One-Season Polyethylene Mulching Reduces Cadmium Uptake in Rice but Disrupts Rhizosphere Microbial Community Stability: A Double-Edged Sword
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Site and Experimental Design
2.2. Soil Sampling and Analysis
2.3. Plant Sampling and Analysis
2.4. DNA Extraction, Sequencing, and Microbial Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. PE Mulching Reshaped Soil Redox Conditions and Drove Cd Immobilization
3.2. PE Mulching Restructured Rhizosphere Microbial Communities—Assembly, Taxonomy and Interaction Networks
3.3. Genus-Level Reassembly of the Rhizosphere Microbiome Under PE Mulching and Mechanistic Links to Cd Speciation
3.4. Microbial Functional Pathways Under PE Mulching and Their Impact on Cd Bioavailability in Paddy Soils
3.5. Methodological Perspectives: Capabilities and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, J.; Hu, C.; Flury, M.; Huang, Y.; Rillig, M.C.; Ji, D.; Peng, J.; Fei, J.; Huang, Q.; Xiong, Y. National Inventory of Plastic Mulch Residues in Chinese Croplands From 1993 to 2050. Glob. Change Biol. 2025, 31, e70297. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, W.; Shi, H.; Tanveer, S.K.; Hai, J. Past, present, and future perspectives of biodegradable films for soil: A 30-year systematic review. Front. Bioeng. Biotechnol. 2022, 10, 1006388. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential agricultural and environmental benefits of mulches—A review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Baho, D.L.; Bundschuh, M.; Futter, M.N. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. Glob. Change Biol. 2021, 27, 3969–3986. [Google Scholar] [CrossRef]
- Wu, X.; Lin, L.; Lin, Z.; Deng, X.; Li, W.; He, T.; Zhang, J.; Wang, Y.; Chen, L.; Lei, Z. Influencing mechanisms of microplastics existence on soil heavy metals accumulated by plants. Sci. Total Environ. 2024, 926, 171878. [Google Scholar] [CrossRef]
- Lin, L.; Wu, X.; Deng, X.; Lin, Z.; Liu, C.; Zhang, J.; He, T.; Yi, Y.; Liu, H.; Wang, Y. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. Environ. Res. 2024, 245, 118054. [Google Scholar] [CrossRef]
- Li, X.; Peng, P.; Long, J.; Dong, X.; Jiang, K.; Hou, H. Plant-induced insoluble Cd mobilization and Cd redistribution among different rice cultivars. J. Clean. Prod. 2020, 256, 120494. [Google Scholar] [CrossRef]
- Gu, J.; Guo, F.; Lin, L.; Zhang, J.; Sun, W.; Muhammad, R.; Liang, H.; Duan, D.; Deng, X.; Lin, Z. Microbiological mechanism for “production while remediating” in Cd-contaminated paddy fields: A field experiment. Sci. Total Environ. 2023, 885, 163896. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhao, W.; Sun, S.; Yang, X.; Mao, H.; Sheng, L.; Chen, Z. Community metagenomics reveals the processes of cadmium resistance regulated by microbial functions in soils with Oryza sativa root exudate input. Sci. Total Environ. 2024, 949, 175015. [Google Scholar] [CrossRef]
- Xu, M.; Dai, W.; Zhao, Z.; Zheng, J.; Huang, F.; Mei, C.; Huang, S.; Liu, C.; Wang, P.; Xiao, R. Effect of rice straw biochar on three different levels of Cd-contaminated soils: Cd availability, soil properties, and microbial communities. Chemosphere 2022, 301, 134551. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lv, Y.; Tian, K.; Shen, Y.; Zhu, Y.; Lu, H.; Li, R.; Han, J. Influence of sulfate reducing bacteria cultured from the paddy soil on the solubility and redox behavior of Cd in a polymetallic system. Sci. Total Environ. 2023, 901, 166369. [Google Scholar] [CrossRef]
- Mikac, N.; Cosovic, B.; Ahel, M.; Andreis, S.; Toncic, Z. Assessment of groundwater contamination in the vicinity of a municipal solid waste landfill (Zagreb, Croatia). Water Sci. Technol. 1998, 37, 37–44. [Google Scholar] [CrossRef]
- Chen, H.; Min, F.; Hu, X.; Ma, D.; Huo, Z. Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer. J. Hazard. Mater. 2023, 452, 131176. [Google Scholar] [CrossRef]
- Ali, Q.; Ayaz, M.; Yu, C.; Wang, Y.; Gu, Q.; Wu, H.; Gao, X. Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. Chemosphere 2022, 303, 135206. [Google Scholar] [CrossRef]
- Liu, Y.; Tie, B.; Peng, O.; Luo, H.; Li, D.; Liu, S.; Lei, M.; Wei, X.; Liu, X.; Du, H. Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite: A novel approach to reducing cadmium accumulation in rice grains. Chemosphere 2020, 247, 125850. [Google Scholar] [CrossRef]
- Thunjai, T.; Boyd, C.E.; Dube, K. Poind soil pH measurement. J. World Aquac. Soc. 2001, 32, 141–152. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, S.; Zhao, J.; Li, Q.; Zhang, S.; Cao, C. Changes in soil carbon sequestration and mineralization driven by bacterial community structure and function across different ages in a restoration ecosystem. Plant Soil 2025, 513, 2059–2076. [Google Scholar] [CrossRef]
- Ali, J.; Tuzen, M.; Jatoi, W.B.; Feng, X.; Sun, G.; Saleh, T.A. A review of sequential extraction methods for fractionation analysis of toxic metals in solid environmental matrices. TrAC Trends Anal. Chem. 2024, 173, 117639. [Google Scholar] [CrossRef]
- AL-Huqail, A.A.; Alatawi, A.; Javed, S.; Anas, M.; Saleem, M.H.; Khalid, A.; Khan, K.A.; Ali, S. Combating Mercury Stress in Spinach (Spinacia oleracea L.) with Zinc Oxide and Providencia Vermicola, Assessing Changes in Defense Mechanism and Organic Acid Exudation Patterns. J. Soil Sci. Plant Nutr. 2025, 25, 1780–1798. [Google Scholar] [CrossRef]
- Akhtar, S.; Muneeb, A.; Khan, Z.I.; Saba, I.; Ahmad, K.; Faisal, M.; Alatar, A.A.; Hussain, M.I.; Zubair, R.M.; Nadeem, M. Long term urban wastewater irrigation drives zinc bioaccumulation and health risks in contaminated vegetables. Sci. Rep. 2025, 15, 21290. [Google Scholar] [CrossRef]
- Chang, Y.; Lin, L.; Shen, J.; Lin, Z.; Deng, X.; Sun, W.; Wu, X.; Wang, Y.; Li, Y.; Xu, Z. Enhanced nitrogen fixation and Cd passivation in rhizosphere soil by biochar-loaded nitrogen-fixing bacteria: Chemisorption and microbial mechanism. J. Hazard. Mater. 2025, 481, 136588. [Google Scholar] [CrossRef]
- Chao, S.; Sun, Y.; Zhang, Y.; Chen, Y.; Song, L.; Li, P.; Tang, X.; Liang, J.; Lv, B. The response of microbiome assembly within different niches across four stages to the cultivation of glyphosate-tolerant and conventional soybean varieties. Front. Microbiol. 2024, 15, 1439735. [Google Scholar] [CrossRef]
- Yang, C.; Mai, J.; Cao, X.; Burberry, A.; Cominelli, F.; Zhang, L. ggpicrust2: An R package for PICRUSt2 predicted functional profile analysis and visualization. Bioinformatics 2023, 39, btad470. [Google Scholar] [CrossRef] [PubMed]
- GB2762-2025; National Food Safety Standard Maximum Levels of Contaminants in Foods. National Health Commission of the People’s Republic of China: Beijing, China, 2025.
- Ethan, S. Effect of flooding on chemistry of paddy soils: A review. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 414–420. [Google Scholar]
- Desireddy, S.; Pothanamkandathil Chacko, S. A review on metal oxide (FeOx/MnOx) mediated nitrogen removal processes and its application in wastewater treatment. Rev. Environ. Sci. Bio/Technol. 2021, 20, 697–728. [Google Scholar] [CrossRef]
- Lu, H.-L.; Li, K.-W.; Nkoh, J.N.; He, X.; Xu, R.-K.; Qian, W.; Shi, R.-Y.; Hong, Z.-N. Effects of pH variations caused by redox reactions and pH buffering capacity on Cd (II) speciation in paddy soils during submerging/draining alternation. Ecotoxicol. Environ. Saf. 2022, 234, 113409. [Google Scholar] [CrossRef]
- Mansfeldt, T. Redox potential of bulk soil and soil solution concentration of nitrate, manganese, iron, and sulfate in two Gleysols. J. Plant Nutr. Soil Sci. 2004, 167, 7–16. [Google Scholar] [CrossRef]
- Deng, Y.; Ke, C.; Ren, M.; Xu, Z.; Zhang, S.; Dang, Z.; Guo, C. Sulfidation of Cd-Sch during the microbial sulfate reduction: Nanoscale redistribution of Cd. Sci. Total Environ. 2024, 946, 174275. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Chen, X.; Mosa, A.; Ling, W.; Gao, Y. Interaction and sorption mechanisms of phthalate plasticizers and Cd2+ on biochar. Environ. Pollut. 2025, 373, 126176. [Google Scholar] [CrossRef]
- Li, W.; Mao, P.; Chen, X.; Ling, W.; Qin, C.; Gao, Y. Co-sorption of phthalate esters and Cd2+ on biochar-sulfhydryl modified montmorillonite composites. J. Hazard. Mater. 2025, 494, 138526. [Google Scholar] [CrossRef]
- Li, K.; Chen, C.; Zeng, J.; Wen, Y.; Chen, W.; Zhao, J.; Wu, P. Interplay between bladder microbiota and overactive bladder symptom severity: A cross-sectional study. BMC Urol. 2022, 22, 39. [Google Scholar] [CrossRef] [PubMed]
- Varela, S.; Anderson, R.P.; García-Valdés, R.; Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 2014, 37, 1084–1091. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, N.; Chen, J.; Ran, W.; Zhao, Z.; Song, Y. Interpretation of bacterial composition patterns and community assembly processes in the rhizosphere soil of tea trees in karst areas. BMC Microbiol. 2024, 24, 492. [Google Scholar] [CrossRef]
- Khatri, A.; Kumar, K.; Thakur, I.S. Microbiome of caves for bioprospecting: A critical review. Syst. Microbiol. Biomanufacturing 2025, 5, 550–566. [Google Scholar] [CrossRef]
- Li-Hau, F.; Nakagawa, M.; Kakegawa, T.; Ueno, Y.; McGlynn, S.E. Metabolic Potential and Microbial Diversity of Late Archean to Early Proterozoic Ocean Analog Hot Springs of Japan. Microbes Environ. 2025, 40, ME24067. [Google Scholar] [CrossRef] [PubMed]
- Vuillemin, A. Nitrogen cycling activities during decreased stratification in the coastal oxygen minimum zone off Namibia. Front. Microbiol. 2023, 14, 1101902. [Google Scholar] [CrossRef]
- Carscadden, K.A.; Emery, N.C.; Arnillas, C.A.; Cadotte, M.W.; Afkhami, M.E.; Gravel, D.; Livingstone, S.W.; Wiens, J.J. Niche breadth: Causes and consequences for ecology, evolution, and conservation. Q. Rev. Biol. 2020, 95, 179–214. [Google Scholar] [CrossRef]
- Abuin-Denis, L.; Piloto-Sardiñas, E.; Maître, A.; Wu-Chuang, A.; Mateos-Hernández, L.; Obregon, D.; Corona-González, B.; Fogaça, A.C.; Palinauskas, V.; Aželytė, J. Exploring the impact of Anaplasma phagocytophilum on colonization resistance of Ixodes scapularis microbiota using network node manipulation. Curr. Res. Parasitol. Vector-Borne Dis. 2024, 5, 100177. [Google Scholar] [CrossRef]
- Galand, P.E.; Pereira, O.; Hochart, C.; Auguet, J.C.; Debroas, D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018, 12, 2470–2478. [Google Scholar] [CrossRef]
- Moberly, J.; D’Imperio, S.; Parker, A.; Peyton, B. Microbial community signature in Lake Coeur d’Alene: Association of environmental variables and toxic heavy metal phases. Appl. Geochem. 2016, 66, 174–183. [Google Scholar] [CrossRef]
- Medvedeva, S.; Borrel, G.; Gribaldo, S. Sheaths are diverse and abundant cell surface layers in archaea. ISME J. 2024, 18, wrae225. [Google Scholar] [CrossRef]
- Cao, W.; Cai, Y.; Bao, Z.; Wang, S.; Yan, X.; Jia, Z. Methanotrophy alleviates nitrogen constraint of carbon turnover by rice root-associated microbiomes. Front. Microbiol. 2022, 13, 885087. [Google Scholar] [CrossRef]
- Nguyen Khoi, N.; Kovacs, D.; Haydee, K.M.; Xa, L.T.; Morton, L.W.; Tecimen, H.B.; Robatjazif, J.; Sekar, J.; Lasar, H.G.W.; Nguyen, T.T. Bacterial diversity in longan orchard alluvial soil is influenced by cultivation time and soil properties. Front. Soil Sci. 2025, 5, 1610343. [Google Scholar] [CrossRef]
- Gao, W.; Tu, Z.; Yin, X.; Ming, S.; Cai, K. Effects of PBAT biodegradable mulch on lettuce (Lactuca sativa L.) physiology and soil microbial community: Based on a long-term degradation trial. Ecotoxicol. Environ. Saf. 2025, 302, 118734. [Google Scholar] [CrossRef]
- Xu, M.; Chen, A.; Pan, Y.; Zhao, T.; Chen, P. Microbially-Driven Mine Restoration via Functional Redundancy: Mechanisms Sustaining Rhizospheric Microbiome Homeostasis in Lianas. Rhizosphere 2025, 35, 101150. [Google Scholar] [CrossRef]
- Velianyk, V.; Palusak, M.; Nguyen, N.H.A.; Riha, J.; Sevcu, A.; Cernik, M.; Hlavackova, V. Microbial diversity at remediated former gold and copper mines and the metal tolerance of indigenous microbial strains. Appl. Environ. Microbiol. 2025, 91, e02555-24. [Google Scholar] [CrossRef]
- Cheng, L.; Li, Z.; Zhou, L.; Xie, J.; Zhou, Q.; Ding, M.; Wang, P.; Zhang, H.; Nie, M.; Huang, G. Rhizosphere microbiota modulate cadmium mobility dynamics and phytotoxicity in rice under differential Cd stress. Plant Soil 2025, 516, 1455–1469. [Google Scholar] [CrossRef]
- Hoehler, T.M.; Jørgensen, B.B. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 2013, 11, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wu, S.; Xu, Y.; Zhou, X.; Ruan, A. Degradation characteristics of polyethylene film by microorganisms from lake sediments. Environ. Pollut. 2023, 333, 122115. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, X.; Fessler, M.; Jin, B.; Su, Y.; Zhang, Y. Insights into the impact of polyethylene microplastics on methane recovery from wastewater via bioelectrochemical anaerobic digestion. Water Res. 2022, 221, 118844. [Google Scholar] [CrossRef]
- Semwal, P.; Dave, A.; Israr, J.; Misra, S.; Kumar, M.; Paul, D. Exploring Microbial Ecosystem Services for Environmental Stress Amelioration: A Review. Int. J. Mol. Sci. 2025, 26, 4515. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Chang, C.; Huang, F.; Feng, X.; Zhang, H. Sulfur-driven approaches to cadmium detoxification: From soil microbials to plant-based mechanisms. Crit. Rev. Environ. Sci. Technol. 2025, 55, 1383–1411. [Google Scholar] [CrossRef]
- Jiao, H.; Ge, X.; Wang, Q.; Rong, T.; Ruan, Z.; Li, G.; Xu, J.; Chang, X.; Lian, X.; Fang, Y. Solidification/Stabilization mechanisms of heavy metal ions in cemented paste backfill for green mine operations: A review. Int. J. Miner. Metall. Mater. 2025, 33, 382–400. [Google Scholar]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Luo, T.; Huang, R.; Lin, Z.; Gao, C.; Liu, X.; Xiao, S.; Zheng, L.; Zhang, S.; Du, R.; Wang, L.; et al. One-Season Polyethylene Mulching Reduces Cadmium Uptake in Rice but Disrupts Rhizosphere Microbial Community Stability: A Double-Edged Sword. Agronomy 2026, 16, 329. https://doi.org/10.3390/agronomy16030329
Luo T, Huang R, Lin Z, Gao C, Liu X, Xiao S, Zheng L, Zhang S, Du R, Wang L, et al. One-Season Polyethylene Mulching Reduces Cadmium Uptake in Rice but Disrupts Rhizosphere Microbial Community Stability: A Double-Edged Sword. Agronomy. 2026; 16(3):329. https://doi.org/10.3390/agronomy16030329
Chicago/Turabian StyleLuo, Tao, Runtong Huang, Zheng Lin, Chongfeng Gao, Xiaolong Liu, Shuai Xiao, Liqin Zheng, Shunan Zhang, Rui Du, Lei Wang, and et al. 2026. "One-Season Polyethylene Mulching Reduces Cadmium Uptake in Rice but Disrupts Rhizosphere Microbial Community Stability: A Double-Edged Sword" Agronomy 16, no. 3: 329. https://doi.org/10.3390/agronomy16030329
APA StyleLuo, T., Huang, R., Lin, Z., Gao, C., Liu, X., Xiao, S., Zheng, L., Zhang, S., Du, R., Wang, L., Duan, H., Xu, Z., & Wu, J. (2026). One-Season Polyethylene Mulching Reduces Cadmium Uptake in Rice but Disrupts Rhizosphere Microbial Community Stability: A Double-Edged Sword. Agronomy, 16(3), 329. https://doi.org/10.3390/agronomy16030329

