A Quantitative Interpretability-Guided Network for Enhanced Wheat Seedling Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset Construction
2.2. Overview of YOLOv5
2.3. Quantitative Interpretation Analysis of Backbone Layers Based on Network Dissection and Grad-CAM
2.4. Experiment Configuration and Training Strategy
2.5. Evaluation Metrics
3. Results
3.1. Quantitative Metrics of Backbone Network Layers
3.2. Model Optimization
4. Discussion
4.1. Role of Quantitative Interpretation in Deep Neural Network Optimization
4.2. Contribution of Texture and Color Features to Wheat Seedling Detection
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jauregui-Besó, J.; Gracia-Romero, A.; Carrera, C.S.; Lopes, M.D.S.; Araus, J.L.; Kefauver, S.C. Winter Wheat Plant Density Determination: Robust Predictions across Varied Agronomic Conditions Using Multiscale RGB Imaging. Smart Agric. Technol. 2025, 11, 100921. [Google Scholar] [CrossRef]
- Gomroki, M.; Benaragama, D.; Henry, C.J.; Badreldin, N.; Gulden, R. CWRepViT-Net: An Encoder-Decoder Deep Learning Framework with RepViT Blocks for Crop Weed Semantic Segmentation in Soybean Fields through Their Life Journey. Smart Agric. Technol. 2025, 12, 101472. [Google Scholar] [CrossRef]
- Geng, Q.; Zhang, H.; Gao, M.; Qiao, H.; Xu, X.; Ma, X. A Rapid, Low-Cost Wheat Spike Grain Segmentation and Counting System Based on Deep Learning and Image Processing. Eur. J. Agron. 2024, 156, 127158. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Z.; Zhang, Z.; Li, H.; Zhang, M. SeedingsNet: Field Wheat Seedling Density Detection Based on Deep Learning. In Sensing Technologies for Field and In-House Crop Production: Technology Review and Case Studies; Zhang, M., Li, H., Sheng, W., Qiu, R., Zhang, Z., Eds.; Springer Nature: Singapore, 2023; pp. 77–88. [Google Scholar]
- Zang, H.; Wang, Y.; Peng, Y.; Han, S.; Zhao, Q.; Zhang, J.; Li, G. Automatic Detection and Counting of Wheat Seedling Based on Unmanned Aerial Vehicle Images. Front. Plant Sci. 2025, 16, 1665672. [Google Scholar] [CrossRef]
- Qian, Y.; Qin, Y.; Wei, H.; Lu, Y.; Huang, Y.; Liu, P.; Fan, Y. MFNet: Multi-Scale Feature Enhancement Networks for Wheat Head Detection and Counting in Complex Scene. Comput. Electron. Agric. 2024, 225, 109342. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Cui, J. Occlusion Robust Wheat Ear Counting Algorithm Based on Deep Learning. Front. Plant Sci. 2021, 12, 645899. [Google Scholar] [CrossRef]
- Vinuesa, R.; Sirmacek, B. Interpretable Deep-Learning Models to Help Achieve the Sustainable Development Goals. Nat. Mach. Intell. 2021, 3, 926. [Google Scholar] [CrossRef]
- Archana, R.; Jeevaraj, P.S.E. Deep Learning Models for Digital Image Processing: A Review. Artif. Intell. Rev. 2024, 57, 11. [Google Scholar] [CrossRef]
- Xu, B.; Yang, G. Interpretability Research of Deep Learning: A Literature Survey. Inf. Fusion 2025, 115, 102721. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Liu, W.; Yue, R.; Yao, M.; Shi, J.; Hu, J. Seedling-YOLO: High-Efficiency Target Detection Algorithm for Field Broccoli Seedling Transplanting Quality Based on YOLOv7-Tiny. Agronomy 2024, 14, 931. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, J.; Cai, Y.; Wang, S.; Qiu, X.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Zhang, X. Improving Multi-Scale Detection Layers in the Deep Learning Network for Wheat Spike Detection Based on Interpretive Analysis. Plant Methods 2023, 19, 46. [Google Scholar] [CrossRef]
- Dheeraj, A.; Chand, S. Deep Learning Based Weed Classification in Corn Using Improved Attention Mechanism Empowered by Explainable AI Techniques. Crop Prot. 2025, 190, 107058. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Ahmed, M.W.; Kamruzzaman, M. A Systematic Review of Explainable Artificial Intelligence for Spectroscopic Agricultural Quality Assessment. Comput. Electron. Agric. 2025, 235, 110354. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Tansey, K.; Liu, J.; Delaney, B.; Quan, W. An Interpretable Approach Combining Shapley Additive Explanations and LightGBM Based on Data Augmentation for Improving Wheat Yield Estimates. Comput. Electron. Agric. 2025, 229, 109758. [Google Scholar] [CrossRef]
- Danilevicz, M.F.; Upadhyaya, S.R.; Batley, J.; Bennamoun, M.; Bayer, P.E.; Edwards, D. Understanding Plant Phenotypes in Crop Breeding through Explainable AI. Plant Biotechnol. J. 2025, 23, 4200–4213. [Google Scholar] [CrossRef]
- Bau, D.; Zhou, B.; Khosla, A.; Oliva, A.; Torralba, A. Network Dissection: Quantifying Interpretability of Deep Visual Representations. arXiv 2017, arXiv:1704.05796. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takamura, T.; Tanaka, T.S.T.; Ookawa, T.; Katsura, K. A Study on Optimal Input Images for Rice Yield Prediction Models Using CNN with UAV Imagery and Its Reasoning Using Explainable AI. Eur. J. Agron. 2025, 164, 127512. [Google Scholar] [CrossRef]
- Lespinats, S.; Colange, B.; Dutykh, D. Stress Functions for Unsupervised Dimensionality Reduction. In Nonlinear Dimensionality Reduction Techniques: A Data Structure Preservation Approach; Lespinats, S., Colange, B., Dutykh, D., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 89–118. [Google Scholar]
- Colange, B.; Peltonen, J.; Aupetit, M.; Dutykh, D.; Lespinats, S. Steering Distortions to Preserve Classes and Neighbors in Supervised Dimensionality Reduction. In Proceedings of the Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 13214–13225. [Google Scholar]
- Rotem, O.; Zaritsky, A. Visual Interpretability of Bioimaging Deep Learning Models. Nat. Methods 2024, 21, 1394–1397. [Google Scholar] [CrossRef]
- Paudel, D.; De Wit, A.; Boogaard, H.; Marcos, D.; Osinga, S.; Athanasiadis, I.N. Interpretability of Deep Learning Models for Crop Yield Forecasting. Comput. Electron. Agric. 2023, 206, 107663. [Google Scholar] [CrossRef]
- Li, X.; Xiong, H.; Li, X.; Wu, X.; Zhang, X.; Liu, J.; Bian, J.; Dou, D. Interpretable Deep Learning: Interpretation, Interpretability, Trustworthiness, and Beyond. Knowl. Inf. Syst. 2022, 64, 3197–3234. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Cai, Y.; Li, Y.; Qi, X.; Qiu, X.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; et al. A Method for Small-Sized Wheat Seedlings Detection: From Annotation Mode to Model Construction. Plant Methods 2024, 20, 15. [Google Scholar] [CrossRef]
- Cgvict Rolabelimg. Available online: https://github.com/cgvict/roLabelImg (accessed on 1 March 2025).
- Ha, C.K.; Nguyen, H.; Van, V.D. YOLO-SR: An Optimized Convolutional Architecture for Robust Ship Detection in SAR Imagery. Intell. Syst. Appl. 2025, 26, 200538. [Google Scholar] [CrossRef]
- Praveen, S.; Jung, Y. CBAM-STN-TPS-YOLO: Enhancing Agricultural Object Detection through Spatially Adaptive Attention Mechanisms. arXiv 2025, arXiv:2506.07357. [Google Scholar]
- Zhang, Z.; Lu, Y.; Yang, M.; Wang, G.; Zhao, Y.; Hu, Y. Optimal Training Strategy for High-Performance Detection Model of Multi-Cultivar Tea Shoots Based on Deep Learning Methods. Sci. Hortic. 2024, 328, 112949. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2016, arXiv:1506.01497. [Google Scholar] [CrossRef]
- Tang, B.; Zhou, J.; Pan, Y.; Qu, X.; Cui, Y.; Liu, C.; Li, X.; Zhao, C.; Gu, X. Recognition of Maize Seedling under Weed Disturbance Using Improved YOLOv5 Algorithm. Measurement 2025, 242, 115938. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Longchamps, L. Comparative Performance of YOLOv8, YOLOv9, YOLOv10, YOLOv11 and Faster R-CNN Models for Detection of Multiple Weed Species. Smart Agric. Technol. 2024, 9, 100648. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Qiao, T.; Xiong, J.; Liu, B. Ship Detection in Optical Sensing Images Based on YOLOv5. In Proceedings of the Twelfth International Conference on Graphics and Image Processing (ICGIP 2020), Xi’an, China, 13–15 November 2020; Volume 11720, p. 117200E. [Google Scholar]
- Fang, J.; Liu, Q.; Li, J. A Deployment Scheme of YOLOv5 with Inference Optimizations Based on the Triton Inference Server. In Proceedings of the 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 24–26 April 2021; IEEE: New York, NY, USA, 2021; pp. 441–445. [Google Scholar]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; IEEE: New York, NY, USA, 2021; pp. 2778–2788. [Google Scholar]
- Sunkara, R.; Luo, T. No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects. arXiv 2022, arXiv:2208.03641. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Ishii, I.; Ichida, T.; Gu, Q.; Takaki, T. 500-Fps Face Tracking System. J. Real-Time Image Process. 2013, 8, 379–388. [Google Scholar] [CrossRef]
- Lu, C.; Nnadozie, E.; Camenzind, M.P.; Hu, Y.; Yu, K. Maize Plant Detection Using UAV-Based RGB Imaging and YOLOv5. Front. Plant Sci. 2024, 14, 1274813. [Google Scholar] [CrossRef]
- Zhang, Z. Drone-YOLO: An Efficient Neural Network Method for Target Detection in Drone Images. Drones 2023, 7, 526. [Google Scholar] [CrossRef]
- Antamis, T.; Drosou, A.; Vafeiadis, T.; Nizamis, A.; Ioannidis, D.; Tzovaras, D. Interpretability of Deep Neural Networks: A Review of Methods, Classification and Hardware. Neurocomputing 2024, 601, 128204. [Google Scholar] [CrossRef]
- Lyu, L.; Pang, C.; Wang, J. Understanding the Role of Pathways in a Deep Neural Network. arXiv 2024, arXiv:2402.18132. [Google Scholar] [CrossRef]
- Xuanyuan, H.; Barbiero, P.; Georgiev, D.; Magister, L.C.; Liò, P. Global Concept-Based Interpretability for Graph Neural Networks via Neuron Analysis. AAAI 2023, 37, 10675–10683. [Google Scholar] [CrossRef]
- Räuker, T.; Ho, A.; Casper, S.; Hadfield-Menell, D. Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks. In Proceedings of the 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), Raleigh, NC, USA, 8–10 February 2023; IEEE: New York, NY, USA, 2023; pp. 464–483. [Google Scholar]
- Zhang, Y.; Tiňo, P.; Leonardis, A.; Tang, K. A Survey on Neural Network Interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5, 726–742. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar]
- Colange, B.; Vuillon, L.; Lespinats, S.; Dutykh, D. Interpreting Distortions in Dimensionality Reduction by Superimposing Neighbourhood Graphs. In Proceedings of the 2019 IEEE Visualization Conference (VIS), Vancouver, BC, Canada, 20–25 October 2019; IEEE: New York, NY, USA, 2019; pp. 211–215. [Google Scholar]
- Colange, B.; Vuillon, L.; Lespinats, S.; Dutykh, D. MING: An Interpretative Support Method for Visual Exploration of Multidimensional Data. Inf. Vis. 2022, 21, 246–269. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Alam, M.S.B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Mofijur, M.; Shawkat Ali, A.B.M.; Gandomi, A.H. Deep Learning Modelling Techniques: Current Progress, Applications, Advantages, and Challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [Google Scholar] [CrossRef]
- Sun, W.; Min, X.; Tu, D.; Ma, S.; Zhai, G. Blind Quality Assessment for In-the-Wild Images via Hierarchical Feature Fusion and Iterative Mixed Database Training. IEEE J. Sel. Top. Signal Process. 2023, 17, 1178–1192. [Google Scholar] [CrossRef]
- Yang, Y.; Li, I.; Sang, N.; Liu, L.; Tang, X.; Tian, Q. Research on Large Scene Adaptive Feature Extraction Based on Deep Learning. In Proceedings of the 2024 7th International Conference on Computer Information Science and Artificial Intelligence, Shaoxing, China, 13–15 September 2024; ACM: New York, NY, USA, 2024; pp. 678–683. [Google Scholar]
- Zhao, X.; Wang, L.; Zhang, Y.; Han, X.; Deveci, M.; Parmar, M. A Review of Convolutional Neural Networks in Computer Vision. Artif. Intell. Rev. 2024, 57, 99. [Google Scholar] [CrossRef]
- Lim, W.X.; Chen, Z.; Ahmed, A. The Adoption of Deep Learning Interpretability Techniques on Diabetic Retinopathy Analysis: A Review. Med. Biol. Eng. Comput. 2022, 60, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, J.; Lin, T.; Ying, Y. Food and Agro-Product Quality Evaluation Based on Spectroscopy and Deep Learning: A Review. Trends Food Sci. Technol. 2021, 112, 431–441. [Google Scholar] [CrossRef]
- Ghazal, S.; Qureshi, W.S.; Khan, U.S.; Iqbal, J.; Rashid, N.; Tiwana, M.I. Analysis of Visual Features and Classifiers for Fruit Classification Problem. Comput. Electron. Agric. 2021, 187, 106267. [Google Scholar] [CrossRef]
- Erfani, S.M.H.; Goharian, E. Vision-Based Texture and Color Analysis of Waterbody Images Using Computer Vision and Deep Learning Techniques. J. Hydroinformatics 2023, 25, 835–850. [Google Scholar] [CrossRef]
- Xu, Y.; Vaziri-Pashkam, M. Limits to Visual Representational Correspondence between Convolutional Neural Networks and the Human Brain. Nat. Commun. 2021, 12, 2065. [Google Scholar] [CrossRef] [PubMed]
- Julesz, B. Textons, the Elements of Texture Perception, and Their Interactions. Nature 1981, 290, 91–97. [Google Scholar] [CrossRef]
- Geoffroy, H.; Berger, J.; Colange, B.; Lespinats, S.; Dutykh, D. The Use of Dimensionality Reduction Techniques for Fault Detection and Diagnosis in a AHU Unit: Critical Assessment of Its Reliability. J. Build. Perform. Simul. 2023, 16, 249–267. [Google Scholar] [CrossRef]







| Layer | Original Images | Texture-Filtered Images | Grayscale Images | ||||||
|---|---|---|---|---|---|---|---|---|---|
| IoU Average over Images | IoU Min over Images | IoU Max over Images | IoU Average over Images | IoU Min over Images | IoU Max over Images | IoU Average over Images | IoU Min over Images | IoU Max over Images | |
| 0 | 0.06 | 0.03 | 0.20 | 0.13 | 0.12 | 0.19 | 0.71 | 0.63 | 0.72 |
| 1 | 0.10 | 0.01 | 0.21 | 0.16 | 0.14 | 0.20 | 0.57 | 0.48 | 0.60 |
| 2 | 0.22 | 0.17 | 0.31 | 0.27 | 0.22 | 0.32 | 0.35 | 0.15 | 0.36 |
| 3 | 0.21 | 0.16 | 0.30 | 0.26 | 0.23 | 0.30 | 0.27 | 0.14 | 0.39 |
| 4 | 0.25 | 0.15 | 0.33 | 0.32 | 0.28 | 0.41 | 0.26 | 0.18 | 0.32 |
| 5 | 0.06 | 0.01 | 0.10 | 0.22 | 0.21 | 0.27 | 0.21 | 0.16 | 0.22 |
| 6 | 0.12 | 0.02 | 0.32 | 0.18 | 0.11 | 0.35 | 0.19 | 0.13 | 0.25 |
| 7 | 0.11 | 0.02 | 0.15 | 0.17 | 0.14 | 0.26 | 0.20 | 0.19 | 0.36 |
| Method | Image Size | AP50 | AP50-95 | FPS | Parameters |
|---|---|---|---|---|---|
| Proposed | 400 × 400 | 90.2% | 0.46 | 32 | 8.7 M |
| Benchmark | 400 × 400 | 87.9% | 0.40 | 35 | 8.7 M |
| YOLOv7 | 400 × 400 | 83.6% | 0.36 | 32 | 6.3 M |
| YOLO11 | 400 × 400 | 82.2% | 0.44 | 30 | 9.4 M |
| YOLOv5 | 400 × 400 | 80.6% | 0.28 | 28 | 7.1 M |
| YOLOX | 400 × 400 | 66.9% | 0.23 | 17 | 9 M |
| Faster R-CNN | 400 × 400 | 53.7% | 0.16 | 17 | 41.8 M |
| RetinaNet | 400 × 400 | 53.5% | 0.15 | 15 | 36.5 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, Y.; Liu, S.; Qi, X.; Gao, Y.; Zhuang, X.; Zhao, J.; Wang, S.; Tian, Y.; Zhu, Y.; Cao, W.; et al. A Quantitative Interpretability-Guided Network for Enhanced Wheat Seedling Detection. Agronomy 2026, 16, 92. https://doi.org/10.3390/agronomy16010092
Li Y, Liu S, Qi X, Gao Y, Zhuang X, Zhao J, Wang S, Tian Y, Zhu Y, Cao W, et al. A Quantitative Interpretability-Guided Network for Enhanced Wheat Seedling Detection. Agronomy. 2026; 16(1):92. https://doi.org/10.3390/agronomy16010092
Chicago/Turabian StyleLi, Yan, Suyi Liu, Xuerui Qi, Yiwei Gao, Xiangxin Zhuang, Jianqing Zhao, Suwan Wang, Yongchao Tian, Yan Zhu, Weixing Cao, and et al. 2026. "A Quantitative Interpretability-Guided Network for Enhanced Wheat Seedling Detection" Agronomy 16, no. 1: 92. https://doi.org/10.3390/agronomy16010092
APA StyleLi, Y., Liu, S., Qi, X., Gao, Y., Zhuang, X., Zhao, J., Wang, S., Tian, Y., Zhu, Y., Cao, W., & Zhang, X. (2026). A Quantitative Interpretability-Guided Network for Enhanced Wheat Seedling Detection. Agronomy, 16(1), 92. https://doi.org/10.3390/agronomy16010092

