Assessment of the Impact of the Irrigation Regime and the Application of Fermented Organic Fertilizers on Soil Salinity Dynamics and Alfalfa Growth in Coastal Saline–Alkaline Land
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurements and Methods
2.4. Data Statistics
- (1)
- Constructing evaluation matrix
- (2)
- Matrix standardization
- (3)
- Calculation of indicator weights
- (4)
- Entropy weight modeling
3. Results and Analysis
3.1. Effects of Different Water Depth and EM Organic Fertilizer Application on Soil EC Dynamic Changes
3.2. Effects of Different Water Depths and EM Organic Fertilizer Application on Alfalfa Yield
3.3. Effects of Different Water Depth and EM Organic Fertilizer Application on Alfalfa Quality Indexes
3.4. Saline Alfalfa Suitable Quota and EM Organic Fertilizer Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EM | effective microorganism |
| IR1, IR2, IR3 | irrigation regime at 8 mm, 16 mm, and 24 mm, respectively |
| CK, OF1, OF2, OF3, and OF4 | application of EM organic fertilizer at 0 kg/ha, 1500 kg/ha, 3000 kg/ha, 4500 kg/ha, and 6000 kg/ha, respectively |
| CP | crude protein |
| ADF | acid detergent fiber |
| NDF | neutral detergent fiber |
References
- Schubert, S.; Qadir, M. Background and World-Wide Distribution of Salt-Affected Soils. In Soil Salinity and Salt Resistance of Crop Plants; Springer: Cham, Switzerland, 2024; pp. 3–14. [Google Scholar]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Y.; Li, J.; Chen, X.; Shen, G. Spatial distribution characteristics of soil salinity in coastal saline-alkali area in Yangtze River Delta. Soils Crops 2022, 11, 31–40. [Google Scholar]
- Du, Y.; Liu, X.; Zhang, L.; Zhou, W. Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Sci. Total Environ. 2023, 880, 163226. [Google Scholar] [CrossRef] [PubMed]
- Negacz, K.; Malek, Ž.; de Vos, A.; Vellinga, P. Saline soils worldwide: Identifying the most promising areas for saline agriculture. J. Arid Environ. 2022, 203, 104775. [Google Scholar] [CrossRef]
- Chu, L.; Yuan, S.; Chen, D.; Kang, Y.; Shaghaleh, H.; Okla, M.K.; AbdElgawad, H.; Hamoud, Y.A. Changes in salinity and vegetation growth under different land use types during the reclamation in coastal saline soil. Chemosphere 2024, 366, 143427. [Google Scholar] [CrossRef]
- Han, G.; Wang, G.; Song, Z.; Xu, P.; Li, X.; Ma, L. Optimization of subsurface drainage parameters in Saline-Alkali soils to improve salt leaching efficiency in farmland in southern xinjiang. Agronomy 2025, 15, 1222. [Google Scholar]
- Neha; Yadav, G.; Yadav, R.K.; Kumar, A.; Rai, A.K.; Prasad, G.; Chaudhari, S.K. Cut-soiler-constructed residue-filled preferential shallow sub-surface drainage improves the performance of mustard-pearl millet cropping system in saline soils of semi-arid regions. Front. Agron. 2024, 6, 1492505. [Google Scholar] [CrossRef]
- Liu, J.; Hong, X.; Huang, S.; Li, Y.; Li, C.; Li, Q.; Zhu, Q. Impact of subsurface drainage and biochar amendment on the coastal Soil-Plant system: A case study in alfalfa cultivation on Saline-Alkaline soil. Water 2025, 17, 1415. [Google Scholar] [CrossRef]
- Younas, T.; Umer, M.; Husnain, A.; Aziz, H.; Shehzad Khan, M.; Jabbar, A.; Shahzad, H.; Panduro-Tenazoa, N. A comprehensive review on impact of microorganisms on soil and plant. J. Bioresour. Manag. 2022, 9, 109–11812. [Google Scholar]
- Kuligowski, K.; Konkol, I.; Świerczek, L.; Woźniak, A.; Cenian, A. Conversion of Kitchen Waste into Sustainable Fertilizers: Comparative Effectiveness of Biological, Microbial, and Thermal Treatments in a Ryegrass Growth Trial. Appl. Sci. 2025, 15, 5281. [Google Scholar] [CrossRef]
- Yu, Z.; Song, S. Effects of straw mixed with biopreparate on improvement of soil in greenhouse. Trans. Chin. Soc. Agric. Eng. 2003, 19, 177–179. [Google Scholar]
- Yuniati, R.; Damayanti, M.E.; Wardhana, W. Effect of EM4 (Effective Microorganism 4) on Growth and Productivity of Cucumber (Cucumis sativus L.). Al-Kauniyah J. Biol. 2024, 18, 134–143. [Google Scholar] [CrossRef]
- Hidalgo, D.; Corona, F.; Martín-Marroquín, J.M. Manure biostabilization by effective microorganisms as a way to improve its agronomic value. Biomass Convers. Biorefinery 2022, 12, 4649–4664. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.; Chai, Q. Effects of Different Plant Species on the Chemical and Microbial Properties of Coastal Saline-Alkaline Soils in Southeast China. J. Soil. Sci. Plant Nutr. 2023, 23, 4656–4668. [Google Scholar] [CrossRef]
- Zhang, X.; Huo, X.; Chen, L.; Han, D. Research on Improvement Effect of Planting Saline-Alkali-Tolerant Alfalfa on Saline-Alkali Land in Dongying. Anim. Indusry Environ. 2025, 02, 24–26. [Google Scholar]
- Zhang, L. Feed Analysis and Quality Test Technology; China Agricultural University Press: Beijing, China, 2021. [Google Scholar]
- Inner Mongolia Autonomous Administration for Market Regulation. Quality Grading of Alfalfa Hay; United States Department of Agriculture (USDA): Washington, DC, USA, 2022; pp. 2022–2598.
- Zhu, Q.; Chen, J.; Rui, H. Collaborative management measures of subsurface drainage and bio-organic fertilizer application for coastal sunflower (Helianthus annuus L.) based on TOPSIS entropy weight method. PLoS ONE 2025, 20, e0318571. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Yu, S.; Zhang, H.; Wang, Z.; Li, F. Economic Evaluation of Drought Resistance Measures for Maize Seed Production Based on TOPSIS Model and Combination Weighting Optimization. Water 2022, 14, 3262. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, J.; Hu, H.; Xu, X.; Chen, D.; Wang, X.; Poinern, G.E.J.; Jiang, Z.T.; Fawcett, D.; Wu, Y.; et al. Agroforestry system construction in eastern coastal China: Insights from soil-plant interactions. Land Degrad. Dev. 2024, 35, 2530–2542. [Google Scholar] [CrossRef]
- Xing, J.; Yu, H. Effects of planting alfalfa on improving saline-alkali soil in Huanghua City, Hebei Province. Anim. Breed. Feed 2024, 2, 43–45. [Google Scholar]
- Zhang, S.; Wang, J.; Yang, Q.; Zhang, E.; Shaghaleh, H.; AlhajHamoud, Y.; Jin, Q. Effects of Subsurface Drainage Spacing and Organic Fertilizer Application on Alfalfa Yield, Quality, and Coastal Saline Soil. Water 2024, 16, 1144. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, P.; Chen, W.; Xu, S.; Liang, J.; Jia, J. Effect of Three Microbial Fertilizer Carriers on Water Infiltration and Evaporation, Microbial Community and Alfalfa Growth in Saline-alkaline Soil. Commun. Soil Sci. Plant Anal. 2021, 52, 2462–2470. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Q.; Li, Y.; Chen, Y.; Jia, B.; Zhang, J.; Guo, W.; Frank, Y. Bio-organic fertilizer facilitated phytoremediation of heavy metal(loid)s-contaminated saline soil by mediating the plant-soil-rhizomicrobiota interactions. Sci. Total Environ. 2024, 922, 171278. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xie, W.; Yang, J.; Yao, R.; Wang, X.; Li, W. Effect of Different Fertilization Measures on Soil Salinity and Nutrients in Salt-Affected Soils. Water 2023, 15, 3274. [Google Scholar] [CrossRef]
- Hou, M.; Chen, J.; Yang, Q.; Lin, Z.; Jin, Q.; Zhong, F. Behavior of Coastal Greenhouse Soil Nitrogen as Influenced by Subsurface Drainage and Organic Fertilizer. Trans. Chin. Soc. Agric. Mach. 2019, 11, 259–266. [Google Scholar]
- Wang, Z.; Li, R.; Wu, F.; Li, M. Effects of drip irrigation volume on soil salinity, ion distribution, and cotton growth in an arid region of Northwest China. Agric. Water Manag. 2021, 243, 106496. [Google Scholar]
- Haj-Amor, Z.; Hashemi, H.; Bouri, S.; Ritzema, H. Surface irrigation efficiency and soil salinity management in agricultural fields: Effects of irrigation regimes. Agric. Water Manag. 2020, 240, 106293. [Google Scholar]
- Li, L.; Liu, H.; He, X. Winter Irrigation Effects on Soil Moisture, Temperature and Salinity, and on Cotton Growth in Salinized Fields in Northern Xinjiang, China. Sustainability 2020, 12, 7573. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, H.; Tian, F. Soil salt distribution under mulched drip irrigation in an arid area of northwestern China. J. Arid Environ. 2014, 104, 23–33. [Google Scholar] [CrossRef]
- Luo, L.; Li, R.; Ma, D. Effects of Water-Fertilizer Coupling on Growth Characteristics and Water Use Efficiency of Camellia petelotii Seedlings. Phyton 2024, 93, 2927. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, R.; Gao, F. Apple and maize physiological characteristics and water-use efficiency in an alley cropping system under water and fertilizer coupling in Loess Plateau, China. Agric. Water Manag. 2019, 221, 1–12. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Cheng, M. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crops Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
- Zhang, E.; Chen, J.; Huang, Y.; Tian, Y.; Jin, Q.; Hou, M. Effects of Different Subsurface Drainage Spacing and Organic Fertilizer Application on N2O Emissions in Saline Alkali Land. Water Sav. Irrig. 2025, 2, 15–20+27. [Google Scholar]
- Chee, K.; Khalid, A. Effective microorganisms as halal-based sources for biofertilizer production and some socio-economic insights: A review. Foods 2023, 12, 1702. [Google Scholar]
- Cai, Z. Effects of Microbial Fertilizer Combined with Organic Fertilizer on Forage Productivity and Soil Ecological Functions in Grasslands of the Muli Mining Area. Plants 2025, 14, 3156. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wei, C.; Wu, J.; Wei, G. TOPSIS Method for Probabilistic Linguistic MAGDM with Entropy Weight and Its Application to Supplier Selection of New Agricultural Machinery Products. Entropy 2019, 21, 953. [Google Scholar] [CrossRef]
- Li, M.; Sun, H.; Singh, V.; Zhou, Y.; Ma, M. Agricultural Water Resources Management Using Maximum Entropy and Entropy-Weight-Based TOPSIS Methods. Entropy 2019, 21, 364. [Google Scholar] [CrossRef] [PubMed]
- Zhong, F.; Hou, M.; He, B.; Chen, I. Assessment on the coupling effects of drip irrigation and organic fertilization based on entropy weight coefficient model. PeerJ 2017, 5, e3855. [Google Scholar] [CrossRef] [PubMed]







| Soil Depth (cm) | pH | Soil Moisture Content (%) | Soil Bulk Density (g/cm3) | Soil Organic Matter (g/kg) | Electrical Conductivity (ms/cm) | Available Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) |
|---|---|---|---|---|---|---|---|---|
| 0–20 | 8.16 | 23.1 | 1.47 | 8.26 | 4.22 | 51.4 | 8.7 | 145.6 |
| 20–40 | 8.32 | 24.2 | 1.47 | 8.45 | 4.98 | 64.3 | 9.2 | 156.4 |
| 40–60 | 8.87 | 23.5 | 1.54 | 7.91 | 2.86 | 55.2 | 8.3 | 149.2 |
| 60–80 | 9.21 | 28.7 | 1.40 | 7.42 | 2.54 | 48.1 | 7.4 | 147.7 |
| Soil Depth (cm) | Soil’s Mechanical Composition (%) | ||||
|---|---|---|---|---|---|
| >0.05 mm | 0.05–0.01 mm | 0.01–0.005 mm | 0.005–0.001 mm | <0.001 mm | |
| 0–20 | 35.4 | 53.3 | 7.6 | 1.2 | 2.5 |
| 20–40 | 29.8 | 50.4 | 7.8 | 3.4 | 8.6 |
| 40–60 | 28.1 | 49.8 | 8.9 | 4.2 | 9.0 |
| 60–80 | 40.6 | 44.2 | 4.6 | 3.8 | 6.8 |
| Irrigation Treatment | Fertilization Treatment | First Crop | Second Crop | Third Crop | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| CP (%) | NDF (%) | ADF (%) | CP (%) | NDF (%) | ADF (%) | CP (%) | NDF (%) | ADF (%) | ||
| IR1 | CK | 20.20 ± 0.50 efg | 39.60 ± 0.60 b | 32.87 ± 0.70 ab | 20.60 ± 0.60 def | 40.60 ± 0.60 a | 30.47 ± 0.65 b | 20.30 ± 0.30 de | 38.87 ± 0.75 ab | 31.60 ± 0.60 ab |
| OF1 | 19.80 ± 0.80 g | 39.20 ± 0.40 bcd | 31.03 ± 0.80 def | 20.90 ± 0.80 cdef | 40.40 ± 0.60 ab | 29.90 ± 0.40 bc | 20.80 ± 0.90 bcde | 38.50 ± 0.40 abc | 30.60 ± 0.90 bc | |
| OF2 | 20.70 ± 0.50 cde | 39.50 ± 0.40 b | 30.10 ± 0.60 fg | 21.30 ± 0.50 cd | 38.90 ± 0.80 cde | 29.90 ± 0.80 bc | 20.80 ± 0.40 bcde | 37.90 ± 0.70 bcde | 29.90 ± 0.90 cd | |
| OF3 | 21.13 ± 0.40 cd | 38.30 ± 0.85 cde | 28.73 ± 0.55 h | 21.50 ± 0.32 bcd | 37.83 ± 0.70 ef | 29.27 ± 0.45 bcd | 20.87 ± 0.85 abcde | 37.53 ± 0.55 cde | 29.10 ± 0.50 de | |
| OF4 | 21.10 ± 0.56 cd | 37.87 ± 0.90 ef | 28.63 ± 0.25 h | 21.77 ± 0.45 abc | 38.10 ± 1.10 def | 28.97 ± 0.67 cd | 21.53 ± 0.55 abc | 37.30 ± 0.50 def | 28.60 ± 0.90 e | |
| IR2 | CK | 21.20 ± 0.40 cd | 38.20 ± 0.70 def | 31.53 ± 0.70 cd | 21.47 ± 0.65 bcd | 39.60 ± 0.60 abc | 29.80 ± 0.60 bc | 20.60 ± 0.60 cde | 38.60 ± 0.60 abc | 30.70 ± 0.50 bc |
| OF1 | 22.07 ± 0.25 ab | 37.80 ± 0.80 ef | 29.83 ± 0.35 g | 22.43 ± 0.25 ab | 39.23 ± 0.45 bcd | 29.20 ± 0.60 cd | 20.77 ± 0.70 bcde | 38.13 ± 0.35 abcd | 30.23 ± 0.25 cd | |
| OF2 | 22.30 ± 0.30 a | 37.20 ± 0.40 fg | 28.67 ± 0.60 h | 22.47 ± 0.60 ab | 38.20 ± 0.66 def | 29.10 ± 1.00 cd | 21.23 ± 0.25 abcd | 37.50 ± 0.40 cde | 28.47 ± 0.95 e | |
| OF3 | 22.60 ± 0.30 a | 36.73 ± 0.47 g | 27.50 ± 0.40 i | 22.77 ± 0.60 a | 37.80 ± 0.30 ef | 28.63 ± 0.45 cd | 21.80 ± 0.70 ab | 36.80 ± 0.70 ef | 28.43 ± 0.35 e | |
| OF4 | 22.47 ± 0.40 a | 36.50 ± 0.30 g | 27.90 ± 0.40 hi | 22.77 ± 0.67 a | 37.50 ± 0.70 f | 28.13 ± 0.65 d | 21.93 ± 0.41 a | 36.40 ± 0.80 f | 28.30 ± 0.40 e | |
| IR3 | CK | 19.70 ± 0.40 g | 40.70 ± 0.70 a | 33.40 ± 0.40 a | 19.87 ± 0.70 f | 40.40 ± 0.80 ab | 31.60 ± 0.60 a | 19.80 ± 0.70 e | 39.23 ± 0.85 a | 32.33 ± 0.90 a |
| OF1 | 19.90 ± 0.40 fg | 40.13 ± 0.55 ab | 32.37 ± 0.55 bc | 20.10 ± 0.66 ef | 40.20 ± 0.96 ab | 31.67 ± 0.95 a | 20.30 ± 0.30 de | 39.03 ± 0.55 a | 31.93 ± 0.75 a | |
| OF2 | 20.60 ± 0.40 def | 40.80 ± 0.60 a | 31.20 ± 0.50 de | 20.80 ± 0.70 cdef | 38.77 ± 0.65 cdef | 28.93 ± 0.55 cd | 20.57±0.65 cde | 38.67 ± 0.60 ab | 30.47 ± 0.95 bc | |
| OF3 | 21.50 ± 0.30 bc | 39.30 ± 0.20 bc | 30.43 ± 0.80 efg | 21.10 ± 0.60 cde | 38.60 ± 0.60 cdef | 28.93 ± 0.35 cd | 21.13 ± 0.55 abcd | 38.13 ± 0.35 abcd | 30.43 ± 0.30 bc | |
| OF4 | 21.20 ± 0.30 cd | 39.17 ± 0.31 bcd | 30.50 ± 0.75 defg | 21.33 ± 0.35 cd | 38.67 ± 0.75 cdef | 28.30 ± 0.80 d | 21.10 ± 0.36 abcd | 37.80 ± 0.40 bcde | 29.87 ± 0.70 cd | |
| IR | ** | ** | ** | ** | * | ** | * | ** | ** | |
| OF | ** | ** | ** | ** | ** | ** | ** | * | ** | |
| IR*OF | ns | ns | ns | ns | ns | * | ns | ns | ns | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, Q.; Shen, S.; Jin, Q.; Chen, J. Assessment of the Impact of the Irrigation Regime and the Application of Fermented Organic Fertilizers on Soil Salinity Dynamics and Alfalfa Growth in Coastal Saline–Alkaline Land. Agronomy 2026, 16, 117. https://doi.org/10.3390/agronomy16010117
Yang Q, Shen S, Jin Q, Chen J. Assessment of the Impact of the Irrigation Regime and the Application of Fermented Organic Fertilizers on Soil Salinity Dynamics and Alfalfa Growth in Coastal Saline–Alkaline Land. Agronomy. 2026; 16(1):117. https://doi.org/10.3390/agronomy16010117
Chicago/Turabian StyleYang, Qian, Shanshan Shen, Qiu Jin, and Jingnan Chen. 2026. "Assessment of the Impact of the Irrigation Regime and the Application of Fermented Organic Fertilizers on Soil Salinity Dynamics and Alfalfa Growth in Coastal Saline–Alkaline Land" Agronomy 16, no. 1: 117. https://doi.org/10.3390/agronomy16010117
APA StyleYang, Q., Shen, S., Jin, Q., & Chen, J. (2026). Assessment of the Impact of the Irrigation Regime and the Application of Fermented Organic Fertilizers on Soil Salinity Dynamics and Alfalfa Growth in Coastal Saline–Alkaline Land. Agronomy, 16(1), 117. https://doi.org/10.3390/agronomy16010117
