Electrical Impedance Spectroscopy Reveals Physiological Acclimation in Apple Rootstocks During Recurrent Water Stress Episodes
Abstract
1. Introduction
2. Materials and Method
2.1. Material
2.2. Experiment Design
2.3. Indicators Measurement and Machine Learning Classification
2.3.1. Indicator Measurement
2.3.2. Machine Learning Classification Methods
2.4. Data Analysis
3. Results
3.1. Effect of Water Stress on Physiological Parameters
3.2. Effect of Water Stress on EIS
3.3. Correlation Analysis
3.4. Classification Results
4. Discussion
4.1. Physiological Parameters Selection
4.2. EIS Parameters Selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Climate Change 2013–The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Intergovernmental Panel On Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-05799-9. [Google Scholar]
- Ispriyanti, D.; Prahutama, A.; Wati, R.D.I. Analysis Classification of Households Who Received “Raskin” in Semarang City Using Fuzzy K-Nearest Neighbor (FKNN) and Support Vector Machine (SVM). J. Math. Comput. Sci. 2022, 12, 173. [Google Scholar] [CrossRef]
- Levitt, J. Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses; Academic Press: New York, NY, USA, 1980; ISBN 0-12-445501-8. [Google Scholar]
- Ortiz, N.; Armada, E.; Duque, E.; Roldán, A.; Azcón, R. Contribution of Arbuscular Mycorrhizal Fungi and/or Bacteria to Enhancing Plant Drought Tolerance under Natural Soil Conditions: Effectiveness of Autochthonous or Allochthonous Strains. J. Plant Physiol. 2015, 174, 87–96. [Google Scholar] [CrossRef]
- Heinitz, C.C.; Fort, K.; Walker, M.A. Developing Drought and Salt Resistant Grape Rootstocks. Acta Hortic. 2015, 1082, 305–312. [Google Scholar] [CrossRef]
- Pinheiro, C.; Chaves, M.M. Photosynthesis and Drought: Can We Make Metabolic Connections from Available Data? J. Exp. Bot. 2011, 62, 869–882. [Google Scholar] [CrossRef]
- Pallavolu, L.A.; Pasala, R.; Kulasekaran, R.; Pandey, B.B.; Virupaksham, U.; Perika, S. Analysing the SPAD Dynamics of Water-Stressed vs. Well-Watered Sesame (Sesamum indicum L.) Accessions and Establishing Their Relationship with Seed Yield. PeerJ 2023, 11, e14711. [Google Scholar] [CrossRef]
- Smethurst, C.F.; Shabala, S. Screening Methods for Waterlogging Tolerance in Lucerne: Comparative Analysis of Waterlogging Effects on Chlorophyll Fluorescence, Photosynthesis, Biomass and Chlorophyll Content. Funct. Plant Biol. 2003, 30, 335. [Google Scholar] [CrossRef] [PubMed]
- Patanè, C.; Cosentino, S.L.; Romano, D.; Toscano, S. Relative Water Content, Proline, and Antioxidant Enzymes in Leaves of Long Shelf-Life Tomatoes under Drought Stress and Rewatering. Plants 2022, 11, 3045. [Google Scholar] [CrossRef] [PubMed]
- Gori, A.; Moura, B.B.; Sillo, F.; Alderotti, F.; Pasquini, D.; Balestrini, R.; Ferrini, F.; Centritto, M.; Brunetti, C. Unveiling Resilience Mechanisms of Quercus Ilex Seedlings to Severe Water Stress: Changes in Non-Structural Carbohydrates, Xylem Hydraulic Functionality and Wood Anatomy. Sci. Total Environ. 2023, 878, 163124. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, E.; Romero, L.; Ruiz, J.M. Accumulation of Free Polyamines Enhances the Antioxidant Response in Fruits of Grafted Tomato Plants under Water Stress. J. Plant Physiol. 2016, 190, 72–78. [Google Scholar] [CrossRef]
- Serrano-Finetti, E.; Castillo, E.; Alejos, S.; León Hilario, L.M. Toward Noninvasive Monitoring of Plant Leaf Water Content by Electrical Impedance Spectroscopy. Comput. Electron. Agric. 2023, 210, 107907. [Google Scholar] [CrossRef]
- Rahman, M.H.; Busby, S.; Ru, S.; Hanif, S.; Sanz-Saez, A.; Zheng, J.; Rehman, T.U. Transformer-Based Hyperspectral Image Analysis for Phenotyping Drought Tolerance in Blueberries. Comput. Electron. Agric. 2025, 228, 109684. [Google Scholar] [CrossRef]
- Jócsák, I.; Végvári, G.; Vozáry, E. Electrical Impedance Measurement on Plants: A Review with Some Insights to Other Fields. Theor. Exp. Plant Physiol. 2019, 31, 359–375. [Google Scholar] [CrossRef]
- Wang, A.-F.; Di, B.; Repo, T.; Roitto, M.; Zhang, G. Responses of Parameters for Electrical Impedance Spectroscopy and Pressure–Volume Curves to Drought Stress in Pinus Bungeana Seedlings. Forests 2020, 11, 359. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Qian, J.; Di, B.; Zhang, G.; Ren, Z. Electrical Impedance Spectroscopy (EIS) in Plant Roots Research: A Review. Plant Methods 2021, 17, 118. [Google Scholar] [CrossRef]
- Barbosa, J.A.; Freitas, V.M.S.; Vidotto, L.H.B.; Schleder, G.R.; De Oliveira, R.A.G.; Da Rocha, J.F.; Kubota, L.T.; Vieira, L.C.S.; Tolentino, H.C.N.; Neckel, I.T.; et al. Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Appl. Mater. Interfaces 2022, 14, 22989–23001. [Google Scholar] [CrossRef]
- Reynolds, J.; Taggart, M.; Martin, D.; Lobaton, E.; Cardoso, A.; Daniele, M.; Bozkurt, A. Rapid Drought Stress Detection in Plants Using Bioimpedance Measurements and Analysis. IEEE Trans. AgriFood Electron. 2023, 1, 135–144. [Google Scholar] [CrossRef]
- Jamaludin, D.; Abd Aziz, S.; Ahmad, D.; Jaafar, H.Z.E. Impedance Analysis of Labisia Pumila Plant Water Status. Inf. Process. Agric. 2015, 2, 161–168. [Google Scholar] [CrossRef]
- Blanchard, R.O.; Carter, J.K. Electrical Resistance Measurements to Detect Dutch Elm Disease Prior to Symptom Expression. Can. J. For. Res. 1980, 10, 111–114. [Google Scholar] [CrossRef]
- Wilner, J. Utilization of Bioelectric Tests in Biological Research: A Sequel to Work Published in 1979. 1988. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19802405764 (accessed on 5 January 2025).
- Davis, W.; Shortle, W.; Shigo, A. Potential Hazard Rating System for Fir Stands Infested with Budworm Using Cambial Electrical Resistance. Can. J. For. Res. 1980, 10, 541–544. [Google Scholar] [CrossRef]
- Kriston-Vizi, J.; Umeda, M.; Miyamoto, K. Assessment of the Water Status of Mandarin and Peach Canopies Using Visible Multispectral Imagery. Biosyst. Eng. 2008, 100, 338–345. [Google Scholar] [CrossRef]
- Rahmani, N.; Mani-Varnosfaderani, A. Quality Control, Classification, and Authentication of Iranian Rice Varieties Using FT-IR Spectroscopy and Sparse Chemometric Methods. J. Food Compos. Anal. 2022, 112, 104650. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, L.; Zhang, Y.; Zhou, J.; Zhang, T.; Bi, X. Prediction and Risk Stratification from Hospital Discharge Records Based on Hierarchical sLDA. BMC Med. Inform. Decis. Mak. 2022, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Yang, Q.; Zhao, H. Identification of Peanut Oil Origins Based on Raman Spectroscopy Combined with Multivariate Data Analysis Methods. J. Integr. Agric. 2022, 21, 2777–2785. [Google Scholar] [CrossRef]
- Kaur, T.; Saini, B.S.; Gupta, S. An Adaptive Fuzzy K-Nearest Neighbor Approach for MR Brain Tumor Image Classification Using Parameter Free Bat Optimization Algorithm. Multimed. Tools Appl. 2019, 78, 21853–21890. [Google Scholar] [CrossRef]
- Maillo, J.; Garcia, S.; Luengo, J.; Herrera, F.; Triguero, I. Fast and Scalable Approaches to Accelerate the Fuzzy k -Nearest Neighbors Classifier for Big Data. IEEE Trans. Fuzzy Syst. 2020, 28, 874–886. [Google Scholar] [CrossRef]
- Wu, S.; Mao, P.; Li, R.; Cai, Z.; Heidari, A.A.; Xia, J.; Chen, H.; Mafarja, M.; Turabieh, H.; Chen, X. Evolving Fuzzy K-Nearest Neighbors Using an Enhanced Sine Cosine Algorithm: Case Study of Lupus Nephritis. Comput. Biol. Med. 2021, 135, 104582. [Google Scholar] [CrossRef]
- Zhou, P.; Qian, J.; Yuan, W.; Yang, X.; Di, B.; Meng, Y.; Shao, J. Effects of Interval Flooding Stress on Physiological Characteristics of Apple Leaves. Horticulturae 2021, 7, 331. [Google Scholar] [CrossRef]
- Zhang, G.; Ryyppö, A.; Vapaavuori, E.; Repo, T. Quantification of Additive Response and Stationarity of Frost Hardiness by Photoperiod and Temperature in Scots Pine. Can. J. For. Res. 2003, 33, 1772–1784. [Google Scholar] [CrossRef]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A Review of Classification Algorithms for EEG-Based Brain–Computer Interfaces: A 10 Year Update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef]
- Dhabe, P.; Chugwani, M.P.; Kahalekar, V.B. Modified K-Nearest Neighbor Fuzzy Classifier Using Group Prototypes and Its Application to Skin Segmentation. In EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing; Haldorai, A., Ramu, A., Mohanram, S., Onn, C.C., Eds.; EAI/Springer Innovations in Communication and Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 173–180. ISBN 978-3-030-19561-8. [Google Scholar]
- Najeeb, U.; Bange, M.P.; Atwell, B.J.; Tan, D.K.Y. Understanding of the Interactive Effect of Waterlogging and Shade on Cotton (Gossypium hirsutum L.) Growth and Yield. Procedia Environ. Sci. 2015, 29, 85–86. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, H.; Kan, Z.; Liu, D.; Wang, B.; Fan, S.; Jiang, P. Growth and Non-Structural Carbohydrates Response Patterns of Eucommia Ulmoides under Salt and Drought Stress. Front. Plant Sci. 2024, 15, 1436152. [Google Scholar] [CrossRef]
- Nawaz, A.F.; Gargiulo, S.; Pichierri, A.; Casolo, V. Exploring the Role of Non-Structural Carbohydrates (NSCs) Under Abiotic Stresses on Woody Plants: A Comprehensive Review. Plants 2025, 14, 328. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Guo, W.; Yang, L.; Zou, Z.; Zhang, X.; Addo-Danso, S.D.; Zhou, L.; Li, S. Effects of Drought Stress on Non-Structural Carbohydrates in Different Organs of Cunninghamia Lanceolata. Plants 2023, 12, 2477. [Google Scholar] [CrossRef]
- Pawar, A.R.; Patil, M.B.; Patil, S.S.; Gade, K.A.; Mahadule, P.A.; Shirsat, D.V.; Gedam, P.A.; Khade, Y.P.; Arunachalam, T.; Mahajan, V.B. Differential Responses of Onion Genotypes in Plant Growth, Physiological and Biochemical Traits, and Bulb Yield Under Waterlogging Stress. Preprint 2025. [Google Scholar] [CrossRef]
- Xiang, D.-B.; Peng, L.-X.; Zhao, J.-L.; Zou, L.; Zhao, G.; Song, C. Effect of Drought Stress on Yield, Chlorophyll Contents and Photosynthesis in Tartary Buckwheat (Fagopyrum tataricum). J. Food Agric. Environ. 2013, 11, 1358–1363. [Google Scholar]
- Ahanger, M.A.; Tomar, N.S.; Tittal, M.; Argal, S.; Agarwal, R. Plant Growth under Water/Salt Stress: ROS Production; Antioxidants and Significance of Added Potassium under Such Conditions. Physiol. Mol. Biol. Plants 2017, 23, 731–744. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Head, D.J.; Hauser, B.A. During Water Stress, Fertility Modulated by ROS Scavengers Abundant in Arabidopsis Pistils. Plants 2023, 12, 2182. [Google Scholar] [CrossRef]
- Anaya, F.; Fghire, R.; Wahbi, S.; Carvalho, I.; Loutfi, K. Multifaceted Impact of Exogenous Salicylic Acid on Vicia faba L. Under Salt Stress: Plant Growth, Water Status, and Photosynthetic Performance (OJIP Fluorescence). J. Soil Sci. Plant Nutr. 2025, 1–17. [Google Scholar] [CrossRef]
- Gholamin, R.; Khayatnezhad, M. The Effect of End Season Drought Stress on the Chlorophyll Content, Chlorophyll Fluorescence Parameters and Yield in Maize Cultivars. Sci. Res. Essays 2011, 6, 5351–5357. [Google Scholar]
- Luis De La Fuente, J.; Zunzunegui, M.; Barradas, M.C.D. Physiological Responses to Water Stress and Stress Memory in Argania Spinosa. Plant Stress 2023, 7, 100133. [Google Scholar] [CrossRef]
- Hilker, M.; Schwachtje, J.; Baier, M.; Balazadeh, S.; Bäurle, I.; Geiselhardt, S.; Hincha, D.K.; Kunze, R.; Mueller-Roeber, B.; Rillig, M.C. Priming and Memory of Stress Responses in Organisms Lacking a Nervous System. Biol. Rev. 2016, 91, 1118–1133. [Google Scholar] [CrossRef]
- Checkani, O.; Faghani, E.; Dadashi, M.R.; Nourouzi, H.A.; Sohrabi, B. Memory of Water Stress in Cotton (Gossypium hirsutum L.): Evaluating Physiological Responses and Yield Stability. J. Soil Sci. Plant Nutr. 2025, 1–18. [Google Scholar] [CrossRef]
- Shtein, I.; Wolberg, S.; Munitz, S.; Zait, Y.; Rosenzweig, T.; Grünzweig, J.M.; Ohana-Levi, N.; Netzer, Y. Multi-Seasonal Water-Stress Memory versus Temperature-Driven Dynamic Structural Changes in Grapevine. Tree Physiol. 2021, 41, 1199–1211. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.-Q.; Dong, S.-H. Assessing Frost Hardiness of Pinus Bungeana Shoots and Needles by Electrical Impedance Spectroscopy with and without Freezing Tests. J. Plant Ecol. 2010, 3, 285–293. [Google Scholar] [CrossRef]
- Cao, Y.; Repo, T.; Silvennoinen, R.; Lehto, T.; Pelkonen, P. Analysis of the Willow Root System by Electrical Impedance Spectroscopy. J. Exp. Bot. 2011, 62, 351–358. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, G. Effects of Drought on Electrical Impedance Spectroscopy Parameters in Stems of Pinus Bungeana Zucc. Seedlings. Front. Agric. China 2010, 4, 468–474. [Google Scholar] [CrossRef]
- Premachandra, G.S.; Saneoka, H.; Fujita, K.; Ogata, S. Cell Membrane Stability and Leaf Water Relations as Affected by Phosphorus Nutrition under Water Stress in Maize. Soil Sci. Plant Nutr. 1990, 36, 661–666. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, J.; Zhang, Y.; Ding, T.; Di, B.; Qian, J. Electrical and Photosynthetic Response of Rosa Chinensis under Drought Stress. Biosyst. Eng. 2023, 236, 248–257. [Google Scholar] [CrossRef]
- Hamed, K.B.; Zorrig, W.; Hamzaoui, A.H. Electrical Impedance Spectroscopy: A Tool to Investigate the Responses of One Halophyte to Different Growth and Stress Conditions. Comput. Electron. Agric. 2016, 123, 376–383. [Google Scholar] [CrossRef]
- Quiroga, G.; Erice, G.; Aroca, R.; Zamarreño, Á.M.; García-Mina, J.M.; Ruiz-Lozano, J.M. Radial Water Transport in Arbuscular Mycorrhizal Maize Plants under Drought Stress Conditions Is Affected by Indole-Acetic Acid (IAA) Application. J. Plant Physiol. 2020, 246, 153115. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, S.; Kreyling, J.; Grant, K.; Beierkuhnlein, C.; Walter, J.; Jentsch, A. Recurrent Mild Drought Events Increase Resistance toward Extreme Drought Stress. Ecosystems 2014, 17, 1068–1081. [Google Scholar] [CrossRef]
- Afzal, A.; Duiker, S.W.; Watson, J.E. Leaf Thickness to Predict Plant Water Status. Biosyst. Eng. 2017, 156, 148–156. [Google Scholar] [CrossRef]
- Huang, G.-T.; Ma, S.-L.; Bai, L.-P.; Zhang, L.; Ma, H.; Jia, P.; Liu, J.; Zhong, M.; Guo, Z.-F. Signal Transduction during Cold, Salt, and Drought Stresses in Plants. Mol. Biol. Rep. 2012, 39, 969–987. [Google Scholar] [CrossRef] [PubMed]
EIS Parameters | Relative Chlorophyll Content SPAD | Maximum Photochemical Efficiency Fv/Fm | Relative Water Content RWC | Non-Structural Carbohydrate NSC |
---|---|---|---|---|
re | 0.532 * | 0.341 | 0.471 * | −0.389 |
ri | −0.684 ** | −0.575 * | 0.613 * | 0.520 * |
r | −0.523 * | −0.584* | −0.641 ** | 0.552 * |
r1 | 0.485 * | 0.314 | 0.495 * | −0.367 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Wu, S.; Chen, J.; Sun, B.; Di, B.; Shan, G.; Qian, J. Electrical Impedance Spectroscopy Reveals Physiological Acclimation in Apple Rootstocks During Recurrent Water Stress Episodes. Agronomy 2025, 15, 2068. https://doi.org/10.3390/agronomy15092068
Zhou J, Wu S, Chen J, Sun B, Di B, Shan G, Qian J. Electrical Impedance Spectroscopy Reveals Physiological Acclimation in Apple Rootstocks During Recurrent Water Stress Episodes. Agronomy. 2025; 15(9):2068. https://doi.org/10.3390/agronomy15092068
Chicago/Turabian StyleZhou, Juan, Shuaiyang Wu, Jianan Chen, Bo Sun, Bao Di, Guilin Shan, and Ji Qian. 2025. "Electrical Impedance Spectroscopy Reveals Physiological Acclimation in Apple Rootstocks During Recurrent Water Stress Episodes" Agronomy 15, no. 9: 2068. https://doi.org/10.3390/agronomy15092068
APA StyleZhou, J., Wu, S., Chen, J., Sun, B., Di, B., Shan, G., & Qian, J. (2025). Electrical Impedance Spectroscopy Reveals Physiological Acclimation in Apple Rootstocks During Recurrent Water Stress Episodes. Agronomy, 15(9), 2068. https://doi.org/10.3390/agronomy15092068