On-Farm Demonstrations with a Set of Good Agricultural Practices (GAPs) Proved Cost-Effective in Reducing Pre-Harvest Aflatoxin Contamination in Groundnut
Abstract
:1. Introduction
2. Results
2.1. Soil Chemical Properties
2.2. Extent of Farmers’ Awareness and Adoption of Good Agricultural Practices (GAPs) and Technologies in Groundnut
2.3. On-Farm Demonstrations
2.4. Cost Economics of GAPs Vis-à-Vis Farmers’ Practices
2.5. Post-Harvest Losses in Groundnut
3. Discussion
4. Materials and Methods
4.1. Selection and Details of Sites for On-Farm Demonstrations
4.2. Extent of Farmers’ Awareness and Adoption of Good Agricultural Practices (GAPs) during Pre- and Post-Harvest Stages of Groundnut
4.3. On-Farm Demonstrations
4.4. Cost Economics of GAPs Vis-à-Vis Farmers’ Practices
4.5. Estimation of Kernel A. flavus Infection and Aflatoxin Contamination
4.6. Data Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Waliyar, F.; Kumar, P.L.; Traore, A.; Ntare, B.R.; Diarra, B.; Kodio, O. Pre and post-harvest management of aflatoxin contamination in peanuts. In Mycotoxins Detection Methods, Management, Public Health and Agricultural Trade; Leslie, J., Bandyopadhyay, R., Visconti, A., Eds.; CABI: Waringford, UK, 2008; pp. 209–218. [Google Scholar]
- Monyo, E.S.; Njoroge, S.M.C.; Coe, R.; Osiru, M.; Madinda, F.; Waliyar, F.; Thakur, R.P.; Chilunjika, T.; Anitha, S. Occurrence and distribution of aflatoxin contamination in groundnuts (Arachis hypogaea L.) and population density of Aflatoxigenic Aspergilli in Malawi. Crop Prot. 2012, 42, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Waliyar, F.; Umeh, V.C.; Traore, A.; Osiru, M.; Ntare, B.R.; Diarra, B.; Kodio, O.; Vijay Krishna Kumar, K.; Sudini, H. Prevalence and distribution of aflatoxin contamination in groundnut (Arachis hypogaea L.) in Mali, West Africa. Crop Prot. 2015, 70, 1–7. [Google Scholar] [CrossRef]
- VanEgmond, H.P. (Ed.) Aflatoxin M1: Occurrence, toxicity, regulation. In Mycotoxins in Dairy Products; Elsevier Applied Science: London, UK, 1989; pp. 11–55. [Google Scholar]
- D’Mello, J.P.F.; MacDonald, A.M.C. Mycotoxins. Anim. Feed Sci. Technol. 1997, 69, 155–166. [Google Scholar] [CrossRef]
- Boutrif, E.; Canet, C. Mycotoxin prevention and control: FAO Programmes. Revue de Médecine Vétérinaire 1998, 149, 681–694. [Google Scholar]
- Abdin, M.Z.; Ahmad, M.M.; Javed, S. Advances in molecular detection of Aspergillus: An update. Arch. Microbiol. 2010, 192, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S. Aflatoxin and food safety: Recent African Perspectives. J. Toxicol. Toxin Rev. 2003, 22, 267–286. [Google Scholar] [CrossRef]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [PubMed]
- Strosnider, H.; Azziz-Baumgartner, E.; Banziger, M.; Bhat, R.V.; Breiman, R.; Brune, M.N.; DeCock, K.; Dilley, A.; Groopman, J.; Hell, K.; et al. Workgroup report: Public health strategies for reducing aflatoxin exposure in developing countries. Environ. Health Perspect. 2006, 114, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 2010, 118, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Diener, U.L.; Cole, R.J.; Sanders, T.H.; Payne, G.A.; Lee, L.S.; Klich, M.A. Epidemiology of aflatoxin formation by Aspergillus flavus. Annu. Rev. Phytopathol. 1987, 25, 249–270. [Google Scholar] [CrossRef]
- Torres, A.M.; Barros, G.G.; Palacios, S.A.; Chulze, S.N.; Battilani, P. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res. Int. 2014, 62, 11–19. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agricultural Organization Statistics Database. 2013. (FAOSTAT). Available online: http://faostat3.fao.org/home/E (accessed on 29 January 2016).
- Yellamanda Reddy, T.; Sulochanamma, B.N.; Subramanyam, A.; Balaguravaiah, D. Influence of weather, dry spells and management practices on aflatoxin contamination in groundnut. Indian Phytopathol. 2003, 56, 262–265. [Google Scholar]
- Hill, R.A.; Blankenship, P.D.; Cole, R.J.; Sanders, T.H. Effects of soil moisture and temperature on pre harvest invasion of peanuts by the Aspergillus flavus group and subsequent aflatoxin development. Appl. Environ. Microbiol. 1983, 45, 628–633. [Google Scholar] [PubMed]
- Cole, R.J.; Sanders, T.H.; Hill, R.A.; Blankenship, P.D. Mean geocarposphere temperatures that induce pre-harvest aflatoxin contamination of peanuts under drought stress. Mycopathologia 1985, 91, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.J.; Sanders, T.H.; Dorner, J.W.; Blankenship, P.D. Environmental conditions required to induce pre harvest aflatoxin contamination of groundnuts: Summary of six years’ research. In Aflatoxin Contamination of Groundnut: Proceedings of the International Workshop, 6–9 October 1987. ICRISAT Center, India; Hall, S.D., Ed.; ICRISAT: Patancelu, India, 1989; pp. 279–287. [Google Scholar]
- Wilson, D.M.; Walker, M.E. Effects of gypsum and irrigation on Aspergillus flavus group colonization of peanuts. In Proceedings of the American Peanut Research and Education Society, Tulsa, OK, USA, 12–15 July 1988; p. 24. [Google Scholar]
- Waliyar, F.; Ntare, B.R.; Diallo, A.T.; Kodio, O.; Diarra, B. On-Farm Management of Aflatoxin Contamination of Groundnut in West Africa: A Synthesis Report; International Crops Research Institute for the Semi-Arid Tropics: Patancelu, India, 2007; 24p. [Google Scholar]
- Arunyanark, A.; Jogloy, S.; Wongkaew, S.; Akkasaeng, C.; Vorasoot, N.; Kesmala, T.; Patanothai, A. Heritability of aflatoxin resistance traits and correlation with drought tolerance. Field Crops Res. 2010, 117, 258–264. [Google Scholar] [CrossRef]
- Hamidou, F.; Rathore, A.; Waliyar, F.; Vadez, V. Although drought intensity increases aflatoxin contamination, drought tolerance does not lead to less aflatoxin contamination. Field Crops Res. 2014, 156, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.M.; Stansell, J.R. Effect of irrigation regimes on aflatoxin contamination of peanut pods. Peanut Sci. 1983, 10, 54–56. [Google Scholar] [CrossRef]
- Mixon, A.C.; Bell, D.K.; Wilson, D.M. Effect of chemical and biological agents on the incidence of Aspergillus flavus and aflatoxin contamination of peanut seed. Phytopathology 1984, 74, 1440–1444. [Google Scholar] [CrossRef]
- Reding, C.L.C.; Harrison, M.A.; Kvien, C.K. Aspergillus parasiticus growth and aflatoxin synthesis on florunner peanuts grown in gypsum-supplemented soil. J. Food Prot. 1993, 56, 593–611. [Google Scholar] [CrossRef]
- Lazarovits, G.; Tenuta, M.; Conn, K.L. Organic amendments as a disease control strategy for soilborne diseases of high-value agricultural crops. Australas. Plant Pathol. 2001, 30, 111–117. [Google Scholar] [CrossRef]
- Chhetry, G.K.N.; Mangang, H.C. Effect of soil amendments on soil borne pathogens of French bean (Phaseolus vulgaris L.) in organic farming system in Manipur. J. Agric. Sci. Technol. 2011, 1, 68–72. [Google Scholar]
- Wilson, D.M.; Walker, M.E. Calcium potential aflatoxin foe. South-East. Peanut Farmer 1981, 19, 6B. [Google Scholar]
- Thakur, R.P.; Rao, V.P.; Subramanyam, K. Influence of biocontrol agents on population density of Aspergillus flavus as well as kernel infection in groundnut. Indian Phytopathol. 2003, 56, 408–412. [Google Scholar]
- Sanders, T.H.; Cole, R.J.; Blankenship, P.D.; Dorner, J.W. Aflatoxin concentration of peanuts from plants drought stressed in pod or root zones. Peanut Sci. 1993, 20, 5–8. [Google Scholar] [CrossRef]
- Craufurd, P.Q.; Prasad, P.V.V.; Waliyar, F.; Taheri, A. Drought, pod yield, pre-harvest Aspergillus infection and aflatoxin contamination on peanut in Niger. Field Crops Res. 2006, 98, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Payne, G.A.; Hagler, W.M., Jr. Effect of specific amino acids on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus in defined media. Appl. Environ. Microbiol. 1983, 46, 805–812. [Google Scholar] [PubMed]
- Middleton, K.J.; Pande, S.S.; Sharma, S.B.; Smith, D.H. Diseases. In Groundnut Crop: A Scientific Basis for Improvement; Smart, J.S., Ed.; Chapman and Hall: London, UK, 1994; pp. 336–378. [Google Scholar]
- Mutegi, C.K.; Ngugi, H.K.; Hendriks, S.L.; Jones, R.B. Factors associated with the incidence of Aspergillus section Flavi and aflatoxin contamination of peanuts in the Busia and Homa bay districts of western Kenya. Plant Pathol. 2012, 61, 1143–1153. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Y.; Bhatnagar, D. Cost-effectiveness of aflatoxin control methods: Economic Incentives. Toxin Rev. 2008, 27, 203–225. [Google Scholar] [CrossRef]
- Reddy, P.S.; Basu, M.S.; Khaleque, M.A.; Haque, M.S.; Ali, A.; Malek, H.; Than, H.; Soe, T.; Regunathan, B.; Mishra, B.; et al. Status of groundnut research and production in South Asia. In Groundnut—A Global Perspective. Proceedings of an International Workshop 25–29 November 1991, ICRIST Center; Nigam, S.N., Ed.; ICRISAT: Patancelu, India, 1992; pp. 133–147. [Google Scholar]
- Sudini, H.; Ranga Rao, G.V.; Gowda, C.L.L.; Chandrika, R.; Margam, V.; Rathore, A.; Murdock, L.L. Purdue Improved Crop Storage (PICS) bags for safe storage of groundnuts. J. Stored Prod. Res. 2015, 64, 133–138. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Cardwell, K.; Wild, C.P. Post-weaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.D.S.; Popat, M.N. Assessment of adoption gaps in management of aflatoxin contamination of groundnut (Arachis hypogaea L.). J. Agric. Educ. Ext. 2010, 16, 309–319. [Google Scholar] [CrossRef]
- Kumar, G.D.S.; Popat, M.N. Farmers’ perceptions, knowledge and management of aflatoxins in groundnuts (Arachis hypogaea L.) in India. Crop Prot. 2010, 29, 1534–1541. [Google Scholar] [CrossRef]
- Kumar, G.D.S.; Popat, M.N. Factors influencing the adoption of aflatoxin management practices in groundnut (Arachis hypogaea L.). Int. J. Pest Manag. 2010, 56, 165–171. [Google Scholar] [CrossRef]
- Kishore, G.K.; Pande, S.; Manjula, K.; Narayana Rao, J.; Thomas, D. Occurrence of mycotoxins and toxigenic fungi in groundnut (Arachis hypogaea L.) seeds in Andhra Pradesh, India. Plant Pathol. J. 2002, 18, 204–209. [Google Scholar] [CrossRef]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Exchangeable bases in soils. In Laboratory Methods of Soil and Plant Analysis: A Working Manual; Tropical Soil Biology and Fertility Programme: Nairobi, Kenya, 1993; pp. 52–54. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, Organic carbon and organic matter. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Eds.; Soil Science Society of America & American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Eds.; Soil Science Society of America & American Society of Agronomy: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Waliyar, F.; Bockelee-Morvan, A. Resistance of groundnut varieties to Aspergillus flavus in Senegal. In Proceedings of the International Workshop on Aflatoxin Contamination Groundnut, Patancheru, India, 6–9 October 1987; pp. 305–310. [Google Scholar]
- Raper, K.B.; Fennell, D.I. The Genus Aspergillus; Williams and Wilkins: Baltimore, MD, USA, 1965; p. 686. [Google Scholar]
- Reddy, S.V.; Kiran Mayi, D.; Uma Reddy, M.; Thirumala Devi, K.; Reddy, D.V.R. Aflatoxin B1 in different grades of chilies (Capsicum annum) as determined by indirect competitive-ELISA. Food Addit. Contam. 2001, 18, 553–558. [Google Scholar] [CrossRef] [PubMed]
Mandal/Location | Soil Parameters | ||
---|---|---|---|
pH | Organic Carbon (%) | Calcium (ppm) | |
Rapthadu | 7.9 (±0.09) | 0.32 (±0.03) | 1501 (±116.4) |
Dharmavaram | 7.0 (±0.22) | 0.48 (±0.04) | 1612 (±152.0) |
Kudaeru | 7.1 (±0.17) | 0.44 (±0.02) | 2289 (±286.3) |
Atmakur | 7.2 (±0.17) | 0.49 (±0.17) | 2039 (±170.7) |
Serial No. | Parameter Assessed | Prevalence/Extent of Adoption among Farmers |
---|---|---|
Awareness on Technical Aspects | ||
1 | Aflatoxin problem | 1.4% |
2 | Crop rotation | Nil |
3 | Crop varietal preference | 36.7% |
4 | Extent of adoption of resistant/tolerant/other improved varieties | 36.8% (drought) |
44.3% (high yields) | ||
13.2% (high oil content) | ||
Adoption of On-Farm Practices | ||
5 | Application of Farm Yard Manure (FYM) | 7.1% |
6 | Application of chemical fertilizers | 78.2% |
7 | Gypsum application | 3% |
8 | Crop harvesting at right maturity | 100% |
9 | Major abiotic stresses | Drought (100%) |
10 | Major insect pests | Spodoptera sp., Helicoverpa sp., RHC, leaf folder |
11 | Major plant diseases | Leaf spots, collar rot, stem rot, bud and stem necrosis diseases |
Adoption of Off-Farm/Post-Harvest Practices | ||
12 | Separation of healthy pods from diseased pods prior to storage | 100% |
13 | Major storage pests | Bruchids |
14 | Storage system | Jute bags (Traditional storage) |
15 | Marketing | Local traders in village |
Practice/Characteristic | 2013 | 2014 | 2015 | Pooled (2013–2015) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aflatoxins (µg/kg) | Seed Infection with A. flavus (%) | Pod Yield (Q/acre) | Aflatoxins (µg/kg) | Seed Infection with A. flavus (%) | Pod Yield (Q/acre) | Aflatoxins (µg/kg) | Seed Infection with A. flavus (%) | Pod Yield (Q/acre) | Aflatoxins (µg/kg) | Seed Infection with A. flavus (%) | Pod Yield (Q/acre) | |
FP | 0.0–1772.1 | 0.0–96.7 | 3.0–6.5 | 0.0–10,169.3 | 0.0–60.0 | 3.0–6.0 | 12.2–2282.2 | 3.3–53.3 | 4.0–7.0 | 0.0–10,169.3 | 0.0–96.7 | 3.0–7.0 |
GAPs | 0.0–301.3 | 0.0–20.0 | 6.0–7.0 | 0.0–71.5 | 0.0–66.7 | 5.0–7.0 | 12.6–113.5 | 0.0–16.7 | 5.0–7.5 | 0.0–301.3 | 0.0–66.7 | 5.0–7.5 |
FP a | 114.8 | 10.3 | 4.7 | 388.3 | 11.2 | 4.3 | 326.1 | 15.4 | 5.5 | 276.4 | 12.3 | 4.8 |
GAPs b | 43.9 | 4.4 | 6.7 | 24.7 | 9.8 | 6.2 | 27.1 | 7.9 | 6.7 | 31.9 | 7.4 | 6.5 |
Percent reduction/gain over FP | 61.8 | 57.6 | 30.0 | 93.6 | 12.6 | 30.4 | 91.7 | 48.7 | 18.6 | 88.5 | 40.1 | 26.3 |
Non-Parametric Test | 2013 | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
% Seed Infection | Aflatoxins (µg/kg) | Pod Yield (Q/acre) | % Seed Infection | Aflatoxins (µg/kg) | Pod Yield (Q/acre) | % Seed Infection | Aflatoxins (µg/kg) | Pod Yield (Q/acre) | |
Mann–Whitney U test | 29.5 ** | 5 * | 0 * | 648 ** | 384.5 * | 58 * | 415.5 * | 90 * | 119 * |
Z scores | 0.93 | 3.1 | −3.53 | 1.46 | 3.99 | −7.13 | 3.7 | 6.83 | −6.55 |
Agronomic Practices/Field Operations | Expenses Incurred (USD/acre) | |
---|---|---|
Plots with FP | Plots with GAP | |
Ploughing | $41.53 | $41.53 |
Basal applications | ||
(a) Fertilizers | $23.07 | $23.07 |
(b) Seed cost | $83.07 | $83.07 |
(c) Seed treatment (ST) | $3.84 | $3.84 |
Weed management (Post-emergence) | ||
(a) 20 DAS | $7.69 | $7.69 |
(b) 40 DAS | $11.53 | $11.53 |
Plant protection costs | $23.07 | $23.07 |
Harvesting & Drying | $21.53 | $21.53 |
Stripping | $15.38 | $15.38 |
GAP | ||
(a) Farmyard manure (FYM) | - | $46.15 |
(b) Gypsum application | - | $19.23 |
(c) Protective irrigation | - | $7.69 |
(d) Tarpaulin sheet for pod drying | - | $1.15 |
Total cost | $230.71 | $304.93 |
Average pod yield | 5.5 Q (at the rate of $61.53/Q) = $338.41 | 7 Q (at the rate of $61.53/Q) = $430.71 |
Haulm yield (t) | 1.5 t (at the rate of $9.23/t) = $13.8 | 2 t (at the rate of $9.23/t) = $18.46 |
Total income | =$352.26 | =$449.17 |
Net gain | $121.55 | $144.24 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parimi, V.; Kotamraju, V.K.K.; Sudini, H.K. On-Farm Demonstrations with a Set of Good Agricultural Practices (GAPs) Proved Cost-Effective in Reducing Pre-Harvest Aflatoxin Contamination in Groundnut. Agronomy 2018, 8, 10. https://doi.org/10.3390/agronomy8020010
Parimi V, Kotamraju VKK, Sudini HK. On-Farm Demonstrations with a Set of Good Agricultural Practices (GAPs) Proved Cost-Effective in Reducing Pre-Harvest Aflatoxin Contamination in Groundnut. Agronomy. 2018; 8(2):10. https://doi.org/10.3390/agronomy8020010
Chicago/Turabian StyleParimi, Vijayaraju, Vijay Krishna K. Kotamraju, and Hari K. Sudini. 2018. "On-Farm Demonstrations with a Set of Good Agricultural Practices (GAPs) Proved Cost-Effective in Reducing Pre-Harvest Aflatoxin Contamination in Groundnut" Agronomy 8, no. 2: 10. https://doi.org/10.3390/agronomy8020010
APA StyleParimi, V., Kotamraju, V. K. K., & Sudini, H. K. (2018). On-Farm Demonstrations with a Set of Good Agricultural Practices (GAPs) Proved Cost-Effective in Reducing Pre-Harvest Aflatoxin Contamination in Groundnut. Agronomy, 8(2), 10. https://doi.org/10.3390/agronomy8020010