Recycling Agricultural Waste into Plant Protectants: Mechanisms of Wood Vinegar in Alleviating Salt Stress in Triticum aestivum L.
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of Wood Vinegar
2.2. Experimental Design
- ◆
- The seeds were surface-sterilized by soaking them in 10% (v/v) H2O2 for 10 min, followed by thorough rinsing with deionized water.
- ◆
- The seeds were placed in a constant-temperature and -humidity incubator and kept in darkness at a temperature of 25 ± 1 °C for 2 days to germinate.
- ◆
- The seedlings were placed in the seedling trays and allowed to grow for 5 days (25 ± 1 °C, 18 h light, 8 h darkness).
2.3. Chlorophyll Content
2.4. Lipid Peroxidation Analysis and Antioxidant Enzyme Activities
2.5. Total Protein Content
2.6. Elemental Composition Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Growth Modulation
3.2. Impact of Wood Vinegar on Chlorophyll Content
3.3. Impact of Wood Vinegar on Antioxidant System
3.4. Impact of Wood Vinegar on Total Protein
3.5. Effects of Wood Vinegar on Nutrient Elements
3.6. Agricultural Practice of Wood Vinegar
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bezerra, A.C.M.; Kotula, L.; Ortiz-Silva, B.; Medici, L.O.; Colmer, T.D.; Reinert, F. NaCl-Induced Effects on Photosynthesis, Ion Relations, and Growth of Chloris gayana Kunth in the Presence of Two Levels of KCl. Plant Physiol. Biochem. 2024, 216, 109136. [Google Scholar] [CrossRef]
- Liang, X.; Li, J.; Yang, Y.; Jiang, C.; Guo, Y. Designing Salt Stress-Resilient Crops: Current Progress and Future Challenges. J. Integr. Plant Biol. 2024, 66, 303–329. [Google Scholar] [CrossRef]
- Yu, B.; Chao, D.-Y.; Zhao, Y. How Plants Sense and Respond to Osmotic Stress. J. Integr. Plant Biol. 2024, 66, 394–423. [Google Scholar] [CrossRef]
- Lian, J.; Wu, J.; Xiong, H.; Zeb, A.; Yang, T.; Su, X.; Su, L.; Liu, W. Impact of Polystyrene Nanoplastics (PSNPs) on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). J. Hazard. Mater. 2020, 385, 121620. [Google Scholar] [CrossRef]
- Mao, H.; Jiang, C.; Tang, C.; Nie, X.; Du, L.; Liu, Y.; Cheng, P.; Wu, Y.; Liu, H.; Kang, Z.; et al. Wheat Adaptation to Environmental Stresses under Climate Change: Molecular Basis and Genetic Improvement. Mol. Plant 2023, 16, 1564–1589. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Agarwal, R.M. Salinity Stress Induced Alterations in Antioxidant Metabolism and Nitrogen Assimilation in Wheat (Triticum aestivum L.) as Influenced by Potassium Supplementation. Plant Physiol. Biochem. 2017, 115, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Miransari, M.; Smith, D. Sustainable Wheat (Triticum aestivum L.) Production in Saline Fields: A Review. Crit. Rev. Biotechnol. 2019, 39, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kaur, J.; Ram, H.; Singh, J.; Kaur, S. Agronomic Bio-Fortification of Wheat (Triticum aestivum L.) to Alleviate Zinc Deficiency in Human Being. Rev. Environ. Sci. Bio-Technol. 2023, 22, 505–526. [Google Scholar] [CrossRef]
- Aceves-N., E.; Stolzy, L.H.; Mehuys, G.R. Effects of Soil Osmotic Potential Produced with Two Salt Species on Plant Water Potential, Growth, and Grain Yield of Wheat. Plant Soil 1975, 42, 619–627. [Google Scholar] [CrossRef]
- Kang, G.; Li, G.; Zheng, B.; Han, Q.; Wang, C.; Zhu, Y.; Guo, T. Proteomic Analysis on Salicylic Acid-Induced Salt Tolerance in Common Wheat Seedlings (Triticum aestivum L.). BBA-Proteins Proteom. 2012, 1824, 1324–1333. [Google Scholar] [CrossRef]
- Sanada, Y.; Ueda, H.; Kuribayashi, K.; Andoh, T.; Hayashi, F.; Tamai, N.; Wada, K. Novel Light-Dark Change of Proline Levels in Halophyte (Mesembryanthemum-crystallinum L.) and Glycophytes (Hordeum-vulgare L. and Triticum-aestivum L.) Leaves and Roots Under Salt Stress. Plant Cell Physiol. 1995, 36, 965–970. [Google Scholar] [CrossRef]
- Guo, R.; Yang, Z.; Li, F.; Yan, C.; Zhong, X.; Liu, Q.; Xia, X.; Li, H.; Zhao, L. Comparative Metabolic Responses and Adaptive Strategies of Wheat (Triticum aestivum) to Salt and Alkali Stress. BMC Plant Biol. 2015, 15, 170. [Google Scholar] [CrossRef]
- Reggiani, R.; Bozo, S.; Bertani, A. Changes in Polyamine Metabolism in Seedlings of 3 Wheat (Triticum-aestivum L.) Cultivars Differing in Salt Sensitivity. Plant Sci. 1994, 102, 121–126. [Google Scholar] [CrossRef]
- Sehar, Z.; Masood, A.; Khan, N.A. Nitric Oxide Reverses Glucose-Mediated Photosynthetic Repression in Wheat (Triticum aestivum L.) Under Salt Stress. Environ. Exp. Bot. 2019, 161, 277–289. [Google Scholar] [CrossRef]
- Shahzadi, A.; Noreen, Z.; Alamery, S.; Zafar, F.; Haroon, A.; Rashid, M.; Aslam, M.; Younas, A.; Attia, K.A.; Mohammed, A.A.; et al. Effects of Biochar on Growth and Yield of Wheat (Triticum aestivum L.) Under Salt Stress. Sci. Rep. 2024, 14, 20024. [Google Scholar] [CrossRef]
- Esfandiari, E.; Gohari, G. Response of ROS-Scavenging Systems to Salinity Stress in Two Different Wheat (Triticum aestivum L.) Cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 287–291. [Google Scholar] [CrossRef]
- Mohsin, S.M.; Hasanuzzaman, M.; Nahar, K.; Hossain, M.S.; Bhuyan, M.H.M.B.; Parvin, K.; Fujita, M. Tebuconazole and Trifloxystrobin Regulate the Physiology, Antioxidant Defense and Methylglyoxal Detoxification Systems in Conferring Salt Stress Tolerance in Triticum aestivum L. Physiol. Mol. Biol. Plants 2020, 26, 1139–1154. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.M.; Puthur, J.T.; Abdi, G.; Sarraf, M.; Hasanuzzaman, M. Potassium in Plants: Growth Regulation, Signaling, and Environmental Stress Tolerance. Plant Physiol. Biochem. 2022, 172, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yang, Z.; Xing, M.; Jing, Y.; Zhang, Y.; Zhang, K.; Zhou, Y.; Zhao, H.; Qiao, W.; Sun, J. TaBZR1 Enhances Wheat Salt Tolerance via Promoting ABA Biosynthesis and ROS Scavenging. J. Genet. Genom. 2023, 50, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, Q.; Rui, Y. The Impact of Nanomaterials on Plant Health: A Review of Exposure, Toxicity, and Control. Environ. Sci. Nano 2025, 12, 2965–2982. [Google Scholar] [CrossRef]
- He, F.; Niu, M.-X.; Feng, C.-H.; Li, H.-G.; Su, Y.; Su, W.-L.; Pang, H.; Yang, Y.; Yu, X.; Wang, H.-L.; et al. PeSTZ1 Confers Salt Stress Tolerance by Scavenging the Accumulation of ROS through Regulating the Expression of PeZAT12 and PeAPX2 in Populus. Tree Physiol. 2020, 40, 1292–1311. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Z.; Sui, N. Sensitivity and Responses of Chloroplasts to Salt Stress in Plants. Front. Plant Sci. 2024, 15, 1374086. [Google Scholar] [CrossRef]
- Ayala, F.; Ashraf, M.; OLeary, J.W. Plasma Membrane H+-ATPase Activity in Salt-Tolerant and Salt-Sensitive Lines of Spring Wheat (Triticum aestivum L.). Acta Bot. Neerl. 1997, 46, 315–324. [Google Scholar] [CrossRef]
- Li, M.; Gao, L.; White, J.C.; Haynes, C.L.; O’Keefe, T.L.; Rui, Y.; Ullah, S.; Guo, Z.; Lynch, I.; Zhang, P. Nano-Enabled Strategies to Enhance Biological Nitrogen Fixation. Nat. Nanotechnol. 2023, 18, 688–691. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, X.; Hou, H.; Ji, J.; Liu, X.; Lv, Z. Multifaceted Ability of Organic Fertilizers to Improve Crop Productivity and Abiotic Stress Tolerance: Review and Perspectives. Agronomy 2024, 14, 1141. [Google Scholar] [CrossRef]
- Hu, X.; Gholizadeh, M. Progress of the Applications of Bio-Oil. Renew. Sust. Energy Rev. 2020, 134, 110124. [Google Scholar] [CrossRef]
- Pereira, E.G.; Fauller, H.; Magalhaes, M.; Guirardi, B.; Martins, M.A. Potential Use of Wood Pyrolysis Coproducts: A Review. Environ. Prog. Sustain. Energy 2022, 41, e13705. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, Y.; Zhang, N.; Liu, Z.; Bao, L.; Xia, Y. Wood Fiber Biomass Pyrolysis Solution as a Potential Tool for Plant Disease Management: A Review. Heliyon 2024, 10, e25509. [Google Scholar] [CrossRef]
- Oramahi, H.A.; Yoshimura, T.; Diba, F.; Setyawati, D.; Nurhaida. Antifungal and Antitermitic Activities of Wood Vinegar from Oil Palm Trunk. J. Wood Sci. 2018, 64, 311–317. [Google Scholar] [CrossRef]
- Akkus, M.; Akcay, C.; Yalcin, M. Antifungal and Larvicidal Effects of Wood Vinegar on Wood-Destroying Fungi and Insects. Maderas-Cienc. Tecnol. 2022, 24, 37. [Google Scholar] [CrossRef]
- Shao, M.; Ma, X.; Zhang, M.; Li, Y.; Liu, L.; Wang, J.; Meng, W.; Sun, C.; Zheng, H.; Luo, X.; et al. Pyroligneous Acid Amendments Alleviated Antibiotic Resistance Genes Pollution in Agricultural Soil via Inhibiting Horizontal Gene Transformation. Chem. Eng. J. 2025, 506, 160070. [Google Scholar] [CrossRef]
- Pan, X.; Shi, M.; Chen, X.; Kuang, S.; Ullah, H.; Lu, H.; Riaz, L. An Investigation into Biochar, Acid-Modified Biochar, and Wood Vinegar on the Remediation of Saline-Alkali Soil and the Growth of Strawberries. Front. Environ. Sci. 2022, 10, 1057384. [Google Scholar] [CrossRef]
- Hafez, E.M.; Gao, Y.; Alharbi, K.; Chen, W.; Elhawat, N.; Alshaal, T.; Osman, H.S. Antioxidative and Metabolic Responses in Canola: Strategies with Wood Distillate and Sugarcane Bagasse Ash for Improved Growth under Abiotic Stress. Plants 2024, 13, 2152. [Google Scholar] [CrossRef]
- Kumar, S.; Rahman, M.; Bouket, A.C.; Ahadi, R.; Meena, M.; Bhupenchandra, I.; Singh, U.B.; Arutselvan, R.; Kumar, R.; Singh, S.P.; et al. Unravelling the Multifarious Role of Wood Vinegar Made from Waste Biomass in Plant Growth Promotion, Biotic Stress Tolerance, and Sustainable Agriculture. J. Anal. Appl. Pyrolysis 2025, 185, 106851. [Google Scholar] [CrossRef]
- Zhu, G.; Tang, Y.; Ding, Y.; Zhao, W.; Wang, Q.; Li, Y.; Wang, Q.; Zhang, P.; Tan, Z.; Rui, Y. Synergistic Effect of Nano-Iron Phosphide and Wood Vinegar on Soybean Production and Grain Quality. Environ. Sci. Nano 2024, 11, 4634–4643. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.; Zhu, D.; Liu, N.; Yan, Y. Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress. Int. J. Mol. Sci. 2021, 22, 4840. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Sattar, M.; Mostafa, L.Y.; Rihan, H.Z. Enhancing Mango Productivity with Wood Vinegar, Humic Acid, and Seaweed Extract Applications as an Environmentally Friendly Strategy. Sustainability 2024, 16, 8986. [Google Scholar] [CrossRef]
- Fedeli, R.; Cruz, C.; Loppi, S.; Munzi, S. Hormetic Effect of Wood Distillate on Hydroponically Grown Lettuce. Plants 2024, 13, 447. [Google Scholar] [CrossRef]
- Liu, D.; Ma, Y.; Rui, M.; Lv, X.; Chen, R.; Chen, X.; Wang, Y. Is High pH the Key Factor of Alkali Stress on Plant Growth and Physiology? A Case Study with Wheat (Triticum aestivum L.) Seedlings. Agronomy 2022, 12, 1820. [Google Scholar] [CrossRef]
- Ofoe, R.; Mousavi, S.M.N.; Thomas, R.H.; Abbey, L. Foliar Application of Pyroligneous Acid Acts Synergistically with Fertilizer to Improve the Productivity and Phytochemical Properties of Greenhouse-Grown Tomato. Sci. Rep. 2024, 14, 1934. [Google Scholar] [CrossRef]
- Tao, R.; Ding, J.; Li, C.; Zhu, X.; Guo, W.; Zhu, M. Evaluating and Screening of Agro-Physiological Indices for Salinity Stress Tolerance in Wheat at the Seedling Stage. Front. Plant Sci. 2021, 12, 646175. [Google Scholar] [CrossRef] [PubMed]
- Afsharipour, S.; Seyedi, A.; Dastjerdi, A.M. Salinity Tolerance in Cucumis Sativus Seedlings: The Role of Pistachio Wood Vinegar on the Improvement of Biochemical Parameters and Seedlings Vigor. BMC Plant Biol. 2025, 25, 224. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, N.; Mu, L.; Gao, L.; Bao, L.; Tang, C. New Enlightenment on the Regulatory Effects of Acids and Phenolic Compounds in Wood Vinegar, a by-Product of Biomass Pyrolysis, on Tomato Production. Front. Microbiol. 2025, 16, 1538998. [Google Scholar] [CrossRef]
- Hur, G.; Ashraf, M.; Nadeem, M.Y.; Rehman, R.S.; Thwin, H.M.; Shakoor, K.; Seleiman, M.F.; Alotaibi, M.; Yuan, B.-Z. Ex-ogenous Application of Wood Vinegar Improves Rice Yield and Quality by Elevating Photosynthetic Efficiency and Enhancing the Accumulation of Total Soluble Sugars. Plant Physiol. Biochem. 2025, 218, 109306. [Google Scholar] [CrossRef]
- T/CNFPIA 3024-2022; Wood Vinegar. China National Forest Products Industry Association: Beijing, China, 2022.
- Renault, H.; Alber, A.; Horst, N.A.; Lopes, A.B.; Fich, E.A.; Kriegshauser, L.; Wiedemann, G.; Ullmann, P.; Herrgott, L.; Erhardt, M.; et al. A Phenol-Enriched Cuticle Is Ancestral to Lignin Evolution in Land Plants. Nat. Commun. 2017, 8, 14713. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Adeel, M.; Guo, Z.; Chetwynd, A.J.; Ma, C.; Bai, T.; Hao, Y.; Rui, Y. Physiological Impacts of Zero Valent Iron, Fe3O4 and Fe2O3 Nanoparticles in Rice Plants and Their Potential as Fe Fertilizers. Environ. Pollut. 2021, 269, 116134. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S.; Mohapatra, T. Interaction Between Macro- and Micro-Nutrients in Plants. Front. Plant Sci. 2021, 12, 665583. [Google Scholar] [CrossRef]
- Etesami, H.; Glick, B.R. Bacterial Indole-3-Acetic Acid: A Key Regulator for Plant Growth, Plant-Microbe Interactions, and Agricultural Adaptive Resilience. Microbiol. Res. 2024, 281, 127602. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, Y.; Zhao, W.; Yi, T.; Jiang, Y.; Zhu, G.; Sun, Y.; Wang, Q.; Huang, L.; Chen, F.; et al. Potassium-Based Nanomaterials Significantly Enhance Nutrient Utilization Efficiency and Promote High Crop Yields. Environ. Sci. Nano 2024, 11, 2906–2922. [Google Scholar] [CrossRef]
- Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Hou, T.; et al. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea). Front. Plant Sci. 2016, 7, 815. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, J.; Li, M.; Li, Y.; Zhou, P.; Wang, Q.; Sun, Y.; Zhu, G.; Wang, Q.; Zhang, P.; et al. Effect of Silica-Based Nanomaterials on Seed Germination and Seedling Growth of Rice (Oryza sativa L.). Nanomaterials 2022, 12, 4160. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, P.; Guo, Z.; Cao, W.; Gao, L.; Li, Y.; Tian, C.F.; Chen, Q.; Shen, Y.; Ren, F.; et al. Molybdenum Nanofertilizer Boosts Biological Nitrogen Fixation and Yield of Soybean through Delaying Nodule Senescence and Nutrition Enhancement. ACS Nano 2023, 17, 14761–14774. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, P.; He, M.; Cao, Y.; Adeel, M.; Shakoor, N.; Jiang, Y.; Zhao, W.; Li, Y.; Li, M.; et al. Iron-Based Nanomaterials Reduce Cadmium Toxicity in Rice (Oryza sativa L.) by Modulating Phytohormones, Phytochelatin, Cadmium Transport Genes and Iron Plaque Formation. Environ. Pollut. 2023, 320, 121063. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, T.; Zhou, P.; Wu, Z.; Tan, Z.; Rui, Y. Insights into the Effect of Manganese-Based Nanomaterials on the Distribution Trait and Nutrition of Radish (Raphanus sativus L.). Plant Physiol. Biochem. 2024, 207, 108428. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, T.; Li, Y.; Wang, Q.; Zhao, W.; Nadeem, M.; Zhang, P.; Rui, Y. Magnetic Nanoparticles in Agriculture: Unraveling the Impact of Nickel Ferrite Nanoparticles on Peanut Growth and Seed Nutritional Quality. Plants 2025, 14, 1011. [Google Scholar] [CrossRef]
- Ding, Y.; Tang, Y.; Chen, Y.; Wang, Q.; Rui, Y. Nano-Priming with MnFe2O4 NMs Enhances Resistance to Drought Stress and Salt Stress in Maize. Russ. J. Plant Physiol. 2025, 72, 16. [Google Scholar] [CrossRef]
- Zhou, P.; Jiang, Y.; Adeel, M.; Shakoor, N.; Zhao, W.; Liu, Y.; Li, Y.; Li, M.; Azeem, I.; Rui, Y.; et al. Nickel Oxide Nanoparticles Improve Soybean Yield and Enhance Nitrogen Assimilation. Environ. Sci. Technol. 2023, 57, 7547–7558. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.H.; Shen, W.B.; Ye, M.B.; Xu, L.L. Protective Effects of Nitric Oxide on Salt Stress-Induced Oxidative Damage to Wheat (Triticum aestivum L.) Leaves. Chin. Sci. Bull. 2002, 47, 677–681. [Google Scholar] [CrossRef]
- Rong, W.; Qi, L.; Wang, A.; Ye, X.; Du, L.; Liang, H.; Xin, Z.; Zhang, Z. The ERF Transcription Factor TaERF3 Promotes Tolerance to Salt and Drought Stresses in Wheat. Plant Biotechnol. J. 2014, 12, 468–479. [Google Scholar] [CrossRef]
- Ahmad, I.; Munsif, F.; Mihoub, A.; Jamal, A.; Saeed, M.F.; Babar, S.; Fawad, M.; Zia, A. Beneficial Effect of Melatonin on Growth and Chlorophyll Content in Wheat (Triticum aestivum L.) Grown Under Salt Stress Conditions. Gesunde Pflanz. 2022, 74, 997–1009. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, Y.; Li, J.; Song, Z.; Han, H. Novel Approach to Enhance Bradyrhizobium diazoefficiens Nodulation through Continuous Induction of ROS by Manganese Ferrite Nanomaterials in Soybean. J. Nanobiotechnol. 2022, 20, 168. [Google Scholar] [CrossRef]
- Li, J.; Yu, B.; Ma, C.; Li, H.; Jiang, D.; Nan, J.; Xu, M.; Liu, H.; Chen, S.; Duanmu, H.; et al. Functional Characterization of Sugar Beet M14 Antioxidant Enzymes in Plant Salt Stress Tolerance. Antioxidants 2023, 12, 57. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Y.; Yao, X.-L.; Zhang, J.; Liu, S.; Cao, H.-R.; Bai, S.; Chen, C.-Q.; Zhang, D.-X.; Xu, A.; et al. Inorganic Nitrogen Inhibits Symbiotic Nitrogen Fixation through Blocking NRAMP2-Mediated Iron Delivery in Soybean Nodules. Nat. Commun. 2024, 15, 8946. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Li, Z.; Hao, X.; He, T.; Chen, Y.; Yang, M.; Rong, C.; Gu, C.; Xiao, Q.; Lin, R.; Zheng, X. Bamboo Vinegar Regulates the Phytoremediation Efficiency of Perilla frutescens (L.) Britt. by Reducing Membrane Lipid Damage and Increasing Cadmium Retention. J. Hazard. Mater. 2024, 476, 135155. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Yue, Y.; Lu, X.; Liu, H.; Zheng, Z.; Liu, Z.; Ma, H. Enhanced Soil Phosphorus Availability via Combined Biochar and Wood Vinegar Application. J. Soils Sediments 2025, 25, 751–758. [Google Scholar] [CrossRef]
- He, L.; Geng, K.; Li, B.; Li, S.; Gustave, W.; Wang, J.; Jeyakumar, P.; Zhang, X.; Wang, H. Enhancement of Nutrient Use Efficiency with Biochar and Wood Vinegar: A Promising Strategy for Improving Soil Productivity. J. Sci. Food Agric. 2025, 105, 465–472. [Google Scholar] [CrossRef]
- Liu, X.; Zhan, Y.; Li, X.; Li, Y.; Feng, X.; Bagavathiannan, M.; Zhang, C.; Qu, M.; Yu, J. The Use of Wood Vinegar as a Non-Synthetic Herbicide for Control of Broadleaf Weeds. Ind. Crop. Prod. 2021, 173, 114105. [Google Scholar] [CrossRef]
- Chang, Z.; Xu, Q.; Yan, S.; Liu, Y.; Geng, F.; Yuan, S.; Yao, X.; Ma, N.; Wang, K.; Song, G.; et al. Film Based on Chitosan and Wood Vinegar with Superior Antioxidant, UV-Shielding, and Bacteriostatic Properties for Food Packaging. Food Hydrocoll. 2025, 167, 111430. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, B.; Zhong, X.; Wang, L.; Zhang, Q.; Xie, H.; Shen, Y.; Feng, Y. Biochar and Pyroligneous Acid Contributed to the Sustainable Reduction of Ammonia Emissions: From Compost Process to Soil Application. J. Hazard. Mater. 2025, 489, 137677. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-C.; Peng, Z.-Y.; Li, C.-L.; Li, F.; Liu, C.; Xia, G.-M. Proteomic Analysis on a High Salt Tolerance Introgression Strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 2008, 8, 1470–1489. [Google Scholar] [CrossRef] [PubMed]
- Nauman, M.; Alghamdi, A.A.; Ahmed, J.; Ahmad, R.; Bilal, M.; Khan, S.A.; Irshad, M.; Shahzad, M. Enhanced Resilience to Salt Stress: An Integrated Approach Addressing Physiochemical Attributes of Wheat (Triticum aestivum L.). Pol. J. Environ. Stud. 2025, 34, 2323–2336. [Google Scholar] [CrossRef] [PubMed]
Component | Component Content | Element | Concentration (mg/L) |
---|---|---|---|
Water | 89.0–91.0% | Fe | 205.19 |
Formic Acid | 0.1–0.2% | Si | 63.387 |
Acetic Acid | 5.5–6.5% | K | 40.085 |
Succinic Acid | 0.05–0.07% | Ca | 8.8788 |
Propionic Acid | 0.8–1.0% | Na | 23.609 |
Methanol | 1.0–2.0% | Mg | 3.637 |
Acetone | 0.0156% | Cr | 1.9426 |
Methyl Acetate | 0.0954% | Mn | 1.8255 |
Methyl Propionate | 0.0225% | Zn | 1.6998 |
1-Hydroxy-2-Butanone | 0.0200% | Ni | 0.9202 |
Phenol | 0.0506% | Cu | 0.4978 |
Raw Solution | 100× | 300× | 500× | |
---|---|---|---|---|
pH | 2.83 | 3.05 | 3.23 | 3.33 |
EC (mS/cm) | 3.30 | 0.20 | 0.13 | 0.08 |
Chemical | Concentration | Chemical | Concentration |
---|---|---|---|
Ca(NO3)2·4H2O | 5 mmol L−1 | MnSO4·H2O | 10 μmol L−1 |
KNO3 | 5 mmol L−1 | ZnSO4·7H2O | 1 μmol L−1 |
KH2PO4 | 1 mmol L−1 | (NH4)6Mo7O24·4H2O | 0.05 μmol L−1 |
MgSO4·7H2O | 2 mmol L−1 | CuSO4·5H2O | 0.95 μmol L−1 |
H3BO3 | 29.6 μmol L−1 | Fe (III)-EDTA | 50 μmol L−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Li, Y.; Tang, Y.; Ding, Y.; Rui, Y. Recycling Agricultural Waste into Plant Protectants: Mechanisms of Wood Vinegar in Alleviating Salt Stress in Triticum aestivum L. Agronomy 2025, 15, 2078. https://doi.org/10.3390/agronomy15092078
Zhang T, Li Y, Tang Y, Ding Y, Rui Y. Recycling Agricultural Waste into Plant Protectants: Mechanisms of Wood Vinegar in Alleviating Salt Stress in Triticum aestivum L. Agronomy. 2025; 15(9):2078. https://doi.org/10.3390/agronomy15092078
Chicago/Turabian StyleZhang, Taiming, Yuanbo Li, Yuying Tang, Yanru Ding, and Yukui Rui. 2025. "Recycling Agricultural Waste into Plant Protectants: Mechanisms of Wood Vinegar in Alleviating Salt Stress in Triticum aestivum L." Agronomy 15, no. 9: 2078. https://doi.org/10.3390/agronomy15092078
APA StyleZhang, T., Li, Y., Tang, Y., Ding, Y., & Rui, Y. (2025). Recycling Agricultural Waste into Plant Protectants: Mechanisms of Wood Vinegar in Alleviating Salt Stress in Triticum aestivum L. Agronomy, 15(9), 2078. https://doi.org/10.3390/agronomy15092078