Maize Straw Returning Approaches Affected Straw Decomposition and Soil Carbon and Nitrogen Storage in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sampling and Analysis Methods
2.4. Statistical Analysis
3. Results
3.1. Straw Decomposition Proportion
3.2. Straw-Derived C and N Release
3.3. Soil Organic Carbon (SOC) and Soil Total Nitrogen (STN) Concentration
3.4. Soil Organic Carbon (SOC) and Soil Total Nitrogen (STN) Stocks
3.5. Soil C–N Ratio
3.6. Relationship Between the Straw Decomposition Proportion and the Soil Organic Carbon (SOC) and Soil Total Nitrogen (STN) Concentrations
4. Discussion
4.1. Straw Decomposition Proportion and C/N Release
4.2. Soil Organic Carbon (SOC), Soil Total Nitrogen (STN), and C–N Ratio
4.3. Soil Organic Carbon (SOC) and Soil Total Nitrogen (STN) Stocks
4.4. Relationships Between Straw Decomposition and Soil Organic Carbon (SOC) and Soil Total Nitrogen (STN) Concentrations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAO Soil Health. Technologies that Save and Grow; FAO: Rome, Italy, 2011. [Google Scholar]
- Melero, S.; López-Garrido, R.; Murillo, J.M.; Moreno, F. Conservation tillage: Short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil Tillage Res. 2009, 104, 292–298. [Google Scholar] [CrossRef]
- Kaisuer, J. Wounding Earth’s fragile skin. Science 2004, 304, 1616–1618. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.G.; Olesen, J.E.; Wang, M.; Kersebaum, K.C.; Chen, H.; Baby, S.; Öztürk, I.; Chen, F. Adapting maize production to drought in the Northeast Farming Region of China. Eur. J. Agron. 2016, 77, 47–58. [Google Scholar] [CrossRef]
- Liu, X.B.; Zhang, X.Y.; Herbert, S.J. Feeding China’s growing needs for grain. Nature 2010, 465, 420. [Google Scholar] [CrossRef] [PubMed]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.K.; Han, B.; Ou Yang, Z.Y.; Duan, X.N.; Zheng, H.; Miao, H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob. Change Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Turmel, M.S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Zhang, X.X.; Ma, F. Emergy Evaluation of Different Straw Reuse Technologies in Northeast China. Sustainability 2015, 7, 11360–11377. [Google Scholar] [CrossRef]
- Tian, P.; Jiang, Y.; Sun, Y.; Ma, Z.Q.; Sui, P.X.; Mei, N.; Qi, H. Effect of straw return methods on maize straw decomposition and soil nutrients contents. Chin. J. Eco-Agric. 2019, 27, 100–108, (in Chinese with English abstract). [Google Scholar]
- Helgason, B.L.; Gregorich, E.G.; Janzen, H.H.; Ellert, B.H.; Lorenz, N.; Dick, R.P. Long-term microbial retention of residue C is site-specific and depends on residue placement. Soil Biol. Biochem. 2014, 68, 231–240. [Google Scholar] [CrossRef]
- Cookson, W.R.; Beare, M.H.; Wilson, P.E. Effects of prior crop residue management on microbial properties and crop residue decomposition. Appl. Soil Ecol. 1998, 7, 179–188. [Google Scholar] [CrossRef]
- Osono, T. Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can. J. Microbiol. 2006, 52, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, S.; Barot, S.; Barré, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Yadvinder-Singh; Gupta, R.K.; Jagmohan-Singh; Gurpreet-Singh; Gobinder-Singh; Ladha, J.K. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice–wheat system in northwestern India. Nutr. Cycl. Agroecosyst. 2010, 88, 471–480. [Google Scholar] [CrossRef]
- Curtin, D.; Selles, F.; Wang, H.; Campbell, C.A.; Biederbeck, V.O. Carbon dioxide emissions and transformation of soil carbon and nitrogen during wheat straw decomposition. Soil Sci. Soc. Am. J. 1998, 62, 1035–1041. [Google Scholar] [CrossRef]
- Gómez-Muñoz, B.; Hatch, D.J.; Bol, R.; García-Ruiz, R. Nutrient dynamics during decomposition of the residues from a sown legume or ruderal plant cover in an olive oil orchard. Agric. Ecosyst. Environ. 2014, 184, 115–123. [Google Scholar] [CrossRef]
- Xu, Y.H.; Chen, Z.M.; Fontaine, S.; Wang, W.J.; Luo, J.F.; Fan, J.L.; Ding, W.X. Dominant effects of organic carbon chemistry on decomposition dynamics of crop residues in a Mollisol. Soil Biol. Biochem. 2017, 115, 221–232. [Google Scholar] [CrossRef]
- Bradford, M.A.; Berg, B.; Maynard, D.S.; Wieder, W.R.; Wood, S.A. Understanding the dominant controls on litter decomposition. J. Ecol. 2016, 104, 229–238. [Google Scholar] [CrossRef]
- Reicosky, D.C. Tillage-induced CO2 emissions and carbon sequestration: Effect of secondary tillage and compaction; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 291–300. [Google Scholar]
- Yang, X.M.; Wander, M.M. Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois. Soil Tillage Res. 1999, 52, 1–9. [Google Scholar] [CrossRef]
- Jantalia, C.P.; Resck, D.V.S.; Alves, B.J.R.; Zotarelli, L.; Urquiaga, S.; Boddey, R.M. Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. Soil Tillage Res. 2007, 95, 97–109. [Google Scholar] [CrossRef]
- Dong, W.X.; Hu, C.S.; Chen, S.Y.; Zhang, Y.M. Tillage and residue management effects on soil carbon and CO2 emission in a wheat–corn double-cropping system. Nutr. Cycl. Agroecosyst. 2009, 83, 27–37. [Google Scholar] [CrossRef]
- Poirier, V.; Angers, D.A.; Rochette, P.; Chantigny, M.H.; Ziadi, N.; Tremblay, G.; Fortin, J. Interactive effects of tillage and mineral fertilization on soil carbon profiles. Soil Sci. Soc. Am. J. 2009, 73, 255–261. [Google Scholar] [CrossRef]
- Du, Z.L.; Ren, T.S.; Hu, C.S. Tillage and Residue Removal Effects on Soil Carbon and Nitrogen Storage in the North China Plain. Soil Sci. Soc. Am. J. 2010, 74, 196–202. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.B.; Chen, Z.D.; Lal, R.; Zhang, H.L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Laird, D.A.; Chang, C.W. Long-term impacts of residue harvesting on soil quality. Soil Tillage Res. 2013, 134, 33–40. [Google Scholar] [CrossRef]
- Vanden Bygaart, A.J.; Angers, D.A. Towards accurate measurements of soil organic carbon stock change in agroecosystems. Can. J. Soil Sci. 2006, 86, 465–471. [Google Scholar] [CrossRef]
- Xue, J.F.; Pu, C.; Liu, S.L.; Chen, Z.D.; Chen, F.; Xiao, X.P.; Lal, R.; Zhang, H.L. Effects of tillage systems on soil organic carbon and total nitrogen in a double paddy cropping system in Southern China. Soil Tillage Res. 2015, 153, 161–168. [Google Scholar] [CrossRef]
- You, D.B.; Tian, P.; Sui, P.X.; Zhang, W.K.; Yang, B.; Qi, H. Short-term effects of tillage and residue on spring maize yield through regulating root-shoot ratio in Northeast China. Sci. Rep. 2017, 7, 13314. [Google Scholar] [CrossRef]
- Jin, X.X.; An, T.T.; Aaron, R.G.; Li, S.Y.; Timothy, F.; Wang, J.K. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma 2018, 313, 154–162. [Google Scholar] [CrossRef]
- Varela, M.F.; Scianca, C.M.; Taboada, M.A.; Rubio, G. Cover crop effects on soybean residue decomposition and P release in no-tillage systems of Argentina. Soil Tillage Res. 2014, 143, 59–66. [Google Scholar] [CrossRef]
- Mei, N.; Yang, B.; Tian, P.; Jiang, Y.; Sui, P.X.; Sun, D.Q.; Zhang, Z.P.; Qi, H. Using a modified soil quality index to evaluate densely tilled soils with different yields in Northeast China. Environ. Sci. Pollut. Res. 2019, 26, 13867–13877. [Google Scholar] [CrossRef] [PubMed]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef][Green Version]
- Wang, X.Y.; Sun, B.; Mao, J.D.; Sui, Y.Y.; Cao, X.Y. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environ. Sci. Technol. 2012, 46, 7159–7165. [Google Scholar] [CrossRef] [PubMed]
- Grandy, A.S.; Salam, D.S.; Wickings, K.; McDaniel, M.D.; Culman, S.W.; Snapp, S.S. Soil respiration and litter decomposition responses to nitrogen fertilization rate in no-till corn systems. Agric. Ecosyst. Environ. 2013, 179, 35–40. [Google Scholar] [CrossRef]
- Devêvre, O.C.; Horwáth, W.R. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biol. Biochem. 2000, 32, 1773–1785. [Google Scholar] [CrossRef]
- Puget, P.; Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res. 2005, 80, 201–213. [Google Scholar] [CrossRef]
- Hiel, M.P.; Barbieux, S.; Pierreux, J.; Olivier, C.; Lobet, G.; Roisin, C.; Garré, S.; Colinet, G.; Bodson, B.; Dumont, B. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils. PeerJ 2018, 6, e4836. [Google Scholar] [CrossRef][Green Version]
- Russell, A.E.; Laird, D.A.; Parkin, T.B.; Mallarino, A.P. Impact of Nitrogen Fertilization and Cropping System on Carbon Sequestration in Midwestern Mollisols. Soil Sci. Soc. Am. J. 2005, 69, 413–422. [Google Scholar] [CrossRef][Green Version]
- Tong, C.L.; Xiao, H.A.; Tang, G.R.; Wang, H.Q.; Huang, T.P.; Xia, H.A.; Keith, S.J.; Li, Y.; Liu, S.L.; Wu, J.S. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil Tillage Res. 2009, 106, 8–14. [Google Scholar] [CrossRef]
- Kramer, S.; Marhan, S.; Haslwimmer, H.; Ruess, L.; Kandeler, E. Temporal variation in surface and subsoil abundance and function of the soil microbial community in an arable soil. Soil Biol. Biochem. 2013, 61, 76–85. [Google Scholar] [CrossRef]
- Lou, Y.L.; Xu, M.G.; Chen, X.N.; He, X.H.; Zhao, K. Stratification of soil organic C, N and C:N ratio as affected by conservation tillage in two maize fields of China. Catena 2012, 95, 124–130. [Google Scholar] [CrossRef]
- Maillard, É.; McConkey, B.G.; Luce, M.S.; Angers, D.A.; Fan, J.L. Crop rotation tillage system and precipitation regime effects on soil carbon stocks over 1 to 30 years in Saskatchewan, Canada. Soil Tillage Res. 2018, 177, 97–104. [Google Scholar] [CrossRef]
- Hao, M.D.; Fan, J.; Wang, X.R.; Pen, L.F.; Lai, L. Effect of Fertilization on Soil Fertility and Wheat Yield of Dryland in the Loess Plateau. Pedosphere 2005, 15, 189–195. [Google Scholar]
- Sá, J.C.M.; Lal, R. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil Tillage Res. 2009, 103, 46–56. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Tian, Q.X.; Yang, X.L.; Wang, X.G.; Liao, C.; Li, Q.X.; Wang, M.; Wu, Y.; Liu, F. Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil. Biogeochemistry 2016, 128, 125–139. [Google Scholar] [CrossRef]
Year | Treatment | SOC (Mg ha−1), Depth (cm) | STN (Mg ha−1), Depth (cm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–10 | 10–20 | 20–30 | 30–40 | 40–50 | 0–50 | 0–10 | 10–20 | 20–30 | 30–40 | 40–50 | 0–50 | |||
2017 | SM | O | 18.57 a | 16.65 b | 15.88 d | 12.62 d | 11.38 bc | 75.10 b | 1.57 a | 1.41 b | 1.32 d | 1.15 d | 1.04 d | 6.49 b |
T | 15.79 c | 15.39 c | 16.48 c | 13.86 c | 11.04 c | 72.56 c | 1.37 c | 1.36 d | 1.43 b | 1.27 c | 1.04 d | 6.47 b | ||
F | 13.73 d | 13.67 e | 15.04 e | 15.11 ab | 14.64 a | 72.19 c | 1.35 c | 1.26 e | 1.41 b | 1.38 a | 1.30 a | 6.70 a | ||
Mean | 16.03 A | 15.24 B | 15.80 B | 13.86 B | 12.35 A | 73.28 B | 1.43 A | 1.34 B | 1.39 A | 1.27 A | 1.13 A | 6.56 A | ||
SB | O | 17.79 b | 17.83 a | 16.92 b | 12.64 d | 11.37 bc | 76.55 a | 1.44 b | 1.47 a | 1.37 c | 1.15 d | 1.03 d | 6.46 b | |
T | 16.13 c | 16.41 b | 18.15 a | 14.80 b | 11.89 b | 77.38 a | 1.42 b | 1.38 c | 1.46 a | 1.31 b | 1.17 c | 6.74 a | ||
F | 14.06 d | 14.36 d | 15.18 e | 15.50 a | 14.86 a | 73.96 b | 1.26 d | 1.25 e | 1.32 d | 1.30 bc | 1.26 b | 6.39 c | ||
Mean | 15.99 A | 16.20 A | 16.75 A | 14.31 A | 12.71 A | 75.96 A | 1.37 B | 1.37 A | 1.38 A | 1.25 A | 1.15 A | 6.53 A | ||
2018 | SM | O | 17.96 a | 16.84 b | 15.95 cd | 12.93 d | 11.54 c | 75.22 c | 1.55 a | 1.49 a | 1.32 c | 1.16 d | 1.07 d | 6.59 bc |
T | 15.23 d | 15.42 c | 16.50 bc | 13.82 c | 10.94 d | 71.91 e | 1.36 c | 1.37 b | 1.48 a | 1.29 b | 1.06 d | 6.56 c | ||
F | 13.66 e | 13.99 e | 15.09 e | 15.03 b | 14.43 a | 72.20 e | 1.32 d | 1.27 c | 1.39 b | 1.38 a | 1.29 a | 6.65 abc | ||
Mean | 15.62 A | 15.42 B | 15.85 B | 13.93 B | 12.30 B | 73.11 B | 1.41 A | 1.38 A | 1.40 A | 1.28 A | 1.14 B | 6.61 A | ||
SB | O | 17.21 b | 17.88 a | 16.75 b | 12.82 d | 11.35 c | 76.01 b | 1.51 b | 1.54 a | 1.36 b | 1.21 c | 1.14 c | 6.76 a | |
T | 15.62 c | 16.56 b | 18.03 a | 15.10 b | 11.83 b | 77.14 a | 1.37 c | 1.39 b | 1.47 a | 1.30 b | 1.16 c | 6.69 ab | ||
F | 13.70 e | 14.50 d | 15.65 de | 15.48 a | 14.56 a | 73.89 d | 1.23 e | 1.26 c | 1.31 c | 1.30 b | 1.25 b | 6.35 d | ||
Mean | 15.51 A | 16.31 A | 16.81 A | 14.47 A | 12.58 A | 75.68 A | 1.37 B | 1.40 A | 1.38 A | 1.27 A | 1.18 A | 6.60 A |
Year | Treatment | Soil Depth (cm) | ||||||
---|---|---|---|---|---|---|---|---|
0–10 | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | |||
2017 | SM | O | 11.81 b | 11.76 ab | 12.03 b | 11.02 b | 10.92 abc | 11.13 ab |
T | 11.57 bc | 11.35 bc | 11.66 c | 10.90 b | 10.63 bc | 10.27 b | ||
F | 10.11 e | 10.82 c | 10.67 d | 10.89 b | 11.27 ab | 10.89 ab | ||
Mean | 11.16 A | 11.31 A | 11.46 A | 10.93 A | 10.94 A | 10.76 A | ||
SB | O | 12.33 a | 12.10 a | 12.38 a | 10.96 b | 11.07 ab | 10.30 b | |
T | 11.35 cd | 11.86 ab | 12.50 a | 11.41 ab | 10.11 c | 10.86 ab | ||
F | 11.11 d | 11.48 b | 11.43 c | 11.92 a | 11.78 a | 11.76 a | ||
Mean | 11.60 A | 11.81 A | 12.10 A | 11.43 A | 10.99 A | 10.97 A | ||
2018 | SM | O | 11.65 a | 11.26 bc | 12.14 a | 11.15 b | 10.74 c | 10.90 a |
T | 11.22 b | 11.29 bc | 11.20 bc | 10.75 c | 10.36 b | 9.76 b | ||
F | 10.33 c | 11.03 c | 10.85 c | 10.89 bc | 11.18 b | 10.81 a | ||
Mean | 11.06 A | 11.19 B | 11.40 A | 10.93 A | 10.76 A | 10.49 A | ||
SB | O | 11.41 ab | 11.62 ab | 12.33 a | 10.66 c | 9.97 c | 9.60 b | |
T | 11.34 b | 11.91 a | 12.35 a | 11.69 a | 10.14 bc | 10.72 a | ||
F | 11.14 b | 11.50 abc | 11.91 ab | 11.93 a | 11.70 a | 11.27 a | ||
Mean | 11.30 A | 11.68 A | 12.20 A | 11.43 A | 10.60 A | 10.53 A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, P.; Sui, P.; Lian, H.; Wang, Z.; Meng, G.; Sun, Y.; Wang, Y.; Su, Y.; Ma, Z.; Qi, H.; et al. Maize Straw Returning Approaches Affected Straw Decomposition and Soil Carbon and Nitrogen Storage in Northeast China. Agronomy 2019, 9, 818. https://doi.org/10.3390/agronomy9120818
Tian P, Sui P, Lian H, Wang Z, Meng G, Sun Y, Wang Y, Su Y, Ma Z, Qi H, et al. Maize Straw Returning Approaches Affected Straw Decomposition and Soil Carbon and Nitrogen Storage in Northeast China. Agronomy. 2019; 9(12):818. https://doi.org/10.3390/agronomy9120818
Chicago/Turabian StyleTian, Ping, Pengxiang Sui, Hongli Lian, Zhengyu Wang, Guangxin Meng, Yue Sun, Yingyan Wang, Yehan Su, Ziqi Ma, Hua Qi, and et al. 2019. "Maize Straw Returning Approaches Affected Straw Decomposition and Soil Carbon and Nitrogen Storage in Northeast China" Agronomy 9, no. 12: 818. https://doi.org/10.3390/agronomy9120818