Glucose Elevates N2O Emissions by Promoting Fungal and Incomplete Denitrification in North China Vegetable Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Properties
2.2. Experimental Design
2.3. Gas Analysis
2.4. Soil Analysis
2.5. N2O Source Partitioning
2.6. Statistical Analysis
3. Results
3.1. CO2 and N2O Emissions in Response to Varied Glucose Concentrations
3.2. N2O Isotope Signatures in Response to Varied Glucose Concentrations
3.2.1. δ15NSP of N2O
3.2.2. δ18O of N2O
3.3. Denitrifying Bacterial and Fungal Contributions to N2O Production in Response to Varied Glucose Concentrations
3.4. N2O Residual Rates in Response to Varied Glucose Concentrations
4. Discussion
4.1. Denitrifying Mechanisms Driven by Varied Glucose Concentrations
4.2. Agreement Assessment of rN2O Estimated by the δ15NSP/δ18O MAP and AIT
4.3. Implications and Limitations of the Glucose Amendment Experiment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Pan, N.; Thompson, R.L.; Canadell, J.G.; Suntharalingam, P.; Regnier, P.; Davidson, E.A.; Prather, M.; Ciais, P.; Muntean, M.; et al. Global nitrous oxide budget (1980–2020). Earth Syst. Sci. Data 2024, 16, 2543–2604. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef]
- Nabuurs, G.-J.; Mrabet, R.; Hatab, A.A.; Bustamante, M.; Clark, H.; Havlík, P.; House, J.I.; Mbow, C.; Ninan, K.N.; Popp, A.; et al. Agriculture, Forestry and Other Land Uses (AFOLU). In Climate Change 2022: Mitigation of Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Zheng, Q.; Ding, J.; Lin, W.; Yao, Z.; Li, Q.; Xu, C.; Zhuang, S.; Kou, X.; Li, Y. The influence of soil acidification on N2O emissions derived from fungal and bacterial denitrification using dual isotopocule mapping and acetylene inhibition. Environ. Pollut. 2022, 303, 119076. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Yang, R.; Zhuang, S.; Lin, W.; Li, Y. Evaluating microbial role in reducing N2O emission by dual isotopocule mapping following substitution of inorganic fertilizer for organic fertilizer. J. Clean. Prod. 2021, 326, 129442. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Du, Y.; Han, H.; Guo, S.; Song, X.; Ju, X. Significant increases in nitrous oxide emissions under simulated extreme rainfall events and straw amendments from agricultural soil. Soil Tillage Res. 2025, 246, 106361. [Google Scholar] [CrossRef]
- Zhuang, S.; Ding, J.; Lin, W.; Zheng, Q.; Kou, X.; Li, Q.; Xu, C.; Mao, L.; Pan, Y.; Gao, Y.; et al. Transient anoxic conditions boost N2O emissions by stimulating denitrification capacity and decreasing N2O reduction ratio in soils with different carbon substrates. Soil Biol. Biochem. 2024, 192, 109351. [Google Scholar] [CrossRef]
- Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533–616. [Google Scholar] [CrossRef]
- Shoun, H.; Kim, D.H.; Uchiyama, H.; Sugiyama, J. Denitrification by fungi. FEMS Microbiol. Lett. 1992, 73, 277–282. [Google Scholar] [CrossRef]
- Aldossari, N.; Ishii, S. Fungal denitrification revisited—Recent advancements and future opportunities. Soil Biol. Biochem. 2021, 157, 108250. [Google Scholar] [CrossRef]
- Qi, B.; Zhang, K.; Qin, S.; Lyu, D.; He, J. Glucose addition promotes C fixation and bacteria diversity in C-poor soils, improves root morphology, and enhances key N metabolism in apple roots. PLoS ONE 2022, 17, e0262691. [Google Scholar] [CrossRef]
- Chen, H.; Mothapo, N.V.; Shi, W. Fungal and bacterial N2O production regulated by soil amendments of simple and complex substrates. Soil Biol. Biochem. 2015, 84, 116–126. [Google Scholar] [CrossRef]
- Harter, J.; Weigold, P.; El-Hadidi, M.; Huson, D.H.; Kappler, A.; Behrens, S. Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Sci. Total Environ. 2016, 562, 379–390. [Google Scholar] [CrossRef]
- Burford, J.R.; Bremner, J.M. Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biol. Biochem. 1975, 7, 389–394. [Google Scholar] [CrossRef]
- Wei, Z.; Li, C.; Ma, X.; Ma, S.; Han, Z.; Yan, X.; Shan, J. Biochar mitigates N2O emissions by promoting complete denitrification in acidic and alkaline paddy soils. Eur. J. Soil Sci. 2023, 74, e13428. [Google Scholar] [CrossRef]
- Wei, Z.; Senbayram, M.; Zhao, X.; Li, C.; Jin, K.; Wu, M.; Rahman, M.M.; Shan, J.; Yan, X. Biochar amendment alters the partitioning of nitrate reduction by significantly enhancing DNRA in a paddy field. Biochar 2022, 4, 44. [Google Scholar] [CrossRef]
- Senbayram, M.; Well, R.; Bol, R.; Chadwick, D.R.; Jones, D.L.; Wu, D. Interaction of straw amendment and soil content controls fungal denitrification and denitrification product stoichiometry in a sandy soil. Soil Biol. Biochem. 2018, 126, 204–212. [Google Scholar] [CrossRef]
- Wu, D.; Wei, Z.; Well, R.; Shan, J.; Yan, X.; Bol, R.; Senbayram, M. Straw amendment with nitrate-N decreased N2O/(N2O+N2) ratio but increased soil N2O emission: A case study of direct soil-born N2 measurements. Soil Biol. Biochem. 2018, 127, 301–304. [Google Scholar] [CrossRef]
- Wei, Z.; Well, R.; Ma, X.; Lewicka-Szczebak, D.; Rohe, L.; Zhang, G.; Li, C.; Ma, J.; Bol, R.; Xu, H.; et al. Organic fertilizer amendment decreased N2O/(N2O+N2) ratio by enhancing the mutualism between bacterial and fungal denitrifiers in high nitrogen loading arable soils. Soil Biol. Biochem. 2024, 198, 109550. [Google Scholar] [CrossRef]
- Xu, H.; Sheng, R.; Xing, X.; Zhang, W.; Hou, H.; Liu, Y.; Qin, H.; Chen, C.; Wei, W. Characterization of Fungal nirK-Containing Communities and N2O Emission from Fungal Denitrification in Arable Soils. Front. Microbiol. 2019, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Reischke, S.; Rousk, J.; Bååth, E. The effects of glucose loading rates on bacterial and fungal growth in soil. Soil Biol. Biochem. 2014, 70, 88–95. [Google Scholar] [CrossRef]
- Ding, J.; Fang, F.; Lin, W.; Qiang, X.; Xu, C.; Mao, L.; Li, Q.; Zhang, X.; Li, Y. N2O emissions and source partitioning using stable isotopes under furrow and drip irrigation in vegetable field of North China. Sci. Total Environ. 2019, 665, 709–717. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Xu, M.; Jing, J.; Xu, J.; Li, Y.; Zhao, B.; Yuan, L. Enhancing Carboxyl Groups in Humic Acid with Selective Catalyst to Mitigate Active N Loss through Nitrification and Denitrification Inhibition in Low-Fertility Calcareous Fluvo-Aquic Soil. ACS Sustain. Chem. Eng. 2025, 13, 7789–7802. [Google Scholar] [CrossRef]
- Duan, P.; Song, Y.; Li, S.; Xiong, Z. Responses of N2O production pathways and related functional microbes to temperature across greenhouse vegetable field soils. Geoderma 2019, 355, 113904. [Google Scholar] [CrossRef]
- Toyoda, S.; Yoshida, N. Determination of Nitrogen Isotopomers of Nitrous Oxide on a Modified Isotope Ratio Mass Spectrometer. Anal. Chem. 1999, 71, 4711–4718. [Google Scholar] [CrossRef]
- Röckmann, T.; Kaiser, J.; Brenninkmeijer, C.A.M.; Brand, W.A. Gas chromatography/isotope-ratio mass spectrometry method for high-precision position-dependent 15N and 18O measurements of atmospheric nitrous oxide. Rapid Commun. Mass Spectrom 2003, 17, 1897–1908. [Google Scholar] [CrossRef]
- Lewicka-Szczebak, D.; Augustin, J.; Giesemann, A.; Well, R. Quantifying N2O reduction to N2 based on N2O isotopocules-validation with independent methods (helium incubation and 15N gas flux method). Biogeosciences 2017, 14, 711–732. [Google Scholar] [CrossRef]
- Wu, D.; Well, R.; Cárdenas, L.M.; Fuß, R.; Lewicka-Szczebak, D.; Köster, J.R.; Brüggemann, N.; Bol, R. Quantifying N2O reduction to N2 during denitrification in soils via isotopic mapping approach: Model evaluation and uncertainty analysis. Environ. Res. 2019, 179, 108806. [Google Scholar] [CrossRef]
- Lewicka-Szczebak, D.; Lewicki, M.P.; Well, R. N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction—Validation with the 15N gas-flux method in laboratory and field studies. Biogeosciences 2020, 17, 5513–5537. [Google Scholar] [CrossRef]
- Toyoda, S.; Yoshida, N.; Koba, K. Isotopocule analysis of biologically produced nitrous oxide in various environments. Mass Spectrom. Rev. 2017, 36, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Harris, E.; Lewicka-Szczebak, D.; Barthel, M.; Blomberg, M.R.A.; Harris, S.J.; Johnson, M.S.; Lehmann, M.F.; Liisberg, J.; Muller, C.; et al. What can we learn from N2O isotope data?—Analytics, processes and modelling. Rapid Commun. Mass Spectrom. 2020, 34, e8858. [Google Scholar] [CrossRef] [PubMed]
- Lewicka-Szczebak, D.; Dyckmans, J.; Kaiser, J.; Marca, A.; Augustin, J.; Well, R. Oxygen isotope fractionation during N2O production by soil denitrification. Biogeosciences 2016, 13, 1129–1144. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, R.-Z.; Wang, Y.; Chen, G.-L.; Fu, Y.-Y.; Yu, H.-Q. Carbon source shaped microbial ecology, metabolism and performance in denitrification systems. Water Res. 2023, 243, 120330. [Google Scholar] [CrossRef] [PubMed]
- Jinuntuya-Nortman, M.; Sutka, R.L.; Ostrom, P.H.; Gandhi, H.; Ostrom, N.E. Isotopologue fractionation during microbial reduction of N2O within soil mesocosms as a function of water-filled pore space. Soil Biol. Biochem. 2008, 40, 2273–2280. [Google Scholar] [CrossRef]
- Well, R.; Flessa, H. Isotopologue enrichment factors of N2O reduction in soils. Rapid Commun. Mass Spectrom. 2009, 23, 2996–3002. [Google Scholar] [CrossRef]
- Lewicka-Szczebak, D.; Well, R.; Köester, J.R.; Fuß, R.; Mehmet, S.; Dittert, K.; Flessa, H. Experimental determinations of isotopic fractionation factors associated with N2O production and reduction during denitrification in soils. Geochim. Cosmochim. Acta 2014, 134, 55–73. [Google Scholar] [CrossRef]
- Rohe, L.; Anderson, T.-H.; Flessa, H.; Goeske, A.; Lewicka-Szczebak, D.; Wrage-Mönnig, N.; Well, R. Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions. Biogeosciences 2021, 18, 4629–4650. [Google Scholar] [CrossRef]
Factor | Variants | |||
---|---|---|---|---|
Glucose gradients | 0 | 0.5 | 1.0 | 2.0 |
(g C kg−1 d.w. of soil) | (Control) | (Glu_0.5) | (Glu_1.0) | (Glu_2.0) |
Acetylene variants | 0 | 10 | ||
(kPa) | Non-acetylene-treated set | Acetylene-treated set |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Zhuang, S.; Kou, X.; Li, Y.; Zhao, B.; Lin, W.; Xu, C. Glucose Elevates N2O Emissions by Promoting Fungal and Incomplete Denitrification in North China Vegetable Soils. Agronomy 2025, 15, 2127. https://doi.org/10.3390/agronomy15092127
Zheng Q, Zhuang S, Kou X, Li Y, Zhao B, Lin W, Xu C. Glucose Elevates N2O Emissions by Promoting Fungal and Incomplete Denitrification in North China Vegetable Soils. Agronomy. 2025; 15(9):2127. https://doi.org/10.3390/agronomy15092127
Chicago/Turabian StyleZheng, Qian, Shan Zhuang, Xinyue Kou, Yuzhong Li, Boya Zhao, Wei Lin, and Chunying Xu. 2025. "Glucose Elevates N2O Emissions by Promoting Fungal and Incomplete Denitrification in North China Vegetable Soils" Agronomy 15, no. 9: 2127. https://doi.org/10.3390/agronomy15092127
APA StyleZheng, Q., Zhuang, S., Kou, X., Li, Y., Zhao, B., Lin, W., & Xu, C. (2025). Glucose Elevates N2O Emissions by Promoting Fungal and Incomplete Denitrification in North China Vegetable Soils. Agronomy, 15(9), 2127. https://doi.org/10.3390/agronomy15092127