 60–69. [Google Scholar] [CrossRef]
- Angevin, F.; Fortino, G.; Bockstaller, C.; Pelzer, E.; Messean, A. Assessing the sustainability of crop production systems: Towards a common framework? Crop Prot. 2017, 97, 18–27. [Google Scholar] [CrossRef]
- Deytieux, V.; Munier-Jolain, N.; Caneill, J. Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. Eur. J. Agron. 2016, 72, 107–126. [Google Scholar] [CrossRef]
- Meyer-Aurich, A. Economic and environmental analysis of sustainable farming practices—A Barvarian case study. Agric. Syst. 2005, 86, 190–206. [Google Scholar] [CrossRef]
- Dantsis, T.; Douma, C.; Giourga, C.; Loumou, A.; Polychronaki, E.A. A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol. Ind. 2010, 10, 256–263. [Google Scholar] [CrossRef]
- Sebillotte, M. System de culture, un concept operatoire pour les agronomes. In Un Point Sur Les Systems de Culture; Come, L., Picard, D., Eds.; INRA Editions: Paris, France, 1990; pp. 165–196. [Google Scholar]
- Hawes, C.; Begg, G.S.; Iannetta, P.P.M.; Karley, A.J.; Squire, G.R. A whole-systems approach for assessing measures to improve arable ecosystem sustainability. Ecosys. Health Sustain. 2016, 2, e012522016. [Google Scholar] [CrossRef]
- Hawes, C. Assessing the impact of management interventions in agroecological and conventional cropping systems using indicators of sustainability. In Agroecological Practices for Sustainable Agriculture: Principles, Applications, and Making the Transition; Wezel, A., Ed.; Imperial College Press: London, UK, 2017; pp. 229–262. [Google Scholar]
- Hawes, C.; Alexander, C.J.; Begg, G.S.; Iannetta, P.P.M.; Karley, A.J.; Squire, G.R.; Young, M. Plant responses to an integrated cropping system designed to maintain yield whilst enhancing soil properties and biodiversity. Agronomy 2018, 8, 229. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Giesen, G.W.J.; Huirne, R.B.M. SAFE—A hierarchical framework for assessing the sustainability of agricultural systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Gomez-Limon, J.A.; Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 2010, 69, 1062–1075. [Google Scholar] [CrossRef]
- Abdollahi, L.; Schjønning, P.; Elmholt, S.; Munkholm, L.J. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability. Soil Tillage Res. 2014, 136, 28–37. [Google Scholar] [CrossRef]
- Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C.; Hatfield, J.L.; Colvin, T.S.; Cambardella, C.A. Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- Bailey, A.; Deasy, C.; Quinton, J.; Silgram, M.; Jackson, R.; Stevens, C. Determining the cost of in-field mitigation options to reduce sediment and phosphorus loss. Land Use Policy 2013, 3, 234–242. [Google Scholar] [CrossRef]
- Paveley, N.D.; Sylvester-Bradley, R.; Scott, R.K.; Craigon, J.; Day, W. Steps in Predicting the Relationship of Yield on Fungicide Dose. Phytopathology 2001, 91, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef]
- Vickery, J.A.; Feber, R.E.; Fuller, R.J. Arable field margins managed for biodiversity conservation: A review of food resource provision for farmland birds. Agric. Ecosyst. Environ. 2009, 133, 1–13. [Google Scholar] [CrossRef]
- White, C.M.; Weil, R.R. Forage Radish Cover Crops Increase Soil Test Phosphorus Surrounding Radish Taproot Holes. Soil Sci. Soc. Am. 2011, 75, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Clements, R.O. Development of a low input system for growing wheat (Triticum vulgare) in a permanent understorey of white clover (Trifolium repens). Ann. Appl. Biol. 2008, 123, 109–119. [Google Scholar] [CrossRef]
- Bingham, I.J.; Karley, A.J.; White, P.J.; Thomas, W.T.B.; Russell, J.R. Analysis of improvements in nitrogen use efficiency associated with 75 years of barley breeding. Eur. J. Agron. 2012, 42, 49–58. [Google Scholar] [CrossRef]
- White, P.J.; George, T.S.; Gregory, P.J.; Bengough, A.G.; Hallett, P.D.; McKenzie, B.M. Matching roots to their environment. Ann. Bot. 2013, 112, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Freitag, S.; Verrall, S.R.; Pont, S.D.A.; McRae, D.; Sungurtas, J.A.; lle Palau, R.; Hawes, C.; Alexander, C.J.; Allwood, J.W.; Foito, A.; et al. Impact of Conventional and Integrated Management Systems on the Water-Soluble Vitamin Content in Potatoes, Field Beans, and Cereals. J. Agric. Food Chem. 2018, 66, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Dungait, J.A.J.; Ghee, C.; Rowan, J.S.; McKenzie, B.L.; Hawes, C.; Dixon, E.R.; Paterson, E.; Hopkins, D.W. Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biol. Biochem. 2013, 60, 195–201. [Google Scholar] [CrossRef]
- Ghee, C.; Paterson, E.; Neilson, R.; Hallett, P.; Robinson, D. Priming of soil organic matter mineralisation is intrinsically insensitive to temperature. Soil Biol. Biochem. 2013, 66, 20–28. [Google Scholar] [CrossRef]
- Bohanec, M. DEXi: Program for Multi-Attrubute Decision Making, Version 3.02; Jozef Stefan Institute: Ljubljana, Slovenia, 2009; Available online: http://www-ai.ijs.si/MarkoBohanec/dexi.html (accessed on 22 March 2019).
- Kropff, M.J.; Bouma, J.; Jones, J.W. Systems approaches for the design of sustainable agro-ecosystems. Agric. Syst. 2001, 70, 369–393. [Google Scholar] [CrossRef]
- Balbi, S.; del Prado, A.; Gallejones, P.; Pappachan Geevan, C.; Pardo, G.; Perez-minana, E.; Manrique, R.; Hernandez-Santiago, C.; Villa, F. Modeling trade-offs among ecosystem services in agricultural production systems. Environ. Model. Soft. 2015, 72, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Kragt, M.; Robertson, M.J. Quantifying ecosystem services trade-offs from agricultural practices. Ecol. Econ. 2014, 102, 147–157. [Google Scholar] [CrossRef]
- Rapidel, B.; Ripoche, A.; Allinne, C.; Metay, A.; Deheuvels, O.; Lamanda, N.; Blazy, J.-M.; Valdes-Gomez, H.; Gary, C. Analysis of ecosystem services trade-offs to design agroecosystems with perennial crops. Agron. Sustain. Dev. 2015, 35, 1373–1390. [Google Scholar] [CrossRef]
- Morrison-Saunders, A.; Pope, J. Conceptualising and managing trade-offs in sustainability assessment. Environ. Impact Assess. Rev. 2013, 38, 54–63. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Salam, Y.; Hawes, C.; Roberts, D.; Young, M. The economics of alternative crop production systems in the context of farmer participation in carbon trading markets. Agroecol. Sustain. Food Syst. 2019, 43, 67–91. [Google Scholar] [CrossRef]
- Squire, G.R.; Quesada, N.; Begg, G.S.; Iannetta, P.P.M. Transitions to a greater legume inclusion in cropland: Defining opportunities and estimating benefits for the nitrogen economy. Food Energy Secur. 2019. [Google Scholar] [CrossRef]
- Squire, G.R. Defining sustainable limits during and after intensification in a maritime agricultural ecosystem. Ecosyst. Health Sustain. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Klapwijk, C.J.; van Wijk, M.T.; Rosenstock, T.S.; van Asten, P.J.A.; Thornton, P.K.; Giller, K.E. Analysis of trade-offs in agricultural systems: Current status and way forward. Curr. Opin. Environ. Sustain. 2014, 6, 110–115. [Google Scholar] [CrossRef]
Target Branches | Overall Sustainability (Level 1) Environmental: Economic (Level 2) | Environmental Sustainability (Level 2) Biodiversity: Resource Use: Losses (Level 3) | Economic sustainability (Level 2) Viability: Profitability (Level 3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
% contribution of each | 50:50 | 75:25 | 25:75 | 40:20:40 | 33:33:33 | 60:20:20 | 20:20:60 | 20:60:20 | 50:50 | 25:75 | 75:25 | |
Conventional | Bean | High | High | Very High | High | High | High | Very High | Very High | High | High | High |
Potato | Very Low | Very Low | Very Low | Very Low | Low | Very Low | Very Low | Low | Low | Low | Medium | |
Spring barley | High | Medium | High | Medium | Medium | Medium | Medium | Medium | High | High | High | |
Winter barley | High | High | Very High | High | High | Medium | High | Medium | High | High | High | |
Winter oilseed | Medium | Low | High | Low | Low | Low | Medium | Medium | High | High | High | |
Winter wheat | High | Medium | High | Medium | Medium | Medium | Medium | Medium | High | High | High | |
Integrated | Bean | High | Very High | High | Very High | Very High | Very High | Very High | Very High | Medium | Medium | Medium |
Potato | Medium | Medium | Low | High | High | High | Medium | Medium | Low | Low | Medium | |
Spring barley | High | High | Medium | Very High | High | Very High | Very High | High | Low | Low | Low | |
Winter barley | High | High | Medium | Very High | High | Very High | Very High | High | Low | Low | Low | |
Winter oilseed | Medium | Medium | Low | High | High | High | Medium | Medium | Low | Low | Low | |
Winter wheat | High | High | Medium | Very High | High | Very High | Very High | High | Low | Low | Low |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawes, C.; Young, M.W.; Banks, G.; Begg, G.S.; Christie, A.; Iannetta, P.P.M.; Karley, A.J.; Squire, G.R. Whole-Systems Analysis of Environmental and Economic Sustainability in Arable Cropping Systems: A Case Study. Agronomy 2019, 9, 438. https://doi.org/10.3390/agronomy9080438
Hawes C, Young MW, Banks G, Begg GS, Christie A, Iannetta PPM, Karley AJ, Squire GR. Whole-Systems Analysis of Environmental and Economic Sustainability in Arable Cropping Systems: A Case Study. Agronomy. 2019; 9(8):438. https://doi.org/10.3390/agronomy9080438
Chicago/Turabian StyleHawes, Cathy, Mark W. Young, Gillian Banks, Graham S. Begg, Andrew Christie, Pietro P. M. Iannetta, Alison J. Karley, and Geoffrey R. Squire. 2019. "Whole-Systems Analysis of Environmental and Economic Sustainability in Arable Cropping Systems: A Case Study" Agronomy 9, no. 8: 438. https://doi.org/10.3390/agronomy9080438
APA StyleHawes, C., Young, M. W., Banks, G., Begg, G. S., Christie, A., Iannetta, P. P. M., Karley, A. J., & Squire, G. R. (2019). Whole-Systems Analysis of Environmental and Economic Sustainability in Arable Cropping Systems: A Case Study. Agronomy, 9(8), 438. https://doi.org/10.3390/agronomy9080438