Sustainable Development of Controlled Environment Agriculture
1. Introduction
2. Overview of Publications
2.1. The Impact of Reflective and Diffusive Covering Materials on Greenhouse Environment and Crops
2.2. LED Light Environment Regulation and Root Zone Environment Management in Nutrient Solution Cultivation
2.3. Nursery Nutrition Regulation and Information Management
2.4. Microclimate Environment Assessment and Prediction
2.5. Low-Carbon and Energy-Saving Demand and Development
3. Conclusions
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Al-Madani, A.A.; Al-Helal, I.M.; Alsadon, A.A. Assessing the Effectiveness of Reflective and Diffusive Polyethylene Films as Greenhouse Covers in Arid Environments. Agronomy 2024, 14, 1082. https://doi.org/10.3390/agronomy14051082.
- Song, J.; Zhang, R.; Yang, F.; Wang, J.; Cai, W.; Zhang, Y. Nocturnal LED Supplemental Lighting Improves Quality of Tomato Seedlings by Increasing Biomass Accumulation in a Controlled Environment. Agronomy 2024, 14, 1888. https://doi.org/10.3390/agronomy14091888.
- Nitu, O.A.; Ivan, E.Ş.; Tronac, A.S.; Arshad, A. Optimizing Lettuce Growth in Nutrient Film Technique Hydroponics: Evaluating the Impact of Elevated Oxygen Concentrations in the Root Zone under LED Illumination. Agronomy 2024, 14, 1896. https://doi.org/10.3390/agronomy14091896.
- Baciu, E.-D.; Miclea, I.; Cornea-Cipcigan, M.; Baci, G.-M.; Dezmirean, H.; Moise, A.R.; Bonta, V.; Ranga, F.; Bobiș, O.; Dezmirean, S. A Comparative Analysis of Different Growing Conditions of Mulberry (cv. Kokuso 21): From Conventional Nursery to Soil-Less Technique. Agronomy 2025, 15, 1584. https://doi.org/10.3390/agronomy15071584.
- Yan, Z.; Cao, X.; Bing, L.; Song, J.; Qi, Y.; Han, Q.; Yang, Y.; Lin, D. Responses of Growth, Enzyme Activity, and Flower Bud Differentiation of Pepper Seedlings to Nitrogen Concentration at Different Growth Stages. Agronomy 2024, 14, 2270. https://doi.org/10.3390/agronomy14102270.
- Yang, H.; Zhang, X.; Shi, Y.; Wang, L.; Chen, Y.; Wu, Z.; Lu, W.; Wang, X. Salinity Stress in Strawberry Seedlings Determined with a Spectral Fusion Model. Agronomy 2025, 15, 1275. https://doi.org/10.3390/agronomy15061275.
- Wei, X.; Li, B.; Lu, H.; Guo, J.; Dong, Z.; Yang, F.; Lü, E.; Liu, Y. Distribution Characteristics and Prediction of Temperature and Relative Humidity in a South China Greenhouse. Agronomy 2024, 14, 1580. https://doi.org/10.3390/agronomy14071580.
- Liu, H.; Zhao, H.; Tian, Y.; Liu, S.; Li, W.; Wang, Y.; Sun, D.; Wang, T.; Zhu, N.; Tao, Y.; et al. From First Frost to Last Snow: Tracking the Microclimate Evolution of Greenhouses Across North China’s Winter Spectrum. Agronomy 2025, 15, 1663. https://doi.org/10.3390/agronomy15071663.
- Chu, X.; Zheng, L.; Li, J.; Cheng, P. Intensify or Alleviate? Measurement of the Impact of China’s Facility Agriculture on Greenhouse Gas Emissions: Comparative Analysis Based on Cucumber Industry. Agronomy 2025, 15, 1403. https://doi.org/10.3390/agronomy15061403.
- Espitia, J.J.; Velázquez, F.A.; Rodriguez, J.; Gomez, L.; Baeza, E.; Aguilar-Rodríguez, C.E.; Flores-Velazquez, J.; Villagran, E. Solar Energy Applications in Protected Agriculture: A Technical and Bibliometric Review of Greenhouse Systems and Solar Technologies. Agronomy 2024, 14, 2791. https://doi.org/10.3390/agronomy14122791.
References
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Garcia, A.L.; Griffith, M.A.C.; Buss, G.P.; Yang, X.; Griffis, J.L.; Bauer, S.; Singh, A.K. Controlled environment agriculture and its ability to mitigate food insecurity. Agric. Sci. 2023, 14, 298–315. [Google Scholar] [CrossRef]
- Cowan, N.; Ferrier, L.; Spears, B.; Drewer, J.; Reay, D.; Skiba, U. CEA systems: The means to achieve future food security and environmental sustainability? Front. Sustain. Food Syst. 2022, 6, 891256. [Google Scholar] [CrossRef]
- van Delden, S.H.; SharathKumar, M.; Butturini, M.; Graamans, L.J.A.; Heuvelink, E.; Kacira, M.; Kaiser, E.; Klamer, R.S.; Klerkx, L.; Kootstra, G.; et al. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2021, 2, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, Q.; Cheng, J.; Qu, M.; Wang, P.; Zhao, S.; Xu, H.; Ma, C. Study on thermal property of a solar collector applied to solar greenhouse. Appl. Therm. Eng. 2024, 244, 122628. [Google Scholar] [CrossRef]
- Mu, M.; Zhang, S.; Yang, S.; Wang, Y. Phase change materials applied in agricultural greenhouses. J. Energy Storage 2022, 49, 104100. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Garcia, D.A. Can AI predict the impact of its implementation in greenhouse farming? Renew. Sustain. Energy Rev. 2024, 197, 114423. [Google Scholar] [CrossRef]
- Ariesen-Verschuur, N.; Verdouw, C.; Tekinerdogan, B. Digital Twins in greenhouse horticulture: A review. Comput. Electron. Agric. 2022, 199, 107183. [Google Scholar] [CrossRef]
- Syed, A.M.; Hachem, C. Review of design trends in lighting, environmental controls, carbon dioxide supplementation, passive design, and renewable energy systems for agricultural greenhouses. J. Biosyst. Eng. 2019, 44, 28–36. [Google Scholar] [CrossRef]
- Kaiser, E.; Kusuma, P.; Vialet-Chabrand, S.; Folta, K.; Liu, Y.; Poorter, H.; Woning, N.; Shrestha, S.; Ciarreta, A.; van Brenk, J. Vertical farming goes dynamic: Optimizing resource use efficiency, product quality, and energy costs. Front. Sci. 2024, 2, 1411259. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies-A review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Getahun, S.; Kefale, H.; Gelaye, Y. Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, L.; Li, Y.; Li, D. Model predictive control and its application in agriculture: A review. Comput. Electron. Agric. 2018, 151, 104–117. [Google Scholar] [CrossRef]
- Shamshiri, R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, C.-Y.; Lu, N. Environmental performance of fruiting vegetable production in vertical farms. Sustain. Prod. Consum. 2025, 56, 477–489. [Google Scholar] [CrossRef]
- Villagrán, E.; Romero-Perdomo, F.; Numa-Vergel, S.; Galindo-Pacheco, J.R.; Salinas-Velandia, D.A. Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae 2023, 10, 15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Song, W. Sustainable Development of Controlled Environment Agriculture. Agronomy 2025, 15, 2129. https://doi.org/10.3390/agronomy15092129
Zhao S, Song W. Sustainable Development of Controlled Environment Agriculture. Agronomy. 2025; 15(9):2129. https://doi.org/10.3390/agronomy15092129
Chicago/Turabian StyleZhao, Shumei, and Weitang Song. 2025. "Sustainable Development of Controlled Environment Agriculture" Agronomy 15, no. 9: 2129. https://doi.org/10.3390/agronomy15092129
APA StyleZhao, S., & Song, W. (2025). Sustainable Development of Controlled Environment Agriculture. Agronomy, 15(9), 2129. https://doi.org/10.3390/agronomy15092129