Management of Nitrapyrin and Pronitridine Nitrification Inhibitors with Urea Ammonium Nitrate for Winter Wheat Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Precipitation and Temperature
3.2. Soil Nitrogen
3.3. Plant Response
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.M.; Hättenschwiler, S.; Olander, L.; Allison, S. Nitrogen and nature. AMBIO J. Hum. Environ. 2002, 31, 97–101. [Google Scholar] [CrossRef]
- Smil, V. Global population and the nitrogen cycle. Scientific Am. 1997, 277, 76–81. [Google Scholar] [CrossRef]
- Millar, N.; Robertson, G.P.; Grace, P.R.; Gehl, R.J.; Hoben, J.P. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: An emissions reduction protocol for US Midwest agriculture. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 185–204. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cycles 2002, 16. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 2002, 16. [Google Scholar] [CrossRef]
- Drury, C.F.; Tan, C.S.; Reynolds, W.D.; Welacky, T.W.; Oloya, T.O.; Gaynor, J.D. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss. J. Environ. Qual. 2009, 38, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Nash, P.R.; Motavalli, P.P.; Nelson, K.A. Nitrous oxide emissions from claypan soils due to nitrogen fertilizer source and tillage/fertilizer placement practices. Soil Sci. Soc. Am. J. 2012, 76, 983–993. [Google Scholar] [CrossRef]
- Wilson, M.L.; Rosen, C.J.; Moncrief, J.F. Potato response to a polymer-coated urea on an irrigated, coarse-textured soil. Agron. J. 2009, 101, 897–905. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Howarth, R.W.; Sharpley, A.; Walker, D. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 2002, 25, 656–676. [Google Scholar] [CrossRef]
- Howarth, R.W. Human acceleration of the nitrogen cycle: Drivers, consequences, and steps toward solutions. Water Sci. Technol. 2004, 49, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Cowling, E.B. Reactive nitrogen and the world: 200 years of change. AMBIO J. Hum. Environ. 2002, 31, 64–71. [Google Scholar] [CrossRef]
- Motavalli, P.P.; Goyne, K.W.; Udawatta, R.P. Environmental impacts of enhanced-efficiency nitrogen fertilizers. Crop Manag. 2008, 7. [Google Scholar] [CrossRef]
- Anderson, S.H.; Gantzer, C.J.; Brown, J.R. Soil physical properties after 100 years of continuous cultivation. J. Soil Water Conserv. 1990, 45, 117–121. [Google Scholar]
- Jung, W.K.; Kitchen, N.R.; Sudduth, K.A.; Anderson, S.H. Spatial characteristics of claypan soil properties in an agricultural field. Soil Sci. Soc. Am. J. 2006, 70, 1387–1397. [Google Scholar] [CrossRef]
- Myers, D.B.; Kitchen, N.R.; Sudduth, K.A.; Sharp, R.E.; Miles, R.J. Soybean root distribution related to claypan soil properties and apparent soil electrical conductivity. Crop Sci. 2007, 47, 1498–1509. [Google Scholar] [CrossRef]
- Nelson, K.A.; Paniagua, S.M.; Motavalli, P.P. Effect of polymer coated urea, irrigation, and drainage on nitrogen utilization and yield of corn in a claypan soil. Agron. J. 2009, 101, 681–687. [Google Scholar] [CrossRef]
- Nash, P.R.; Nelson, K.A.; Motavalli, P.P. Corn yield response to timing of strip-tillage and nitrogen source applications. Agron. J. 2013, 105, 623–630. [Google Scholar] [CrossRef]
- Burzaco, J.P.; Smith, D.R.; Vyn, T.J. Nitrous oxide emissions in Midwest US maize production vary widely with band-injected N fertilizer rates, timing and nitrapyrin presence. Environ. Res. Lett. 2013, 8, 1–11. [Google Scholar] [CrossRef]
- Stelly, M. Nitrification Inhibitors-Potentials and Limitations; ASA Special Publication 38; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1980. [Google Scholar]
- Prasad, R.; Power, J. Nitrification inhibitors for agriculture, health and the environment. Advances Agron. 1995, 54, 233–281. [Google Scholar]
- Wolt, J.D. A meta-evaluation of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the Midwestern USA. Nutr. Cycl. Agroecosyst. 2004, 69, 23–41. [Google Scholar] [CrossRef]
- Cook, R.L.; Nail, A.; Vigardt, A.; Trlica, A.; Hagarty, B.; Williams, T.; Wolt, J. MEta-Analysis of Enhanced Efficiency Fertilizers in Corn Systems in the Midwest. International Plant Nutrition Institute Report. 2015. Available online: http://research.ipni.net/project/IPNI-2014-USA-4RM06 (accessed on 24 January 2017).
- Bremner, J.M.; Blackmer, A.M. Effects of acetylene and soil water content on emission of nitrous oxide from soils. Nature 1979, 280, 380–381. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Rennie, A.; Paul, E.A. Acetylene and N-Serve effects upon N2O emissions from NH4+ and NO3− treated soils under aerobic and anaerobic conditions. Soil Biol. Biochem. 1984, 16, 351–356. [Google Scholar] [CrossRef]
- Bronson, K.F.; Mosier, A.R.; Bishnoi, S.R. Nitrous oxide emissions in irrigated corn as affected by nitrification inhibitors. Soil Sci. Soc. Am. J. 1992, 56, 161–165. [Google Scholar] [CrossRef]
- Delgado, J.A.; Mosier, A.R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. J. Environ. Qual. 1996, 25, 1105–1111. [Google Scholar] [CrossRef]
- Weiske, A.; Benckiser, G.; Herbert, T.; Ottow, J.C.G. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol. Fertil. Soils 2001, 34, 109–117. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Gerard, E.M.; Carter, P.E.; Lardner, R.; Sarathchandra, U.; Burch, G.; Ghani, A.; Bell, N. Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol. Biochem. 2010, 42, 1425–1436. [Google Scholar] [CrossRef]
- Omonode, R.A.; Vyn, T.J. Nitrification kinetics and nitrous oxide emissions when nitrapyrin is coapplied with urea-ammonium nitrate. Agron. J. 2013, 105, 1475–1486. [Google Scholar] [CrossRef]
- Aita, C.; Gonzatto, R.; Miola, E.C.C.; dos Santos, D.B.; Rochette, P.; Angers, D.A.; Chantigny, M.H.; Pujol, S.B.; Giacomini, D.A.; Giacomini, S.J. Injection of dicyandiamide-treated pig slurry reduced ammonia volatilization without enhancing soil nitrous oxide emissions from no-till corn in southern Brazil. J. Environ. Qual. 2014, 43, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Fisk, L.M.; Maccarone, L.D.; Barton, L.; Murphy, D.V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 2015, 88, 214–223. [Google Scholar] [CrossRef]
- Frame, W. Ammonia volatilization from urea treated with NBPT and two nitrification inhibitors. Agron. J. 2017, 109, 378–387. [Google Scholar] [CrossRef]
- Randall, G.W.; Vetch, J.A. Corn production on a subsurface-drain Mollisol as affected by time of nitrogen application and nitrapyrin. Agron. J. 2003, 95, 1213–1219. [Google Scholar] [CrossRef]
- Ruser, R.; Schulz, R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—A review. J. Plant Nutr. Soil Sci. 2015, 178, 171–188. [Google Scholar] [CrossRef]
- Ren, B.; Zhan, J.; Dong, S.; Liu, P.; Zhao, B.; Li, H. Nitrapyrin improves grain yield and nitrogen use efficiency of summer maize waterlogged in the field. Agron. J. 2017, 109, 185–192. [Google Scholar] [CrossRef]
- Kidwaro, F.M.; Kephart, K.D. Retention of nitrogen from stabilized anhydrous ammonia in the soil profile during winter wheat production in Missouri. Commun. Soil Sci. Plant Anal. 1998, 29, 481–499. [Google Scholar] [CrossRef]
- Gabrielson, K.D.; Epling, M.L. Reaction Products and Methods for Making and Using Same. US Patent No. 9,440,890, 13 September 2016. [Google Scholar]
- Vetsch, J.A.; Schwab, G.J. Corn grain yield as affected by the nitrification inhibitor KAS771G77. In Proceedings of the ASA, CSSA, & SSSA International Annual Meeting, Long Beach, CA, USA, 2–5 November 2014. [Google Scholar]
- Nelson, K.A. Pronitridine nitrification inhibitor with urea ammonium nitrate for corn. J. Agric. Sci. 2018, 10, 16–25. [Google Scholar] [CrossRef]
- Nathan, M.; Stecker, J.; Sun, Y. Soil Testing in Missouri. A Guide for Conducting Soil Testing in Missouri. Available online: http://soilplantlab.missouri.edu/soil/ec923.pdf (accessed on 6 June 2018).
- Lachat Instruments. Determination of Total Kjeldahl Nitrogen in Soil and Plants by Flow Injection Analysis; Food and Agriculture Organization of the United Nations: Loveland, CO, USA, 1996. [Google Scholar]
- Dobermann, A.R. Nitrogen Use Efficiency–State of the Art. 2005. Available online: http://digitalcommons.unl.edu/agronomyfacpub/316/ (accessed on 20 July 2016).
- MU Extension. Daily and Hourly Weather Query. Weather Database. 2017. Available online: http://agebb.missouri.edu/weather/history/report.asp?station_prefix=nov&start_month=1&end_month=1&start_day=1&end_day=1&start_year=2000&end_year=2017&period_type=1&convert=2&field_elements=70 (accessed on 4 January 2017).
- SAS Institute. SAS 9.4 Software. Available online: http://www.sas.com/en_us/software/sas9.html (accessed on 6 June 2018).
- Hoeft, R.G. Current status of nitrification inhibitor use in US agriculture. In Nitrogen in Crop Production; Hauck, R.D., Ed.; Food and Agriculture Organization of the United Nations: Madison, WI, USA, 1984; pp. 561–570. [Google Scholar]
- Liu, S.L.; Varsa, E.C.; Kapusta, G.; Mburu, D.N. Effect of etridiazol and nitrapyrin treated N fertilizers on soil mineral N status and wheat yields. Agron. J. 1984, 76, 265–270. [Google Scholar] [CrossRef]
- Barth, G.; von Tucher, S.; Schmidhalter, U. Influence of soil parameters on the effect of 3,4-dimethylpyrazole-phosphate as a nitrification inhibitor. Biol. Fertil. Soils 2001, 34, 98–102. [Google Scholar]
- Habibullah, H.; Nelson, K.A.; Motavalli, P.P. Assessing management of nitrapyrin with urea ammonium nitrate fertilizer on corn yield and soil nitrogen in a poorly-drained soil. J. Agric. Sci. 2017, 9, 17–29. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, B.; Ferguson, R.B.; Slater, G.P. Irrigated corn productivity as influenced by nitrogen source, rate, and climatic conditions. Agron. J. 2017, 109, 1–9. [Google Scholar] [CrossRef]
- Mohammed, Y.A.; Chen, C.; Jensen, T. Urease and nitrification inhibitors impact on winter wheat fertilizer timing, yield and protein content. Agron. J. 2016, 108, 905–912. [Google Scholar] [CrossRef]
Treatment or Evaluations | 2015 | 2016 | ||
Initial soil sampling | 19 March 2015 | 11 November 2015 | ||
Planting | 21 October 2014 | 17 September 2015 | ||
First N treatment application | 19 March 2015 | 10 March 2016 | ||
First in-season soil sampling (1 MAA †) | 20 April 2015 | 15 April 2016 | ||
Second N treatment application | 22 April 2015 | 15 April 2016 | ||
Plant population | 20 April 2015 | 6 May 2016 | ||
Second in-season soil sampling (2 MAA) | 18 May 2015 | 6 May 2016 | ||
SPAD meter plant leaf readings | 27 May 2015 | 23 May 2016 | ||
Dry aboveground biomass | 3 June 2015 | 31 May 2016 | ||
Third in-season soil sampling (3 MAA) | 17 June 2015 | 9 June 2016 | ||
Harvest | 7 July 2015 | 24 June 2016 | ||
Selected Initial Soil Properties | ||||
Study Year | 2015 | 2016 | 2015 | 2016 |
Soil depth, cm | 0 to 15 | 0 to 15 | 16 to 30 | 16 to 30 |
pH (0.01 M CaCl2) | 5.1 | 4.7 | 5.5 | 5.0 |
Neutralizable acidity (NA), cmolc kg−1 | 4.5 | 9.4 | 4.1 | 7.0 |
Cation exchange capacity (CEC), cmolc kg−1 | 16 | 22 | 17 | 23 |
Bray 1 phosphorus (P), kg ha−1 | 22 | 8 | 73 | 14 |
Exchangeable calcium (Ca), kg ha−1 | 3998 | 4048 | 4281 | 4679 |
Exchangeable magnesium (Mg), kg ha−1 | 388 | 496 | 428 | 914 |
Exchangeable potassium (K), kg ha−1 | 181 | 122 | 367 | 260 |
Organic matter (OM), % | 2.8 | 2.2 | 3.2 | 2.6 |
Nitrate–nitrogen (NO3–N), mg kg−1 | 4.1 | 1.5 | 19.4 | 3.0 |
Ammonium-nitrogen (NH4–N), mg kg−1 | 4.4 | 4.1 | 9.7 | 6.2 |
Tissue | Plant | Grain | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SPAD | N Conc. | Biomass | N Uptake | REN † | Population | Moisture | Test Wt ‡ | Yield | |||
Source | DF | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | DF | Pr > F | Pr > F | Pr > F | Pr > F |
year | 1 | 0.0139 | <0.0001 | <0.0001 | 0.9865 | 0.9432 | 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
year(rep) | 6 | 0.1934 | 0.1611 | 0.8803 | 0.3756 | 0.0500 | 8 | <0.0001 | <0.0001 | 0.0180 | <0.0001 |
UAN rate | 1 | 0.1005 | 0.0002 | 0.0003 | <0.0001 | 0.2836 | 1 | 0.0659 | 0.0838 | 0.0641 | <0.0001 |
Year × UAN rate | 1 | 0.5672 | 0.0707 | 0.0956 | 0.9889 | 0.9793 | 1 | 0.2068 | 0.2350 | 0.0181 | 0.0034 |
NI and timing | 5 | 0.4857 | 0.1784 | 0.8763 | 0.5131 | 0.5325 | 5 | 0.2436 | 0.8221 | 0.5291 | 0.6620 |
Year × NI and timing | 5 | 0.9357 | 0.3760 | 0.1139 | 0.0698 | 0.0005 | 5 | 0.0217 | 0.4280 | 0.4200 | 0.6478 |
UAN rate × NI and timing | 5 | 0.3390 | 0.9643 | 0.0573 | 0.4743 | 0.5832 | 5 | 0.6408 | 0.8867 | 0.6318 | 0.8401 |
Year x UAN rate × NI and timing | 5 | 0.8822 | 0.5412 | 0.0030 | 0.0367 | 0.1327 | 5 | 0.3593 | 0.7231 | 0.0236 | 0.7120 |
UAN rate | SPAD | Tissue N | REN † | Population | Moisture | Yield | |
---|---|---|---|---|---|---|---|
2015 | 2016 | ||||||
(kg N ha−1) | (g kg−1) | (%) | (No. m−2) | (g kg−1) | (Mg ha−1) | ||
0 | 31.6 | 8.0 | -- | 116 | 137 | 2.13 | 2.42 |
79 | 39.4 | 10.2 | 58.0 | 130 | 136 | 3.54 | 4.86 |
112 | 40.7 | 11.3 | 64.8 | 134 | 136 | 3.68 | 5.39 |
LSD (p = 0.05) | 2.1 | 0.7 | NS | 7 | NS | 0.25 |
Plant | Nitrogen Recovery | |||||
---|---|---|---|---|---|---|
Nitrification | NI | Population (No. m−2) | Efficiency (REN) † (%) | Grain Yield | ||
Inhibitor (NI) | Timing | 2015 | 2016 | 2015 | 2016 | (Mg ha−1) |
None | Early | 151 | 113 | 71 | 52 | 4.49 |
Nitrapyrin | Early | 149 | 117 | 63 | 33 | 4.38 |
Pronitridine | Early | 151 | 119 | 45 | 78 | 4.30 |
None | Late | 147 | 113 | 53 | 78 | 4.35 |
Nitrapyrin | Late | 151 | 117 | 89 | 44 | 4.33 |
Pronitridine | Late | 133 | 120 | 46 | 85 | 4.37 |
LSD (p = 0.05) | 6 | 31 | NS †† |
Nitrification Inhibitor | NI Timing | Biomass Yield (Mg ha−1) | Plant N Uptake (kg N ha−1) | Test Weight (kg hL−1 ) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | ||||||||
79 † | 112 † | 79 † | 112 † | 79 † | 112 † | 79 † | 112 † | 79 † | 112 † | 79 † | 112 † | ||
None | Early | 9.55 | 9.84 | 11.11 | 14.18 | 118 | 131 | 98 | 155 | 71.3 | 70.8 | 72.1 | 73.2 |
Nitrapyrin | Early | 10.06 | 10.57 | 11.29 | 12.81 | 105 | 132 | 100 | 108 | 71.2 | 71.2 | 72.3 | 73.2 |
Pronitridine | Early | 9.37 | 9.58 | 12.99 | 16.67 | 104 | 120 | 119 | 174 | 71.4 | 71.3 | 72.9 | 72.9 |
None | Late | 10.19 | 10.19 | 13.29 | 13.20 | 111 | 127 | 121 | 132 | 71.2 | 71.7 | 72.5 | 72.5 |
Nitrapyrin | Late | 9.59 | 12.65 | 12.71 | 11.89 | 112 | 182 | 115 | 113 | 71.3 | 71.0 | 72.4 | 72.8 |
Pronitridine | Late | 9.34 | 9.75 | 10.02 | 13.87 | 102 | 123 | 101 | 133 | 71.1 | 71.2 | 72.5 | 72.4 |
LSD (p = 0.05) | 2.28 | 40 | 0.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibullah, H.; Nelson, K.A.; Motavalli, P.P. Management of Nitrapyrin and Pronitridine Nitrification Inhibitors with Urea Ammonium Nitrate for Winter Wheat Production. Agronomy 2018, 8, 204. https://doi.org/10.3390/agronomy8100204
Habibullah H, Nelson KA, Motavalli PP. Management of Nitrapyrin and Pronitridine Nitrification Inhibitors with Urea Ammonium Nitrate for Winter Wheat Production. Agronomy. 2018; 8(10):204. https://doi.org/10.3390/agronomy8100204
Chicago/Turabian StyleHabibullah, H., Kelly A. Nelson, and Peter P. Motavalli. 2018. "Management of Nitrapyrin and Pronitridine Nitrification Inhibitors with Urea Ammonium Nitrate for Winter Wheat Production" Agronomy 8, no. 10: 204. https://doi.org/10.3390/agronomy8100204
APA StyleHabibullah, H., Nelson, K. A., & Motavalli, P. P. (2018). Management of Nitrapyrin and Pronitridine Nitrification Inhibitors with Urea Ammonium Nitrate for Winter Wheat Production. Agronomy, 8(10), 204. https://doi.org/10.3390/agronomy8100204