Agronomic Trait and Gene Analysis of Diangu 1839, a Newly Bred Fragrant and Soft Rice Variety Derived from Diantun 502 in Yunnan, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Crossing, Selection, and Breeding Methods
2.3. Breeding Population Construction and Planting
2.4. Trait Assessment Methods
2.4.1. Investigation of Major Agronomic Traits
2.4.2. Field Survey of Disease Resistance
2.4.3. Identification of Disease Resistance
2.4.4. Molecular Marker-Assisted Selection
2.4.5. Analysis of Rice Milling and Cooking Flavor Quality
2.4.6. RVA Profile Analysis of Rice Flour
2.4.7. Determination of 2-AP Content
2.4.8. Gene Loci Determination
2.5. Statistical Analysis
3. Results
3.1. Selection and Breeding Process of the New Aromatic Soft Rice Variety Diangu 1839
3.2. Changes in Major Agronomic Traits and Related Gene Loci
3.3. Changes in Rice Quality Traits and Gene Loci
3.4. Changes in Disease Resistance Levels and Related Gene Loci
4. Discussion
4.1. Selection of Parental Soft Rice Traits and Their Early Accurate Identification
4.2. Naturally Induced Stress by Field Diseases to Select for Resistant Plants
4.3. Yield Trait Selection Prioritizing Grain Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owusu, E.A.; Sun, Z.; Liu, S.; Xu, D.; Fan, H.; Ai, H.; Huang, X. Comparison of main agronomic traits and identification of important genes in Japonica rice cultivars grown in the Jianghuai region. Agronomy 2025, 15, 1409. [Google Scholar] [CrossRef]
- Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L.D.; Anuntalabhochai, S. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 307, 229–234. [Google Scholar] [CrossRef]
- Hu, F.; Shen, C.; Feng, D.; Zhu, S.; Lu, J.; Zhu, J.; Qiu, X.; Chen, K.; Du, B.; Xu, J. Rice–potato rotation pattern affects 2-acetyl-1-pyrroline biosynthesis and productivity in aromatic rice grains. Agronomy 2025, 15, 97. [Google Scholar] [CrossRef]
- Chan-in, P.; Jamjod, S.; Yimyam, N.; Rerkasem, B.; Pusadee, T. Grain Quality and Allelic Variation of the Badh2 Gene in Thai Fragrant Rice Landraces. Agronomy 2020, 10, 779. [Google Scholar] [CrossRef]
- Laohakunjit, N.; Kerdchoechuen, O. Aroma enrichment and the change during storage of non-aromatic milled rice coated with extracted natural flavor. Food Chem. 2007, 101, 339–344. [Google Scholar] [CrossRef]
- Chongkid, B. Gamma-ray induced mutation of KDML105 for photo insensitivity, short harvest age, and drought tolerance. Am. Trans. Eng. Appl. Sci. 2013, 2, 269–275. [Google Scholar]
- Vatanee, W.; Sumetee, L.; Irie, K.; Somchai, C. Growth and yield-related traits of Khao Dawk Mali 105 (KDML105) rice in paddy and upland conditions. Agronomy 2023, in press. [Google Scholar]
- Techarang, J.; Yu, L.D.; Phanchaisri, B. Low-energy heavy-ion implantation of crop seeds to induce a broad spectrum of high-yield-based mutation of Thai rice. In Proceedings of the 2018 22nd International Conference on Ion Implantation Technology (IIT), Würzburg, Germany, 16–21 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 372–376. [Google Scholar] [CrossRef]
- Luo, Y.; Yin, Z. Marker-assisted breeding of Thai fragrance rice for semi-dwarf phenotype, submergence tolerance and disease resistance to rice blast and bacterial blight. Mol. Breed. 2013, 32, 709–721. [Google Scholar] [CrossRef]
- Pamuta, D.; Siangliw, M.; Sanitchon, J.; Pengrat, J.; Toojinda, T.; Theerakulpisut, P. Photosynthetic performance in improved ‘KDML105’ rice (Oryza sativa L.) lines containing drought and salt tolerance genes under drought and salt stress. Pertanika J. Trop. Agric. Sci. 2020, 43, 4. [Google Scholar] [CrossRef]
- Phanchaisri, B.; Techarang, J.; Semsang, N.; Yu, L.D. Low-energy heavy-ion beam induced high-yield mutation breeding of Thai jasmine rice (Oryza sativa L. cv. KDML 105). J. Phys. Conf. Ser. 2019, 1380, 012072. [Google Scholar] [CrossRef]
- Promnart, U.; Puripunyavanich, V.; Boonsirichai, K.; Doungsoongnern, P.; Kaewchuenchai, R.; Chamotri, S.; Klakhaeng, K.; Sarsu, F. Breeding Thai rice for flood tolerance through electron beam-induced mutations. Int. J. Genet. Eng. 2017, 5, 1–10. [Google Scholar]
- Jairin, J.; Teangdeerith, S.; Leelagud, P.; Kothcharerk, J.; Sansen, K.; Yi, M.; Vanavichit, A.; Toojinda, T. Development of rice introgression lines with brown planthopper resistance and KDML105 grain quality characteristics through marker-assisted selection. Field Crops Res. 2009, 110, 263–271. [Google Scholar] [CrossRef]
- Win, K.M.; Korinsak, S.; Jantaboon, J.; Siangliw, M.; Lanceras-Siangliw, J.; Sirithunya, P.; Vanavichit, A.; Pantuwan, G.; Jongdee, B.; Toojinda, T. Breeding the Thai jasmine rice variety KDML105 for non-age-related broad-spectrum resistance to bacterial blight disease based on combined marker-assisted and phenotypic selection. Field Crops Res. 2012, 137, 186–194. [Google Scholar] [CrossRef]
- Boonrueng, N.; Anuntalabhochai, S.; Jampeetong, A. Morphological and anatomical assessment of KDML105 (Oryza sativa L. spp. indica) and its mutants induced by low-energy ion beam. Rice Sci. 2013, 20, 213–219. [Google Scholar] [CrossRef]
- Concepcion, J.C. Understanding the Genetics and Chemistry of Important Quality Traits in Rice (Oryza sativa L.). Ph.D. Thesis, The University of Queensland, St Lucia, Australia, 2018. Available online: https://core.ac.uk/download/pdf/189929448.pdf (accessed on 1 August 2025).
- Huang, Y. Cultivation techniques of two high-quality rice varieties bred in Yunnan. South. Agric. 2016, 10, 38–39. [Google Scholar] [CrossRef]
- He, Q. High-quality, high-yield, and multi-resistant indica rice variety Dianrui 408. Yunnan Agric. Sci. Technol. 1986, 3, 23–26. [Google Scholar]
- Li, Z. Collection of Papers on Dian-Type Hybrid Rice; Yunnan Science and Technology Press: Kunming, China, 1990; pp. 118–122. [Google Scholar]
- Wan, J. Genetic Breeding and Variety Pedigree of Rice in China; China Agriculture Press: Beijing, China, 2010; pp. 270–271. [Google Scholar]
- Gu, X.; Gao, L.; Yang, M.; Fang, S.; Cun, Y.; Cai, Y.; Pu, S.; Wen, J. Rejuvenation of Soft and Aromatic indica Rice Variety Diantun 502 in Yunnan. J. Nucl. Agric. Sci. 2022, 36, 698–705. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Zhang, C.; Zhang, L.; Tan, Y.; Luo, P.; Li, Z.; Luan, Y.; Yu, Y.; Gao, L.; et al. Genetic Analysis of Fragrance Trait of High Quality and Soft Rice Variety ‘Diantun 502’ in Yunnan. Mol. Plant Breed. 2018, 16, 5397–5406. [Google Scholar] [CrossRef]
- Bradbury, L.M.; Henry, R.J.; Jin, Q.; Reinke, R.F.; Waters, D.L. A perfect marker for fragrance genotyping in rice. Mol. Breed. 2005, 16, 279–283. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, A.; Wang, F.; Wang, J.; Bi, J.; Kong, D.; Zhang, F.; Luo, L.; Liu, G.; Yu, X. Development and validation of a PCR-based functional marker system for identifying the low amylose content-associated gene Wxhp in rice. Breed. Sci. 2019, 69, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Grimm, C.C.; Bergman, C.; Delgado, J.; Delgado, J.T.; Bryant, R. Screening for 2-Acetyl-1-pyrroline in the headspace of rice using SPME/GC-MS. J. Agric. Food Chem. 2001, 49, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Qiu, J.; Yong, K.; Fan, J.; Zhang, Q.; Hua, H.; Liu, J.; Wang, Q.; Olsen, K.M.; Han, B.; et al. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat. Genet. 2021, 53, 243–253. [Google Scholar] [CrossRef]
- Hu, B.; Wang, W.; Ou, S.; Tang, J.; Li, H.; Che, R.; Zhang, Z.; Chai, X.; Wang, H.; Wang, Y.; et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 2015, 47, 834–838. [Google Scholar] [CrossRef]
- Shi, S.; Wang, E.; Li, C.; Cai, M.; Cheng, B.; Cao, C.; Jiang, Y. Use of protein content, amylose content, and RVA parameters to evaluate the taste quality of rice. Front. Nutr. 2022, 8, 758547. [Google Scholar] [CrossRef]
- Yue, H.; Zhang, M.; Cheng, X.; Liu, K.; Wan, B.; Zhu, J.; Tang, H.; Sun, M. Factors influencing characteristic values of RVA spectrum and their relationship with rice taste quality:a review. Jiangsu Agric. Sci. 2023, 51, 16–22. [Google Scholar] [CrossRef]
- Li, Z.; Shi, C.; Li, X.; Lin, X. Breeding of Diantun 502: Fragrant ant Soft Rice. J. Yunnan Agric. Univ. 1999, 1, 28–32. [Google Scholar] [CrossRef]
- Schnable, P.S.; Springer, N.M. Progress toward understanding heterosis in crop plants. Annu. Rev. Plant Biol. 2013, 64, 71–88. [Google Scholar] [CrossRef]
- Iqbal, O.; Yang, X.; Wang, Z.; Li, D.; Wen, J.; Ding, J.; Wang, C.; Li, C.; Wang, Y. Comparative transcriptome and genome analysis between susceptible Zhefang rice variety Diantun 502 and its resistance variety Diantun 506 upon Magnaporthe oryzae infection. BMC Plant Biol. 2025, 25, 341. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.; Dar, Z.A.; Dar, S.A. Breeding strategies for improving rice yield—A review. Agric. Sci. 2015, 6, 467–478. [Google Scholar] [CrossRef]
Traits | Diangu 1839 | Diantun 502 | t-Test | p-Value |
---|---|---|---|---|
Growth duration (day) | 161.4 ± 13.4 | 147.1 ± 15.6 | 2.1986 | 0.0412 |
Plant height (cm) | 111.3 ± 7.5 | 98.4 ± 9.8 | 3.2753 | 0.0042 |
Panicle length (cm) | 26.5 ± 2.0 | 26.6 ± 2.8 | 0.1767 | 0.8617 |
Effective panicles (panicles/plant) | 10.9 ± 1.4 | 9.3 ± 1.4 | 2.4871 | 0.0229 |
Grains per panicle (grains/panicle) | 149.5 ± 15.6 | 121.4 ± 12.8 | 4.3884 | 0.0004 |
Seed setting rate (%) | 80.6 ± 6.6 | 82.9 ± 7.4 | 0.7118 | 0.4857 |
Yield (t/ha) | 8.9 ± 1.0 | 7.8 ± 1.4 | 2.1055 | 0.0496 |
Serial Number | Gene | Type | Reference Variety | Phenotype | Diangu 1839 | Diantun 502 |
---|---|---|---|---|---|---|
1 | Gn1a | Yield | Habataki,9311 | Increased grains per panicle | √ | √ |
2 | OsSPL16 | Yield | HJX74 | High yield | √ | √ |
3 | SKC1 | Resistance to abiotic stress | Nona Bokra | Salt tolerance | √ | |
4 | qUVR-10 | Resistance to abiotic stress | Kasalath | Reduced photorepair activity | √ | √ |
5 | TOND1 | Resistance to abiotic stress | Teqing | Nitrogen deficiency tolerance | N | N |
6 | NRT1.1B | Resistance to abiotic stress | 9311 | Enhanced nitrogen uptake | √ | |
7 | Rymv1 | Resistance to biotic stress | Nipponbare | Resistance to yellow mottle virus disease | √ | √ |
8 | STV11 | Resistance to biotic stress | Kasalath | Durable resistance to rice stripe virus | √ | |
9 | OsAAP6 | Quality | 9311 | High protein | √ | √ |
10 | GW2 | Quality | WY3, Oochikara | Large grain | ||
11 | GS3 | Quality | Minghui 63 | Long grain | √ | √ |
12 | OsCYP704A3 | Quality | IR 24 | Low chalkiness | √ | √ |
13 | Chalk5 | Quality | H94 | Increased amylopectin content in non-glutinous rice | √ | |
14 | Wxhp | Quality | Nipponbare | Low amylose content | √ | √ |
15 | ALK | Quality | Minghui 63 | Increased medium- and long-chain amylopectin content | √ | √ |
16 | badh2 | Quality | Suyunuo | Fragrance | √ | √ |
17 | Hd1 | Growth period | Tadukan, Kasalath, Ma Sho | Photoperiod insensitivity, promoting rice heading | ||
18 | Hd16 | Growth period | Koshihikari | Delayed flowering stage | N | N |
19 | Hd17 | Growth period | Koshihikari | Delayed flowering | √ | √ |
20 | Sd-1 | Plant type | DGWG-type | Semi-dwarf plant | √ | √ |
21 | Sdt97 | Plant type | Y98149 | Semi-dwarf mutant | √ | |
22 | qNGR9 | Plant type | O. rufipogon | Upright panicle | √ | √ |
23 | TAC1 | Plant type | IR24 | Increased tiller angle | √ | |
24 | sh4 | Other | Nipponbare | Non-shattering | √ | √ |
Characteristics | Diangu 1839 | Diantun 502 | t-Test | p-Value |
---|---|---|---|---|
Brown rice rate (%) | 80.9 ± 0.2 | 77.6 ± 1.1 | 4.8439 | 0.0083 |
Milled rice rate (%) | 70.8 ± 5.5 | 67.9 ± 1.3 | 1.9267 | 0.1263 |
Amylose content (%) | 13.9 ± 0.4 | 13.0 ± 0.2 | 2.1019 | 0.1034 |
Alkali spreading value (grade) | 4.4 ± 0.3 | 4.7 ± 1.0 | 0.4126 | 0.7011 |
Gel consistency (mm) | 76.0 ± 4.0 | 70.6 ± 1.3 | 4.0000 | 0.0161 |
Grain length (mm) | 7.7 ± 0.0 | 7.2 ± 0.0 | 10.607 | 0.0004 |
Length-to-width ratio | 3.2 ± 0.0 | 3.1 ± 0.0 | 0.7071 | 0.5185 |
Transparency (grade) | 2.0 | 2.0 | --- | --- |
Chalkiness degree (%) | 0.7 ± 0.1 | 7.2 ± 0.1 | 26.429 | 0.0000 |
Chalky grain rate (%) | 3.7 ± 0.3 | 29.3 ± 1.1 | 37.654 | 0.0000 |
2-AP (ng/g) | 16.1 ± 0.9 | 16.7 ± 0.7 | 0.8690 | 0.4339 |
Cooking and eating quality score | 90.9 ± 1.6 | 85.3 ± 3.6 | 6.9794 | 0.0000 |
Variety | Rice Blast | Bacterial Leaf Blight | Sheath Blight | ||||||
---|---|---|---|---|---|---|---|---|---|
Blast Loss Rate | Comprehensive Resistance Index | Disease Grade | Resistance Category | Disease Grade | Resistance Category | Disease Grade | Resistance Category | ||
Diangu 1839 | 5 | 5.07 | 7 | S | 3 | R | 3 | R | |
Diantun 502 | 9 | 8.3 | 9 | HS | 3 | R | 5 | MR |
Serial Number | Gene | Variant Site | Phenotype | Diangu 1839 | Diantun 502 |
---|---|---|---|---|---|
1 | Bph14 | 29SNP | Brown planthopper resistance | 0.48 | 0.48 |
2 | Bph15 | 56SNP | Brown planthopper resistance | 0.16 | 0.16 |
3 | Bph18 | 30SNP | Brown planthopper resistance | 0.72 | 0.72 |
4 | Bph26 | 24SNP | Brown planthopper resistance | 0.52 | 0.52 |
5 | Bph6 | 26SNP | Brown planthopper resistance | 0.62 | 0.38 |
6 | Bph9 | 26SNP | Brown planthopper resistance | 0.44 | 0.44 |
7 | Pi1 | 10SNP | Blast resistance | 0.3 | 0.3 |
8 | Pi2 | 99SNP | Blast resistance | 0.66 | 0.66 |
9 | Pi5 | 33SNP | Blast resistance | 1 | 0.79 |
10 | Pi9 | 80SNP | Blast resistance | 0.6 | 0.6 |
11 | Pia | 13SNP | Blast resistance | 1 | 0.77 |
12 | Pid2 | 66SNP | Blast resistance | 1 | 0.85 |
13 | Pid3 | 64SNP | Blast resistance | 1 | 1 |
14 | Pigm | 90SNP | Blast resistance | 0.58 | 0.58 |
15 | pikh | 34SNP | Blast resistance | 0.53 | 0.53 |
16 | Pita | 32SNP | Blast resistance | 0.16 | 0.12 |
17 | xa13 | 61SNP | Bacterial leaf blight resistance | 0.08 | 0.08 |
18 | Xa21 | 12SNP | Bacterial leaf blight resistance | 1 | 0.83 |
19 | Xa23 | 40SNP | Bacterial leaf blight resistance | 0.07 | 0.1 |
20 | xa5 | 48SNP | Bacterial leaf blight resistance | 0.35 | 0.33 |
21 | Xa7 | 18SNP | Bacterial leaf blight resistance | 0.17 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Shi, Y.; Songji, Z.; Pu, S.; Guo, J.; Li, J.; Li, D.; Yang, X.; Wen, J. Agronomic Trait and Gene Analysis of Diangu 1839, a Newly Bred Fragrant and Soft Rice Variety Derived from Diantun 502 in Yunnan, China. Agronomy 2025, 15, 2042. https://doi.org/10.3390/agronomy15092042
Wu H, Shi Y, Songji Z, Pu S, Guo J, Li J, Li D, Yang X, Wen J. Agronomic Trait and Gene Analysis of Diangu 1839, a Newly Bred Fragrant and Soft Rice Variety Derived from Diantun 502 in Yunnan, China. Agronomy. 2025; 15(9):2042. https://doi.org/10.3390/agronomy15092042
Chicago/Turabian StyleWu, Haiyan, Yuping Shi, Zhuoma Songji, Shihuang Pu, Junjun Guo, Juan Li, Dandan Li, Xueyu Yang, and Jiancheng Wen. 2025. "Agronomic Trait and Gene Analysis of Diangu 1839, a Newly Bred Fragrant and Soft Rice Variety Derived from Diantun 502 in Yunnan, China" Agronomy 15, no. 9: 2042. https://doi.org/10.3390/agronomy15092042
APA StyleWu, H., Shi, Y., Songji, Z., Pu, S., Guo, J., Li, J., Li, D., Yang, X., & Wen, J. (2025). Agronomic Trait and Gene Analysis of Diangu 1839, a Newly Bred Fragrant and Soft Rice Variety Derived from Diantun 502 in Yunnan, China. Agronomy, 15(9), 2042. https://doi.org/10.3390/agronomy15092042