Screening of Sunflower Hybrids Using Physiological and Agronomic Traits
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Trial
2.2. Weather Conditions
2.3. Photosynthetic Activity
2.4. Data Analysis
3. Results and Discussion
3.1. Photosynthetic Activity Among Hybrids
3.2. Chlorophyll Content and Leaf Temperature
3.3. Sunflower Yield Components
3.4. Correlation Analysis of Sunflower Photosynthetic Activity and Yield Components
3.5. Principal Component Analysis (PCA) of Sunflower Photosynthetic Activity and Yield Components
3.6. Cluster Analysis of Sunflower Hybrids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blackman, B.K.; Scascitelli, M.; Kane, N.C.; Luton, H.H.; Rasmussen, D.A.; Byer, R.A.; Lentz, D.L.; Rieseberg, L.H. Sunflower domestication alleles support single domestication center in eastern North America. Proc. Natl. Acad. Sci. USA 2011, 108, 14360–14365. [Google Scholar] [CrossRef]
- Radanović, A.; Miladinović, D.; Cvejić, S.; Jocković, M.; Jocić, S. Sunflower Genetics from Ancestors to Modern Hybrids—A Review. Genes 2018, 9, 528. [Google Scholar] [CrossRef] [PubMed]
- Kozumplik, V.; Pejić, J. (Eds.) Oplemenjivanje Poljoprivrednog Bilja u Hrvatskoj; Agronomski fakultet: Zagreb, Croatia, 2012; Available online: https://urn.nsk.hr/urn:nbn:hr:204:817026 (accessed on 5 May 2025).
- Jošt, M.; Samobor, V. Oplemenjivanje bilja, proizvodnja hrane i održiva poljoprivreda. Agron. Glas. 2005, 67, 427–435. [Google Scholar]
- Salaić, M.; Galić, V.; Jambrović, A.; Zdunić, Z.; Šimić, D.; Brkić, A.; Petrović, S. Assessing Genetic Variability For NUE in Maize Lines from Agricultural Institute Osijek. Poljoprivreda 2024, 30, 13–20. [Google Scholar] [CrossRef]
- Seiler, G.J.; Qi, L.L.; Marek, L.F. Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci. 2017, 57, 1083–1101. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Pirzad, A.; Hatami-Maleki, M.; Kiani, S.P.; Sarrafi, A. Evaluation of the reaction of sunflower inbred lines and their F1 hybrids to drought conditions using various stress tolerance indices. Span. J. Agric. Res. 2010, 8, 1037–1046. [Google Scholar] [CrossRef]
- Cvejić, S.; Hrnjaković, O.; Jocković, M.; Kupusinac, A.; Doroslovački, K.; Gvozdenac, S.; Jocić, S.; Miladinović, D. Oil yield prediction for sunflower hybrid selection using different machine learning algorithms. Sci. Rep. 2023, 13, 17611. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Hassan, T.H.A.; Zahran, H.A. Heterosis for seed, oil yield and quality of some different hybrids sunflower. OCL 2021, 28, 25. [Google Scholar] [CrossRef]
- FAOstat. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 September 2025).
- Mijić, A.; Liović, I.; Sudarić, A.; Duvnjak, T.; Jug, D.; Kranjac, D.; Jovović, Z.; Markulj Kulundžić, A. Status and perspectives of sunflower production in Croatia. Agric. For. 2021, 67, 35–45. [Google Scholar]
- Jug, D.; Jug, I.; Brozović, B.; Vukadinović, V.; Stipešević, B.; Đurđević, B. The role of conservation agriculture in mitigation and adaptation to climate change. Poljoprivreda 2018, 24, 35–44. [Google Scholar] [CrossRef]
- Lisjak, M.; Ocvirk, D.; Špoljarević, M.; Teklić, T.; Liović, I.; Špoljarić Marković, S.; Volenik, M.; Mijić, A. The effect of Seed Priming with Hydrogen Sulfide on Germination and Biochemical Indicators of Drought Stress in Sunflower Seedlings. Poljoprivreda 2025, 31, 1–12. [Google Scholar] [CrossRef]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Front. Plant Sci. 2018, 9, 393. [Google Scholar] [CrossRef]
- Liović, I.; Horvat, D.; Mijić, A.; Sudarić, A.; Duvnjak, T.; Markulj Kulundžić, A. Procjena stabilnosti uroda zrna i sadržaja ulja hibrida suncokreta AMMI analizom. Poljoprivreda 2021, 27, 3–10. [Google Scholar] [CrossRef]
- Mijić, A.; Liović, I.; Sudarić, A.; Duvnjak, T.; Šimić, B.; Markulj Kulundžić, A. Makropokusi kao važan čimbenik u procjeni agronomskih svojstava hibrida suncokreta. Poljoprivreda 2022, 28, 24–31. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Shen, J.; Zhang, L.; Wei, P.; Liu, A.; Song, H. The alleviating effect on the growth, chlorophyll synthesis, and biochemical defense system in sunflowers under cadmium stress achieved through foliar application of humic acid. BMC Plant Biol. 2024, 24, 792. [Google Scholar] [CrossRef]
- Zou, Q.-Q.; Liu, D.-H.; Sang, M.; Jiang, C.-D. Sunflower Leaf Structure Affects Chlorophyll a Fluorescence Induction Kinetics In Vivo. Int. J. Mol. Sci. 2022, 23, 14996. [Google Scholar] [CrossRef]
- Plesničar, M.; Kastori, R.; Petrović, N.; Panković, D. Photosynthesis and chlorophyll fluorescence in sunflower (Helianthus annuus L.) leaves as affected by phosphorus nutrition. J. Exp. Bot. 1994, 45, 919–924. [Google Scholar] [CrossRef]
- Markulj Kulundžić, A.; Viljevac Vuletić, M.; Matoša Kočar, M.; Mijić, A.; Varga, I.; Sudarić, A.; Cesar, V.; Lepeduš, H. The combination of increased temperatures and high irradiation causes changes in photosynthetic efficiency. Plants 2021, 10, 2076. [Google Scholar] [CrossRef] [PubMed]
- Markulj Kulundžić, A.; Viljevac Vuletić, M.; Matoša Kočar, M.; Antunović Dunić, J.; Varga, I.; Zdunić, Z.; Sudarić, A.; Cesar, V.; Lepeduš, H. Effect of Elevated Temperature and Excess Light on Photosynthetic Efficiency, Pigments, and Proteins in the Field-Grown Sunflower during Afternoon. Horticulturae 2022, 8, 392. [Google Scholar] [CrossRef]
- Killi, D.; Raschi, A.; Bussotti, F. Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. Int. J. Mol. Sci. 2020, 21, 4846. [Google Scholar] [CrossRef]
- Bazhenov, M.; Litvinov, D.; Kocheshkova, A.; Karlov, G.; Divashuk, M. Chlorophyll fluorescence imaging reveals the dynamics of bentazon action on sunflower (Helianthus annuus L.) plants. Agronomy 2024, 14, 1748. [Google Scholar] [CrossRef]
- Markulj Kulundžić, A.; Iljkić, D.; Antunović, M.; Sudarić, A.; Varga, I. The relationship between chlorophyll a fluorescence parameters and yield components in sunflower hybrids. Bot. Serb. 2023, 47, 103–111. [Google Scholar] [CrossRef]
- Ameen, M.; Zia, M.A.; Najeeb Alawadi, H.F.; Naqve, M.; Mahmood, A.; Shahzad, A.N.; Khan, B.A.; Alhammad, B.A.; Aljabri, M.; Seleiman, M.F. Exogenous application of selenium on sunflower (Helianthus annuus L.) to enhance drought stress tolerance by morpho-physiological and biochemical adaptations. Front. Plant Sci. 2024, 15, 1427420. [Google Scholar] [CrossRef] [PubMed]
- Arslan, Ö.; Balkan Nalçaiyi, A.S.; Çulha Erdal, Ş.; Pekcan, V.; Kaya, Y.; Çiçek, N.; Ekmekçi, Y. Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Photosynthetica 2020, 58, 348–357. [Google Scholar] [CrossRef]
- Çiçek, N.; Pekcan, V.; Arslan, Ö.; Çulha Erdal, Ş.; Balkan Nalçaiyi, A.S.; Çil, A.N.; Şahin, V.; Kaya, Y.; Ekmekçi, Y. Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Braz. J. Bot. 2019, 42, 249–260. [Google Scholar] [CrossRef]
- Heidari, A.; Toorchi, M.; Bandehagh, A.; Shakiba, M.-R. Effect of NaCl stress on growth, water relations, organic and inorganic osmolytes accumulation in sunflower (Helianthus annuus L.) lines. Univ. J. Environ. Res. Technol. 2011, 1, 351–359. [Google Scholar]
- Azevedo Neto, A.D.; Mota, K.N.A.B.; Silva, P.C.C.; Cova, A.M.W.; Ribas, R.F.; Gheyi, H.R. Selection of sunflower genotypes for salt stress and mechanisms of salt tolerance in contrasting genotypes. Ciênc. Agrotec. 2020, 44, e020120. [Google Scholar] [CrossRef]
- Omonov, O.; Amanov, B.; Muminov, K.H.; Buronov, A.; Tursunova, N. Physiological and biochemical composition of sunflower (Helianthus annuus L.). SABRAO J. Breed. Genet. 2023, 55, 2159–2167. [Google Scholar] [CrossRef]
- De la Mata, L.; Cabello, P.; De La Haba, P.; Agüera, E. Study of the senescence process in primary leaves of sunflower (Helianthus annuus L.) plants under two different light intensities. Photosynthetica 2013, 51, 85–94. [Google Scholar] [CrossRef]
- Murai, R.; Tsuchiya, H.; Tojo, S.; Chosa, T.; Kato, H. Effect of Planting Density on the Mechanical Properties of Sunflower Stem. 2012. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20133223007 (accessed on 3 May 2025).
- Desheva, G.; Valchinova, E. Ocjena stabilnosti prinosa i adaptibilnosti genotipova zobi (Avena sativa L.). Poljoprivreda 2024, 30, 3–12. [Google Scholar] [CrossRef]
- Iljkić, D.; Vuković, M.; Dvojković, K.; Horvat, D.; Szpunar-Krok, E.; Jańczak-Pieniążek, M.; Rastija, M. Variety, Chemical Protection and Biostimulator Effect on Winter Wheat Status. Poljoprivreda 2024, 30, 28–35. [Google Scholar] [CrossRef]
- Miladinović, D.; Hladni, N.; Radanović, A.; Jocić, S.; Cvejić, S. Sunflower and Climate Change: Possibilities of Adaptation Through Breeding and Genomic Selection. In Genomic Designing of Climate-Smart Oilseed Crops; Kole, C., Ed.; Springer: Cham, Switzerland, 2019; pp. 173–238. [Google Scholar] [CrossRef]
- Međimurec, T. Results of a comparative sunflower trial at locations Koprivnica and Osijek. Sjemenarstvo 2021, 32, 47–56. [Google Scholar] [CrossRef]
- DHMZ—Croatian Meteorological and Hydrological Service. Available online: https://meteo.hr/index_en.php (accessed on 11 June 2025).
- Schneiter, A.A.; Miller, J.F.; Berglund, D.R. Stages of Sunflower Development; North Dakota State University: Fargo, ND, USA, 2019; Available online: https://www.sunflowernsa.com/uploads/10/stagesofsunflowerdevelopment.pdf (accessed on 16 May 2025).
- Markulj Kulundžić, A.; Sudarić, A.; Matoša Kočar, M.; Duvnjak, T.; Liović, I.; Mijić, A.; Varga, I.; Viljevac Vuletić, M. Detailed insight into the behaviour of chlorophyll a fluorescence transient curves and parameters during different times of dark adaptation in sunflower leaves. Agronomy 2024, 14, 954. [Google Scholar] [CrossRef]
- Strasser, R.J.; Stirbet, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterise and screen photosynthetic samples. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Yusuf, M.A.; Kumar, D.; Rajwanshi, R.; Strasser, R.J.; Tsimilli-Michael, M.; Govindjee; Sarin, N.B. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta 2010, 1797, 1428–1438. [Google Scholar] [CrossRef]
- Heatmapper. Available online: http://heatmapper.ca/pairwise/ (accessed on 6 August 2025).
- Braga, P.C.S.; Martins, J.P.R.; Bonomo, R.; Borges, R.M.; Silva, J.V.G.; Falqueto, A.R. Differential response of photosystem II and I photochemistry in leaves of two Crambe abyssinica Hochst lineages submitted to water deficit. Photosynthetica 2020, 58, 1122–1129. [Google Scholar] [CrossRef]
- Matoša Kočar, M.; Sudarić, A.; Duvnjak, T.; Mazur, M. Soybean Genotype-Specific Cold Stress and Priming Responses: Chlorophyll a Fluorescence and Pigment-Related Spectral Reflectance Indices as Tools for Breeding. Agronomy 2025, 15, 390. [Google Scholar] [CrossRef]
- Mazur, M.; Matoša Kočar, M.; Jambrović, A.; Sudarić, A.; Volenik, M.; Duvnjak, T.; Zdunić, Z. Crop-Specific Responses to Cold Stress and Priming: Insights from Chlorophyll Fluorescence and Spectral Reflectance Analysis in Maize and Soybean. Plants 2024, 13, 1204. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Ruban, A.V. Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photoinhibition. Plant Physiol. 2016, 170, 1903–1916. [Google Scholar] [CrossRef]
- Adams, W.W., III; Demmig-Adams, B. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 1992, 186, 390–398. [Google Scholar] [CrossRef]
- Ji, W.; Hong, E.; Chen, X.; Li, Z.; Lin, B.; Xia, X.; Li, T.; Song, X.; Jin, S.; Zhu, X. Photosynthetic and physiological responses of different peony cultivars to high temperature. Front. Plant Sci. 2022, 13, 969718. [Google Scholar] [CrossRef]
- Umar, M.; Uddin, Z.; Siddiqui, Z.S. Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. Photosynthetica 2019, 57, 627–639. [Google Scholar] [CrossRef]
- Sunil, B.; Strasser, R.J.; Raghavendra, A.S. Targets of nitric oxide during modulation of photosystems in pea mesophyll protoplasts. Photosynthetica 2020, 58, 452–459. [Google Scholar] [CrossRef]
- Antunović Dunić, J.; Štolfa Čamagajevac, I.; Teklić, T.; Parađiković, N.; Lisjak, M.; Soldo, B.; Cesar, V.; Lepeduš, H. Comparative Analysis of Primary Photosynthetic Reactions Assessed by OJIP Kinetics in Three Brassica Crops after Drought and Recovery. Appl. Sci. 2023, 13, 3078. [Google Scholar] [CrossRef]
- Ghaffar, A.; Li, J.; Munir, M.Z.; Huang, Y.; Chen, H.; Li, Y.; Ali, Q.; Aslam, H.; Sattar, A.; Xu, C.; et al. Photosynthetic Activity and Metabolic Profiling of Bread Wheat Cultivars Contrasting in Drought Tolerance. Front. Plant Sci. 2023, 14, 1123080. [Google Scholar] [CrossRef] [PubMed]
- Franić, M.; Galić, V.; Lončarić, Z.; Šimić, D. Genotypic Variability of Photosynthetic Parameters in Maize Ear-Leaves at Different Cadmium Levels in Soil. Agronomy 2020, 10, 986. [Google Scholar] [CrossRef]
- Brestič, M.; Živčák, M.; Balatová, Z.; Drevenáková, P.; Olšovská, K.; Kalaji, H.M.; Yang, X.; Allakhverdiev, S.I. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth. Res. 2013, 117, 529–546. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Goltsev, V.; Cuin, T.A.; Lazar, D.; Govindjee; Strasser, R.J. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll fluorescence measurements. Plant Physiol. Biochem. 2016, 81, 16–25. [Google Scholar] [CrossRef]
- Cheng, Y.; Cheng, X.; Wei, K.; Wang, Y. Comparative Transcriptome Analysis of Salt-Tolerant and -Sensitive Soybean Cultivars under Salt Stress. Int. J. Mol. Sci. 2024, 25, 9818. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Govindjee; Bosa, K.; Allakhverdiev, S.I.; Kalaji, M.H. Chlorophyll fluorescence: Understanding of the basic concepts and a roadmap of its use in stress biology. Photosynth. Res. 2017, 133, 1–16. [Google Scholar]
- Faseela, P.; Sinisha, A.K.; Brestič, M.; Puthur, J.T. Chlorophyll a Fluorescence Parameters as Indicators of a Particular Abiotic Stress in Rice. Photosynthetica 2020, 58, 293–300. [Google Scholar] [CrossRef]
- Kovačević, J.; Mazur, M.; Drezner, G.; Lalić, A.; Sudarić, A.; Dvojković, K.; Viljevac Vuletić, M.; Josipović, M.; Josipović, A.; Markulj Kulundžić, A.; et al. Photosynthetic Efficiency Parameters as Indicators of Agronomic Traits of Winter Wheat Cultivars in Different Soil Water Conditions. Genetika 2017, 49, 891–910. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescent transient as a tool to characterise and screen photosynthetic samples. In Probing Photosynthesis: Mechanisms, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor & Francis: London, UK, 2000; pp. 445–483. [Google Scholar]
- Živčák, M.; Brestič, M.; Olsovská, K.; Govindjee; Kalaji, H.M. Changes in chlorophyll fluorescence quenching and energy dissipation in the photosynthetic apparatus of cereals under drought stress. Photosynthetica 2014, 52, 115–124. [Google Scholar]
- Markulj Kulundžić, A.; Sudarić, A.; Matoša Kočar, M.; Mijić, A.; Liović, I.; Viljevac Vuletić, M.; Varga, I.; Cesar, V.; Lepeduš, H. Sunflower Agronomic Traits in Field Irrigation Conditions. Genetika 2022, 54, 473–489. [Google Scholar] [CrossRef]
- Torres Netto, A.; Campostrini, E.; de Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic Pigments, Nitrogen, Chlorophyll a Fluorescence and SPAD-502 Readings in Coffee Leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Jiménez-Lao, R.; Garcia-Caparros, P.; Pérez-Saiz, M.; Llanderal, A.; Lao, M.T. Monitoring Optical Tool to Determine the Chlorophyll Concentration in Ornamental Plants. Agronomy 2021, 11, 2197. [Google Scholar] [CrossRef]
- Blum, A. Breeding methods for drought resistance. In Plant Under Stress; Jones, H.G., Flowers, T.J., Jones, M.B., Eds.; Cambridge University Press: Cambridge, UK, 1989; pp. 197–216. [Google Scholar]
- Gates, D.M. Transpiration and leaf temperature. Annu. Rev. Plant Physiol. 1968, 19, 211–238. [Google Scholar] [CrossRef]
- Jones, H.G. Plant Water Relations and Irrigation Management; CAB International: Wallingford, UK, 1999. [Google Scholar]
- Shahenshah, H.; Isoda, A. Relationship of leaf temperature and SPAD readings in peanut under water stress. J. Agron. Crop Sci. 2010, 196, 302–311. [Google Scholar] [CrossRef]
- Singh, A.; Singh, S.; Singh, R.P.; Singh, A.K. Effect of water stress on chlorophyll content and physiological parameters in sunflower (Helianthus annuus L.). J. Oilseeds Res. 2014, 31, 206–210. [Google Scholar]
- Varalakshmi, K.; Neelima, S.; Sreenivasulu, K.N. Correlation and Path Coefficient Analysis for Yield and Its Component Traits in Sunflower Hybrids (Helianthus annuus L.). J. Res. ANGRAU 2019, 47, 27–35. [Google Scholar]
- Malo, D.D.; Worcester, B.K. Plant Height and Yield of Sunflowers at Different Landscape Positions. Farm Res. 1974, 31, 17–23. Available online: https://core.ac.uk/download/pdf/211311145.pdf (accessed on 7 August 2025).
- Kluza-Wieloch, M. Plant Height at Different Developmental Stages in Observed Types of Sunflower (Helianthus annuus L.) Cultivars. Rocz. Akad. Rol. Poznaniu. 2003, 6, 93–105. [Google Scholar]
- Mirzabe, A.H.; Khazaei, J.; Chegini, G.R. Measuring Some Physical Properties of Sunflower (Helianthus annuus L.) Head and Modeling Dimensions. Agric. Eng. Int. CIGR J. 2016, 18, 333–339. Available online: http://www.cigrjournal.org (accessed on 7 August 2025).
- Kotsareva, N.; Kovalenko, E. Effect of Pre-Sowing Treatment of Sunflower Seeds on Plant Height and Photosynthetic Activity of Hybrids F1 Borey and F1 Dariy under the Conditions of the Southwestern Part of the Central Black Soil Region. BIO Web Conf. 2021, 30, 04011. [Google Scholar] [CrossRef]
- Ergasheva, N. Effect of seedling thickness on stem height and number of leaves of oil sunflower cultivars. In Proceedings of the BIO Web of Conferences, Blagoveschensk, Russia, 22–25 May 2023; EDP Sciences: Les Ulis, France, 2023; Volume 65, p. 01007. [Google Scholar]
- Li, J.; Qu, Z.; Chen, J.; Yang, B.; Huang, Y. Effect of Planting Density on the Growth and Yield of Sunflower under Mulched Drip Irrigation. Water 2019, 11, 752. [Google Scholar] [CrossRef]
- Handayati, W.; Sihombing, D. Study of NPK Fertilizer Effect on Sunflower Growth and Yield. AIP Conf. Proc. 2019, 2120, 030031. [Google Scholar] [CrossRef]
- Hussain, S.; Khalili, A.; Qayyum, A.; Khan, S.U.; Mehmood, A.; Ahmad, G.; Ghazy, A.-H.; Al-Doss, A.A.; Attia, K.A.; Zeng, Y. Optimising sunflower (Helianthus annuus L.) hybrids growth, achene and oil yield through soil applied sulphur and zinc. Sci. Rep. 2025, 15, 13829. [Google Scholar] [CrossRef]
- Hladni, N.; Miklič, V.; Jocić, S.; Kraljević-Balalić, M.; Škorić, D. Mode of Inheritance and Combining Ability for Plant Height and Head Diameter in Sunflower (Helianthus annuus L.). Genetika 2014, 46, 159–168. [Google Scholar] [CrossRef]
- Ramos, M.L.; Altieri, E.; Bulos, M.; Sala, C.A. Phenotypic and Molecular Prospection of Reduced Height Sunflower Germplasm. In Proceedings of the 18th International Sunflower Association (Breeding Session), Mar del Plata, Argentina, 26 February–1 March 2012; Volume 1. [Google Scholar]
- Angadi, S.V.; Entz, M.H. Root System and Water Use Patterns of Different Height Sunflower Cultivars. Agron. J. 2002, 94, 136–145. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Teng, A.; Zhang, C.; Lei, L.; Ba, Y.; Wang, Z. Photosynthetic characteristics, yield and quality of sunflower response to deficit irrigation in a cold and arid environment. Front. Plant Sci. 2023, 14, 1280347. [Google Scholar] [CrossRef]
- Kanwal, N.; Ali, F.; Ali, Q.; Sadaqat, H.A. Phenotypic Tendency of Achene Yield and Oil Contents in Sunflower Hybrids. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 690–705. [Google Scholar] [CrossRef]
- Göksoy, A.; Turan, Z. Correlations and path analysis of yield components in synthetic varieties of sunflower (Helianthus annuus L.). Acta Agron. Hung. 2007, 55, 339–345. [Google Scholar] [CrossRef]
- Rani, R.; Sheoran, R.K.; Chander, S. Genetic Divergence Analysis among Sunflower (Helianthus annuus L.) Inbred Lines for Yield and Component Traits. Indian J. Plant Genet. Resour. 2017, 30, 66–71. [Google Scholar] [CrossRef]
- Sri, K.S.; Balakrishna, D.; Mahalakshmi, V. Correlation and path coefficient analysis for yield and its components in sunflower (Helianthus annuus L.). J. Exp. Agric. Int. 2025, 47, 14–21. [Google Scholar] [CrossRef]
- Bonciu, E.; Iancu, P.; Soare, M. The Yield Relationships in Sunflower (Helianthus annuus). 2010, pp. 123–128. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20103319052 (accessed on 3 May 2025).
- Hladni, N.; Škoric, D.; Kraljević-Balalić, M.; Ivanović, M.; Sakac, Z.; Jovanović, D. Correlation of Yield Components and Seed Yield per Plant in Sunflower (Helianthus annuus). In Proceedings of the 16th International Sunflower Conference, Fargo, ND, USA, 29 August–2 September 2004; pp. 491–496. [Google Scholar]
- Sasikala, R.; Ramesh, S.; Pushpa, R. Principal component analysis for yield attributing traits of sunflower (Helianthus annuus L.) genotypes. J. Oilseeds Res. 2020, 37, 106–110. Available online: https://epubs.icar.org.in/index.php/JOR/article/view/139687 (accessed on 18 July 2025). [CrossRef]
- Zia, Z.U.; Sadaqat, H.A.; Ahmad, S.; Nazeer, W.; Ali, I.; Jabbar, A.; Bibi, A.; Hussain, N. Grouping and Selection of 32 Single Cross Sunflower Hybrids Using Principal Component Analysis. Eurasian J. Agric. Res. 2018, 2, 4–12. [Google Scholar]
- Zeinalzadeh Tabrizi, H.; Şahin, E.; Haliloğlu, K. Principal Components Analysis of Some F1 Sunflower Hybrids at Germination and Early Seedling Growth Stage. J. Agric. Fac. Atatürk Univ. 2011, 42, 103–109. [Google Scholar]
Hybrid | ABS/RC | DI0/RC | TR0/RC | ET0/RC | RE0/RC |
---|---|---|---|---|---|
Hybrid 1 | 1.91 ± 0.11 c | 0.33 ± 0.06 c | 1.58 ± 0.08 a | 1.05 ± 0.08 bc | 0.58 ± 0.05 de |
Hybrid 2 | 1.92 ± 0.13 c | 0.34 ± 0.07 c | 1.58 ± 0.08 a | 1.09 ± 0.05 abc | 0.61 ± 0.05 cde |
Hybrid 3 | 2.17 ± 0.21 a | 0.41 ± 0.05 a | 1.76 ± 0.17 a | 1.10 ± 0.03 ab | 0.62 ± 0.04 cd |
Hybrid 4 | 2.03 ± 0.22 abc | 0.35 ± 0.06 bc | 1.69 ± 0.16 a | 1.11 ± 0.06 ab | 0.64 ± 0.05 bc |
Hybrid 5 | 2.08 ± 0.18 abc | 0.38 ± 0.05 abc | 1.7 ± 0.13 a | 1.09 ± 0.03 abc | 0.65 ± 0.04 abc |
Hybrid 6 | 2.1 ± 0.26 ab | 0.4 ± 0.09 ab | 1.7 ± 0.17 a | 1.05 ± 0.05 bc | 0.57 ± 0.02 e |
Hybrid 7 | 2.09 ± 0.19 ab | 0.41 ± 0.05 a | 1.68 ± 0.15 a | 1.13 ± 0.04 a | 0.64 ± 0.05 bc |
Hybrid 8 | 2.07 ± 0.19 abc | 0.4 ± 0.07 a | 1.66 ± 0.14 a | 1.09 ± 0.05 ab | 0.67 ± 0.05 ab |
Hybrid 9 | 2.05 ± 0.2 abc | 0.4 ± 0.07 a | 1.64 ± 0.13 a | 1.05 ± 0.1 bc | 0.69 ± 0.06 a |
Hybrid 10 | 1.95 ± 0.15 bc | 0.36 ± 0.05 abc | 1.58 ± 0.11 a | 1.03 ± 0.12 c | 0.64 ± 0.06 bc |
Hybrid | TR0/ABS | ET0/ABS | ET0/TR0 | ΔR0 | RE0/ABS |
---|---|---|---|---|---|
Hybrid 1 | 0.83 ± 0.02 a | 0.66 ± 0.06 a | 0.55 ± 0.05 a | 0.56 ± 0.05 de | 0.31 ± 0.03 bc |
Hybrid 2 | 0.83 ± 0.02 a | 0.69 ± 0.03 a | 0.57 ± 0.02 a | 0.56 ± 0.03 de | 0.32 ± 0.02 ab |
Hybrid 3 | 0.81 ± 0.01 a | 0.63 ± 0.06 a | 0.51 ± 0.05 a | 0.57 ± 0.03 de | 0.29 ± 0.02 cd |
Hybrid 4 | 0.83 ± 0.01 a | 0.66 ± 0.05 a | 0.55 ± 0.05 a | 0.58 ± 0.05 cde | 0.31 ± 0.02 abc |
Hybrid 5 | 0.82 ± 0.01 a | 0.64 ± 0.05 a | 0.53 ± 0.05 a | 0.6 ± 0.04 bcd | 0.32 ± 0.03 abc |
Hybrid 6 | 0.81 ± 0.02 a | 0.62 ± 0.05 a | 0.51 ± 0.05 a | 0.55 ± 0.02 e | 0.28 ± 0.03 d |
Hybrid 7 | 0.81 ± 0.02 a | 0.67 ± 0.04 a | 0.54 ± 0.03 a | 0.57 ± 0.05 de | 0.31 ± 0.04 abc |
Hybrid 8 | 0.81 ± 0.02 a | 0.66 ± 0.07 a | 0.53 ± 0.06 a | 0.62 ± 0.04 abc | 0.33 ± 0.03 ab |
Hybrid 9 | 0.8 ± 0.02 a | 0.64 ± 0.09 a | 0.52 ± 0.08 a | 0.66 ± 0.06 a | 0.34 ± 0.04 a |
Hybrid 10 | 0.81 ± 0.02 a | 0.65 ± 0.07 a | 0.53 ± 0.06 a | 0.63 ± 0.09 ab | 0.33 ± 0.03 ab |
Hybrid | ABS/CS0 | DI0/CS0 | TR0/CS0 | ET0/CS0 | RE0/CS0 |
---|---|---|---|---|---|
Hybrid 1 | 537 ± 38.96 c | 92.22 ± 17.9 e | 444.68 ± 22.48 bc | 294.03 ± 27.78 a | 163.64 ± 18.94 de |
Hybrid 2 | 558 ± 52.44 bc | 98.1 ± 22.25 de | 460.1 ± 32.93 bc | 316.14 ± 26.48 a | 177.96 ± 20.35 bcd |
Hybrid 3 | 566 ± 43.17 bc | 107.48 ± 10.58 abcd | 458.02 ± 34.56 bc | 290.13 ± 37.17 a | 164.08 ± 20.66 de |
Hybrid 4 | 561 ± 22.06 bc | 95.33 ± 10.72 de | 465.57 ± 15.07 abc | 307.11 ± 29.63 a | 175.79 ± 10.05 bcd |
Hybrid 5 | 543 ± 24.74 c | 99.59 ± 10.65 cde | 443.08 ± 15.46 c | 285.19 ± 23.76 a | 171.51 ± 16.86 cde |
Hybrid 6 | 565 ± 44.57 bc | 105.97 ± 17.67 bcde | 459.23 ± 30.35 bc | 284.83 ± 21.06 a | 155.68 ± 15.82 e |
Hybrid 7 | 581 ± 32.57 ab | 112.76 ± 9.56 abc | 467.94 ± 30.06 ab | 315.23 ± 21.05 a | 179.79 ± 24.38 bcd |
Hybrid 8 | 583 ± 58.18 ab | 114.43 ± 21.78 ab | 468.57 ± 38.55 ab | 309.62 ± 35.5 a | 190.32 ± 24.07 ab |
Hybrid 9 | 610 ± 44.25 a | 120.45 ± 18.67 a | 489.85 ± 26.54 a | 314.77 ± 38.43 a | 205.74 ± 24.39 a |
Hybrid 10 | 560 ± 24.03 bc | 104.19 ± 11.56 bcde | 455.92 ± 20.42 bc | 296.33 ± 35.97 a | 184.3 ± 16.14 bc |
Hybrid | RC/ABS | TR0/DI0 | ET0/(TR0 − ET0) | ΔR0/(1 − ΔR0) | PIABS | PITOTAL |
---|---|---|---|---|---|---|
Hybrid 1 | 0.52 ± 0.03 a | 4.95 ± 0.72 a | 2.02 ± 0.45 a | 1.29 ± 0.26 de | 5.32 ± 1.6 a | 6.74 ± 2.23 a |
Hybrid 2 | 0.52 ± 0.04 a | 4.83 ± 0.74 ab | 2.21 ± 0.26 a | 1.29 ± 0.15 de | 5.6 ± 1.15 a | 7.16 ± 1.41 a |
Hybrid 3 | 0.52 ± 0.05 a | 4.28 ± 0.27 c | 1.78 ± 0.44 a | 1.32 ± 0.15 cde | 3.6 ± 1.21 a | 4.63 ± 1.2 b |
Hybrid 4 | 0.52 ± 0.06 a | 4.93 ± 0.51 a | 2 ± 0.48 a | 1.38 ± 0.26 cde | 5.13 ± 2.27 a | 6.79 ± 2.45 a |
Hybrid 5 | 0.52 ± 0.07 a | 4.49 ± 0.38 abc | 1.87 ± 0.43 a | 1.54 ± 0.28 cd | 4.17 ± 1.27 a | 6.35 ± 2.02 ab |
Hybrid 6 | 0.52 ± 0.08 a | 4.41 ± 0.57 bc | 1.69 ± 0.39 a | 1.2 ± 0.09 e | 3.82 ± 1.73 a | 4.69 ± 2.41 b |
Hybrid 7 | 0.52 ± 0.09 a | 4.17 ± 0.41 c | 2.13 ± 0.45 a | 1.35 ± 0.26 cde | 4.32 ± 1.12 a | 5.96 ± 2.14 ab |
Hybrid 8 | 0.52 ± 0.10 a | 4.18 ± 0.52 c | 2.05 ± 0.54 a | 1.62 ± 0.27 bc | 4.27 ± 1.57 a | 6.79 ± 2.43 a |
Hybrid 9 | 0.52 ± 0.11 a | 4.13 ± 0.47 c | 1.94 ± 0.59 a | 2 ± 0.57 a | 4.17 ±1.93 a | 7.76 ± 2.8 a |
Hybrid 10 | 0.52 ± 0.12 a | 4.43 ± 0.53 bc | 1.95 ± 0.52 a | 1.9 ± 0.76 ab | 4.63 ± 1.87 a | 7.68 ± 1.73 a |
Stem Height (cm) | Head Diameter (cm) | 1000-Seed Weight (g) | No. Seed per Plant | Mass of Seeds per Head (g) | |
---|---|---|---|---|---|
F Value | 12.68 | 1.60 | 3.51 | 0.94 | 1.66 |
p | *** | ** | ** | * | ** |
Mean | 191.45 | 18.8 | 52.83 | 1380 | 75.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markulj Kulundžić, A.; Iljkić, D.; Varga, I. Screening of Sunflower Hybrids Using Physiological and Agronomic Traits. Agronomy 2025, 15, 2181. https://doi.org/10.3390/agronomy15092181
Markulj Kulundžić A, Iljkić D, Varga I. Screening of Sunflower Hybrids Using Physiological and Agronomic Traits. Agronomy. 2025; 15(9):2181. https://doi.org/10.3390/agronomy15092181
Chicago/Turabian StyleMarkulj Kulundžić, Antonela, Dario Iljkić, and Ivana Varga. 2025. "Screening of Sunflower Hybrids Using Physiological and Agronomic Traits" Agronomy 15, no. 9: 2181. https://doi.org/10.3390/agronomy15092181
APA StyleMarkulj Kulundžić, A., Iljkić, D., & Varga, I. (2025). Screening of Sunflower Hybrids Using Physiological and Agronomic Traits. Agronomy, 15(9), 2181. https://doi.org/10.3390/agronomy15092181