Simulating Water Use and Yield for Full and Deficit Flood-Irrigated Cotton in Arizona, USA
Abstract
1. Introduction
2. Materials and Methods
2.1. Area of the Study
2.2. Soil Water and Irrigation Monitoring
2.3. Cotton Water Use
2.4. AquaCrop: Theory and Description
2.5. Model Calibration and Validation
2.6. Evaluation Metrics
3. Results and Discussion
3.1. Results of the In-Field Experiments
3.1.1. Yield-Water Relation
3.1.2. Fiber Quality
3.2. Calibrated Cotton Parameters
3.3. Model Performance
3.3.1. Canopy Cover
3.3.2. Cotton Yield
3.3.3. Water Use
3.3.4. Total Soil Water Content
3.4. Recommendations and Outlooks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, D.D. General Description of Cotton. In Cotton Fiber: Physics, Chemistry and Biology; Fang, D.D., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–11. ISBN 978-3-030-00871-0. [Google Scholar]
- Qin, H.; Tang, Y.; Li, X.; Qiu, Y.; Wang, J.; Han, Y.; Wang, G.; Xiong, S.; Xin, M.; Du, W.; et al. A 5-Year Field Study to Assess Interannual Variability and Determinants of Cotton Fiber Quality in Intercropping Systems. Eur. J. Agron. 2025, 171, 127817. [Google Scholar] [CrossRef]
- Chakravarthy, V.S.K.; Reddy, T.P.; Reddy, V.D.; Rao, K.V. Current Status of Genetic Engineering in Cotton (Gossypium hirsutum L): An Assessment. Crit. Rev. Biotechnol. 2014, 34, 144–160. [Google Scholar] [CrossRef] [PubMed]
- USDA-NASS 2024 State Agriculture Overview: Arizona. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=ARIZONA (accessed on 4 April 2025).
- Elshikha, D.M.; Attalah, S.; Waller, P.M.; Hunsaker, D.J.; Thorp, K.R.; Williams, C. Guayule Germination and Growth under Subsurface Gravity Drip and Furrow Irrigation in Arizona. In Proceedings of the 2023 ASABE Annual International Meeting, Omaha, NE, USA, 9–12 July 2023; pp. 1–19. [Google Scholar]
- Attalah, S.; Elsadek, E.A.; Waller, P.; Hunsaker, D.; Thorp, K.; Bautista, E.; Williams, C.; Wall, G.; Orr, E.; Elshikha, D.E. Evaluating the Performance of OpenET Models for Alfalfa in Arizona. In Proceedings of the 2024 ASABE Annual International Meeting, Anaheim, CA, USA, 28–31 July 2024; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2024; p. 1. [Google Scholar]
- Holdren, G.C.; Turner, K. Characteristics of Lake Mead, Arizona–Nevada. Lake Reserv. Manag. 2010, 26, 230–239. [Google Scholar] [CrossRef]
- Prein, A.F.; Holland, G.J.; Rasmussen, R.M.; Clark, M.P.; Tye, M.R. Running Dry: The U.S. Southwest’s Drift into a Drier Climate State. Geophys. Res. Lett. 2016, 43, 1272–1279. [Google Scholar] [CrossRef]
- Castle, S.L.; Reager, J.T.; Thomas, B.F.; Purdy, A.J.; Lo, M.-H.; Famiglietti, J.S.; Tang, Q. Remote Detection of Water Management Impacts on Evapotranspiration in the Colorado River Basin. Geophys. Res. Lett. 2016, 43, 5089–5097. [Google Scholar] [CrossRef]
- Bennett, K.E.; Talsma, C.; Boero, R. Concurrent Changes in Extreme Hydroclimate Events in the Colorado River Basin. Water 2021, 13, 978. [Google Scholar] [CrossRef]
- Ayankojo, I.T.; Thorp, K.R.; Morgan, K.; Kothari, K.; Ale, S. Assessing the Impacts of Future Climate on Cotton Production in the Arizona Low Desert. Trans. ASABE 2020, 63, 1087–1098. [Google Scholar] [CrossRef]
- Elsadek, E.A.; Zhang, K.; Hamoud, Y.A.; Mousa, A.; Awad, A.; Abdallah, M.; Shaghaleh, H.; Hamad, A.A.A.; Jamil, M.T.; Elbeltagi, A. Impacts of Climate Change on Rice Yields in the Nile River Delta of Egypt: A Large-Scale Projection Analysis Based on CMIP6. Agric. Water Manag. 2024, 292, 108673. [Google Scholar] [CrossRef]
- Elnemr, M.K.; El-Sheikha, A.M.; Elsadek, E.A. Determination of Optimal Location of Soil Moisture Sensing Devices for Trickle Irrigation Systems. Misr J. Agric. Eng. 2019, 36, 157–174. [Google Scholar] [CrossRef]
- Tsakmakis, I.D.; Zoidou, M.; Gikas, G.D.; Sylaios, G.K. Impact of Irrigation Technologies and Strategies on Cotton Water Footprint Using AquaCrop and CROPWAT Models. Environ. Process. 2018, 5, 181–199. [Google Scholar] [CrossRef]
- Elsadek, E.; Zhang, K.; Mousa, A.; Ezaz, G.T.; Tola, T.L.; Shaghaleh, H.; Hamad, A.A.A.; Alhaj Hamoud, Y. Study on the In-Field Water Balance of Direct-Seeded Rice with Various Irrigation Regimes under Arid Climatic Conditions in Egypt Using the AquaCrop Model. Agronomy 2023, 13, 609. [Google Scholar] [CrossRef]
- Elsadek, E.A. Study on the In-Field Water Balance and the Projected Impacts of Climate Change on Rice Yields in the Nile River Delta. Ph.D. Thesis, Hohai University, Nanjing, China, 2023. [Google Scholar]
- Ragab, R. A Note on Water Use Efficiency and Water Productivity. Available online: http://www.water4crops.org/water-use-efficiency-water-productivity-terminology/ (accessed on 25 May 2022).
- De Miguel, Á.; Kallache, M.; García-Calvo, E. The Water Footprint of Agriculture in Duero River Basin. Sustainability 2015, 7, 6759–6780. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. An Application of the Water Footprint Assessment to Optimize Production of Crops Irrigated with Saline Water: A Scenario Assessment with HYDRUS. Agric. Water Manag. 2018, 208, 67–82. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. A Comparison of the HYDRUS (2D/3D) and SALTMED Models to Investigate the Influence of Various Water-Saving Irrigation Strategies on the Maize Water Footprint. Agric. Water Manag. 2019, 213, 809–820. [Google Scholar] [CrossRef]
- Kersebaum, K.; Kroes, J.; Gobin, A.; Takáč, J.; Hlavinka, P.; Trnka, M.; Ventrella, D.; Giglio, L.; Ferrise, R.; Moriondo, M.; et al. Assessing Uncertainties of Water Footprints Using an Ensemble of Crop Growth Models on Winter Wheat. Water 2016, 8, 571. [Google Scholar] [CrossRef]
- Thorp, K.R.; Hunsaker, D.J.; Bronson, K.F.; Andrade-Sanchez, P.; Barnes, E.M. Cotton Irrigation Scheduling Using a Crop Growth Model and FAO-56 Methods: Field and Simulation Studies. Trans. ASABE 2017, 60, 2023–2039. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, W.; Ding, Y.; Liu, G.; Xing, W.; Cao, X.; Chen, D. Assessment of Climate Change Impact on the Water Footprint in Rice Production: Historical Simulation and Future Projections at Two Representative Rice Cropping Sites of China. Sci. Total Environ. 2020, 709, 136190. [Google Scholar] [CrossRef]
- Jin, C.; Huang, K.; Yu, Y.; Zhang, Y. Analysis of Influencing Factors of Water Footprint Based on the STIRPAT Model: Evidence from the Beijing Agricultural Sector. Water 2016, 8, 513. [Google Scholar] [CrossRef]
- Etedali, H.R.; Gorginpaveh, F.; Kakvand, P.; Elbeltagi, A.; Collins, B. Evaluation of Meteorological Datasets in Estimating the Water Footprint Components of Wheat and Maize (Case Study: Qazvin, Iran). AIMS Agric. Food 2024, 9, 84–107. [Google Scholar] [CrossRef]
- Andarzian, B.; Bannayan, M.; Steduto, P.; Mazraeh, H.; Barati, M.E.; Barati, M.A.; Rahnama, A. Validation and Testing of the AquaCrop Model under Full and Deficit Irrigated Wheat Production in Iran. Agric. Water Manag. 2011, 100, 1–8. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Shen, Y.; Stricevic, R.; Pei, H.; Sun, H.; Amiri, E.; Penas, A.; del Rio, S. Evaluation of the FAO AquaCrop Model for Winter Wheat on the North China Plain under Deficit Irrigation from Field Experiment to Regional Yield Simulation. Agric. Water Manag. 2014, 135, 61–72. [Google Scholar] [CrossRef]
- Greaves, G.; Wang, Y.-M. Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment. Water 2016, 8, 557. [Google Scholar] [CrossRef]
- Paredes, P.; Wei, Z.; Liu, Y.; Xu, D.; Xin, Y.; Zhang, B.; Pereira, L.S. Performance Assessment of the FAO AquaCrop Model for Soil Water, Soil Evaporation, Biomass and Yield of Soybeans in North China Plain. Agric. Water Manag. 2015, 152, 57–71. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Talukder, M.S.U.; Khan, M.H.; Biswas, J.C.; Nemes, A. Validation of the AquaCrop Model for Irrigated Rice Production under Varied Water Regimes in Bangladesh. Agric. Water Manag. 2015, 159, 331–340. [Google Scholar] [CrossRef]
- Xu, J.; Bai, W.; Li, Y.; Wang, H.; Yang, S.; Wei, Z. Modeling Rice Development and Field Water Balance Using AquaCrop Model under Drying-Wetting Cycle Condition in Eastern China. Agric. Water Manag. 2019, 213, 289–297. [Google Scholar] [CrossRef]
- Stricevic, R.; Cosic, M.; Djurovic, N.; Pejic, B.; Maksimovic, L. Assessment of the FAO AquaCrop Model in the Simulation of Rainfed and Supplementally Irrigated Maize, Sugar Beet and Sunflower. Agric. Water Manag. 2011, 98, 1615–1621. [Google Scholar] [CrossRef]
- Paredes, P.; Torres, M.O. Parameterization of AquaCrop Model for Vining Pea Biomass and Yield Predictions and Assessing Impacts of Irrigation Strategies Considering Various Sowing Dates. Irrig. Sci. 2017, 35, 27–41. [Google Scholar] [CrossRef]
- Razzaghi, F.; Zhou, Z.; Andersen, M.N.; Plauborg, F. Simulation of Potato Yield in Temperate Condition by the AquaCrop Model. Agric. Water Manag. 2017, 191, 113–123. [Google Scholar] [CrossRef]
- Farahani, H.J.; Izzi, G.; Oweis, T.Y. Parameterization and Evaluation of the AquaCrop Model for Full and Deficit Irrigated Cotton. Agron. J. 2009, 101, 469–476. [Google Scholar] [CrossRef]
- García-Vila, M.; Fereres, E.; Mateos, L.; Orgaz, F.; Steduto, P. Deficit Irrigation Optimization of Cotton with AquaCrop. Agron. J. 2009, 101, 477–487. [Google Scholar] [CrossRef]
- Voloudakis, D.; Karamanos, A.; Economou, G.; Kalivas, D.; Vahamidis, P.; Kotoulas, V.; Kapsomenakis, J.; Zerefos, C. Prediction of Climate Change Impacts on Cotton Yields in Greece under Eight Climatic Models Using the AquaCrop Crop Simulation Model and Discriminant Function Analysis. Agric. Water Manag. 2015, 147, 116–128. [Google Scholar] [CrossRef]
- Tsakmakis, I.D.; Kokkos, N.P.; Gikas, G.D.; Pisinaras, V.; Hatzigiannakis, E.; Arampatzis, G.; Sylaios, G.K. Evaluation of AquaCrop Model Simulations of Cotton Growth under Deficit Irrigation with an Emphasis on Root Growth and Water Extraction Patterns. Agric. Water Manag. 2019, 213, 419–432. [Google Scholar] [CrossRef]
- Thorp, K.R. Combining Soil Water Content Data with Computer Simulation Models for Improved Irrigation Scheduling. J. ASABE 2023, 66, 1265–1279. [Google Scholar] [CrossRef]
- Elshikha, D.E.; Attalah, S.; Elsadek, E.A.; Waller, P.; Thorp, K.; Sanyal, D.; Bautista, E.; Norton, R.; Hunsaker, D.; Williams, C.; et al. The Impact of Gravity Drip and Flood Irrigation on Development, Water Productivity, and Fiber Yield of Cotton in Semi-Arid Conditions of Arizona. In Proceedings of the 2024 ASABE Annual International Meeting, Anaheim, CA, USA, 28–31 July 2024; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2024; pp. 1–16. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water. Irrigation and Drainage Paper 33; FAO: Rome, Italy, 1979. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.; Fereres, E. Crop Water Productivity. Calculation Procedures and Calibration Guidance. AquaCrop Version 4.0; FAO, Land and Water Development Division: Rome, Italy, 2012. [Google Scholar]
- Elshikha, D.E.M.; Waller, P.M.; Hunsaker, D.J.; Dierig, D.; Wang, G.; Cruz, V.M.V.; Thorp, K.R.; Katterman, M.E.; Bronson, K.F.; Wall, G.W. Growth, Water Use, and Crop Coefficients of Direct-Seeded Guayule with Furrow and Subsurface Drip Irrigation in Arizona. Ind. Crops Prod. 2021, 170, 113819. [Google Scholar] [CrossRef]
- Jamieson, P.D.; Porter, J.R.; Wilson, D.R. A Test of the Computer Simulation Model ARCWHEAT1 on Wheat Crops Grown in New Zealand. Field Crop. Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Brisson, N.; Ruget, F.; Gate, P.; Lorgeou, J.; Nicoullaud, B.; Tayot, X.; Plenet, D.; Jeuffroy, M.-H.; Bouthier, A.; Ripoche, D.; et al. STICS: A Generic Model for Simulating Crops and Their Water and Nitrogen Balances. II. Model Validation for Wheat and Maize. Agronomie 2002, 22, 69–92. [Google Scholar] [CrossRef]
- Loka, D.A.; Oosterhuis, D.M.; Ritchie, G.L. Water-Deficit Stress in Cotton. Stress Physiol. Cott. 2011, 7, 37–72. [Google Scholar]
- Hsiao, T.C. Plant Responses to Water Stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Meeks, C.D.; Snider, J.L.; Porter, W.M.; Vellidis, G.; Hawkins, G.; Rowland, D. Assessing the Utility of Primed Acclimation for Improving Water Savings in Cotton Using a Sensor-Based Irrigation Scheduling System. Crop Sci. 2017, 57, 2117–2129. [Google Scholar] [CrossRef]
- Pace, P.F.; Cralle, H.T.; El-Halawany, S.H.M.; Cothren, J.T.; Senseman, S.A. Drought-Induced Changes in Shoot and Root Growth of Young Cotton Plants. J. Cott. Sci. 1999, 3, 183–187. [Google Scholar]
- Hearn, A.B. Water Relationships in Cotton. Outlook Agric. 1980, 10, 159–166. [Google Scholar] [CrossRef]
- Cetin, K.; Emine, K.; Remzi, E.; Kudret, B. Yield and Fiber Quality Properties of Cotton (Gossypium hirsutum L.) under Water Stress and Non-Stress Conditions. Afr. J. Biotechnol. 2011, 10, 12575–12583. [Google Scholar] [CrossRef]
- Hu, W.; Snider, J.L.; Wang, H.; Zhou, Z.; Chastain, D.R.; Whitaker, J.; Perry, C.D.; Bourland, F.M. Water-Induced Variation in Yield and Quality Can Be Explained by Altered Yield Component Contributions in Field-Grown Cotton. Field Crop. Res. 2018, 224, 139–147. [Google Scholar] [CrossRef]
- Feng, L.; Bufon, V.B.; Mills, C.I.; Hequet, E.; Bordovsky, J.P.; Keeling, W.; Boman, R.; Bednarz, C.W. Effects of Irrigation and Plant Density on Cotton Within-Boll Yield Components. Agron. J. 2010, 102, 1032–1036. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, B.; Han, Y.; Wang, G.; Su, T.; Li, X.; Lei, Y.; Zhi, X.; Xiong, S.; Xin, M.; et al. Enhanced Cotton Yield and Fiber Quality by Optimizing Irrigation Amount and Frequency in Arid Areas of Northwest China. Agronomy 2024, 14, 266. [Google Scholar] [CrossRef]
- Echer, F.R.; Rosolem, C.A. Plant Growth Regulation: A Method for Fine-Tuning Mepiquat Chloride Rates in Cotton. Pesqui. Agropecuária Trop. 2017, 47, 286–295. [Google Scholar] [CrossRef]
- Trevisan, R.G.; Vilanova Júnior, N.S.; Eitelwein, M.T.; Molin, J.P. Management of Plant Growth Regulators in Cotton Using Active Crop Canopy Sensors. Agriculture 2018, 8, 101. [Google Scholar] [CrossRef]
- Cetin, O.; Bilgel, L. Effects of Different Irrigation Methods on Shedding and Yield of Cotton. Agric. Water Manag. 2002, 54, 1–15. [Google Scholar] [CrossRef]
- Ritchie, G.L. Ground-Based and Aerial Remote Sensing Methods for Estimating Cotton Growth, Water Stress, and Defoliation. Ph.D. Thesis, University of Georgia, Georgia, USA, 2007. [Google Scholar]
- Constable, G.A.; Bange, M.P. The Yield Potential of Cotton (Gossypium hirsutum L.). Field Crop. Res. 2015, 182, 98–106. [Google Scholar] [CrossRef]
- Davidonis, G.H.; Johnson, A.; Landivar, J.; Hinojosa, O. Influence of Low-Weight Seeds and Motes on the Fiber Properties of Other Cotton Seeds. Field Crop. Res. 1996, 48, 141–153. [Google Scholar] [CrossRef]
- Bradow, J.M.; Davidonis, G.H. Quantitation of Fiber Quality and the Cotton Production-Processing Interface: A Physiologist’s Perspective. J. Cott. Sci 2000, 4, 34–64. [Google Scholar]
- Booker, J.D.; Bordovsky, J.; Lascano, R.J.; Segarra, E. Variable Rate Irrigation on Cotton Lint Yield and Fiber Quality. In Proceedings of the Beltwide Cotton Conferences, San Antonio, TX, USA, 3–6 January 2006; pp. 1768–1776. [Google Scholar]
- Snowden, C.; Ritchie, G.; Cave, J.; Keeling, W.; Rajan, N. Multiple Irrigation Levels Affect Boll Distribution, Yield, and Fiber Micronaire in Cotton. Agron. J. 2013, 105, 1536–1544. [Google Scholar] [CrossRef]
- Wang, R.; Ji, S.; Zhang, P.; Meng, Y.; Wang, Y.; Chen, B.; Zhou, Z. Drought Effects on Cotton Yield and Fiber Quality on Different Fruiting Branches. Crop Sci. 2016, 56, 1265–1276. [Google Scholar] [CrossRef]
- Dağdelen, N.; Başal, H.; Yılmaz, E.; Gürbüz, T.; Akçay, S. Different Drip Irrigation Regimes Affect Cotton Yield, Water Use Efficiency and Fiber Quality in Western Turkey. Agric. Water Manag. 2009, 96, 111–120. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Moisture Deficit Effects on Cotton Lint Yield, Yield Components, and Boll Distribution. Agron. J. 2004, 96, 377–383. [Google Scholar] [CrossRef]
- Meshkat, M.C.; Warner, R.R.; Workman, S. Evaporation Reduction Potential in an Undisturbed Soil Irrigated with Surface Drip and Sand Tube Irrigation. Trans. ASAE 2000, 43, 79–86. [Google Scholar] [CrossRef]
- Bucks, D.A.; Allen, S.G.; Roth, R.L.; Gardner, B.R. Short Staple Cotton under Micro and Level-Basin Irrigation Methods. Irrig. Sci. 1988, 9, 161–176. [Google Scholar] [CrossRef]
- Constable, G.A.; Bange, M.P. Producing and Preserving Fiber Quality: From the Seed to the Bale. In Proceedings of the Nature’s High-Tech Fiber-World Cotton Research Conference 4, Lubbock, TX, USA, 10–14 September 2007. [Google Scholar]
- Hearn, A.B. Response of Cotton to Nitrogen and Water in a Tropical Environment. III. Fibre Quality. J. Agric. Sci. 1976, 86, 257–269. [Google Scholar] [CrossRef]
- Balkcom, K.S.; Reeves, D.W.; Shaw, J.N.; Burmester, C.H.; Curtis, L.M. Cotton Yield and Fiber Quality from Irrigated Tillage Systems in the Tennessee Valley. Agron. J. 2006, 98, 596–602. [Google Scholar] [CrossRef]
- Darawsheh, M.K. Cotton Fiber Quality Parameters Response to Cultivation System as Influenced by Limited and Normal Irrigation. J. Food, Agric. Environ. 2010, 8, 527–530. [Google Scholar]
- Ertek, A.; Kanber, R. Effects of Different Irrigation Programs on the Quality Properties of Drip-Irrigated Cotton. KSU J. Sci. 2002, 5, 118–130. [Google Scholar]
- Lascano, R.J.; Hicks, S.K.; Baumhardt, R. Cotton Lint Yield and Fiber Quality as a Function of Irrigation Level and Termination Dates in the Texas High Plains: 1996–1998. In Proceedings of the 1999 Beltwide Cotton Conferences, Orlando, FL, USA, 3–7 January 1999; pp. 570–571. [Google Scholar]
- Johnson, R.M.; Downer, R.G.; Bradow, J.M.; Bauer, P.J.; Sadler, E.J. Variability in Cotton Fiber Yield, Fiber Quality, and Soil Properties in a Southeastern Coastal Plain. Agron. J. 2002, 94, 1305–1316. [Google Scholar] [CrossRef]
- Yilmaz, E.; Gürbüz, T.; Dağdelen, N.; Wzorek, M. Impacts of Different Irrigation Water Levels on the Yield, Water Use Efficiency, and Fiber Quality Properties of Cotton (Gossypium hirsutum L.) Irrigated by Drip Systems. Euro-Mediterr. J. Environ. Integr. 2021, 6, 53. [Google Scholar] [CrossRef]
- Elsadek, E. Use of Automatic Control to Improve the Performance of Field Irrigation Systems. Master’s Thesis, Damietta University, Damietta, Egypt, 2018. [Google Scholar]
- Brown, P.W. Heat Units. Available online: https://repository.arizona.edu/handle/10150/299154 (accessed on 17 April 2025).
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Crop Water Productivity, Calculation Procedures and Calibration Guidance, AquaCrop Version 3.0; FAO, Land and Water Development Division: Rome, Italy, 2009. [Google Scholar]
- Masasi, B.; Taghvaeian, S.; Gowda, P.H.; Marek, G.; Boman, R. Validation and Application of AquaCrop for Irrigated Cotton in the Southern Great Plains of US. Irrig. Sci. 2020, 38, 593–607. [Google Scholar] [CrossRef]
- Guo, R.; Lin, T.; Tian, L.; Cui, J.P.; Xu, H.J. Effect of Regulated Deficit Irrigation on Photosynthesis and Chlorophyll Fluorescence Characteristics in Flowering and Boll-Forming Stages of Island Cotton. Agric. Res. Arid Areas 2015, 33, 130–134. [Google Scholar]
- Meng, Z.; Bian, X.; Liu, A.; Pang, H.; Wang, H. Effect of Regulated Deficit Irrigation on Growth and Development Characteristics in Cotton and Its Yield and Fiber Quality. Cott. Sci. 2008, 20, 39–44. [Google Scholar]
- Wei, C.; Ma, Y.; Zhang, S. Study on Deficit Irrigation Technology for Cotton Border Irrigation in Arid Area-Taking Yuli County as an Example. Water Sav. Irrig. 2012, 8, 4–8. [Google Scholar]
- Yang, B.-F.; Yang, G.-Z.; Feng, L.; Han, Y.-C.; Lei, Y.-P.; Fan, Z.-Y.; Wang, Z.-B.; Li, Y.-B. Effects of Deficit Irrigation on Cotton Growth and Water Use Efficiency: A Review. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2021, 32, 1112–1118. [Google Scholar] [CrossRef]
- Paredes, P.; de Melo-Abreu, J.P.; Alves, I.; Pereira, L.S. Assessing the Performance of the FAO AquaCrop Model to Estimate Maize Yields and Water Use under Full and Deficit Irrigation with Focus on Model Parameterization. Agric. Water Manag. 2014, 144, 81–97. [Google Scholar] [CrossRef]
- Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize. Agron. J. 2009, 101, 488–498. [Google Scholar] [CrossRef]
- Raja, W.; Kanth, R.H.; Singh, P. Validating the AquaCrop Model for Maize under Different Sowing Dates. Water Policy 2018, 20, 826–840. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Q.; Zhang, J.; Chen, Y.; Shan, Y.; Xu, D. Performance of AquaCrop Model for Cotton Growth Simulation under Film-Mulched Drip Irrigation in Southern Xinjiang, China. Agric. Water Manag. 2018, 196, 99–113. [Google Scholar] [CrossRef]
- Du, Y.; Fu, Q.; Ai, P.; Ma, Y.; Pan, Y. Modeling Comprehensive Deficit Irrigation Strategies for Drip-Irrigated Cotton Using AquaCrop. Agriculture 2024, 14, 1269. [Google Scholar] [CrossRef]
- Adeboye, O.B.; Schultz, B.; Adekalu, K.O.; Prasad, K.C. Performance Evaluation of AquaCrop in Simulating Soil Water Storage, Yield, and Water Productivity of Rainfed Soybeans (Glycine max L. Merr) in Ile-Ife, Nigeria. Agric. Water Manag. 2019, 213, 1130–1146. [Google Scholar] [CrossRef]
Profile Depth, m | Soil pH | Soluble Salts, mmho/cm | OC, % | FC, % | PWP, % | Soil Texture | |||
---|---|---|---|---|---|---|---|---|---|
S, % | Si, % | C, % | Texture Class | ||||||
0.0–0.3 | 8.3 | 0.14 | 0.31 | 28.80 | 14.00 | 53 | 17 | 30 | Sandy clay loam |
0.3–0.6 | 8.5 | 0.17 | 0.20 | 29.90 | 14.60 | 51 | 17 | 32 | Sandy clay loam |
0.6–0.9 | 8.3 | 0.44 | 0.43 | 33.20 | 16.80 | 39 | 23 | 38 | Clay loam |
0.9–1.2 | 8.1 | 0.61 | 0.66 | 34.60 | 18.00 | 35 | 23 | 42 | Clay |
1.2–1.5 | 8.1 | 0.56 | 0.09 | 32.10 | 16.00 | 43 | 21 | 36 | Clay loam |
1.5–1.8 | 8.1 | 0.39 | 0.05 | 26.90 | 13.10 | 55 | 17 | 28 | Sandy clay loam |
Crop Parameter | Default Value | Calibrated Value | Unit | |
---|---|---|---|---|
F100% | F80% | |||
Initial canopy cover (CCo) | 0.72 | 0.54 | 0.54 | |
Maximum canopy cover (CCx) | 98.0 | 84.0 | 78.0 | % |
Minimum rooting length (Zx) | 0.30 | 0.30 | 0.30 | m |
Maximum rooting length (Zn) | 2.00 | 1.60 | 1.70 | m |
Day 1 after sowing to: | ||||
Emergence | 12 | 59 | 68 | GDDay |
Maximum canopy cover (CCx), | 1156 | 1169 | 1056 | GDDay |
Flowering | 502 | 719 | 654 | GDDay |
Canopy senescence | 1601 | 1948 | 1724 | GDDay |
Maturity | 1956 | 2162 | 1991 | GDDay |
Duration of flowering | 709 | 905 | 798 | GDDay |
Maximum standard crop transpiration coefficient (KcTr,x) | 1.10 | 1.10 | 1.10 | Unitless |
Normalized water productivity (WP*) | 15.0 | 15.0 | 15.0 | g·m−2 |
Reference harvest index (HI0) | 35.0 | 33.0 | 31.0 | % |
Response to water stress | ||||
Lower threshold of canopy expansion (pexp, lower) | 0.70 | 0.70 | 0.60 | Unitless |
Upper threshold of canopy expansion (pexp, upper) | 0.20 | 0.20 | 0.25 | Unitless |
Upper threshold of stomatal closure (psto, upper) | 0.75 | 0.75 | 0.65 | Unitless |
Upper threshold of early canopy senescence (psen, upper) | 0.75 | 0.75 | 0.65 | Unitless |
Threshold temperatures for crop development | ||||
Base temperature (Tbase) | 12 | 12.7 | 12.7 | °C |
Upper temperature (Tupper) | 35 | 30.0 | 30.0 | °C |
Growing Season | Treatment | ETobs | FY, kg ha−1 | ETWP, kg·m−3 | Fiber Quality Indices | |||
---|---|---|---|---|---|---|---|---|
MIC | UHML, mm | UI, % | STR, g tex−1 | |||||
2023 | F100% | 960 | 1456 | 0.152 | 4.97 | 28.45 | 81.73 | 29.51 |
F80% | 823 | 798 | 0.097 | 4.36 | 27.43 | 80.55 | 27.88 | |
2024 | F100% | 921 | 1694 | 0.184 | 3.72 | 28.96 | 82.20 | 30.10 |
F80% | 792 | 1049 | 0.133 | 3.31 | 28.91 | 81.90 | 30.00 |
Statistical Metrics | Canopy Cover (CC, %) | Evaluation | |||
---|---|---|---|---|---|
Calibration (2023) | Validation (2024) | ||||
F100% | F80% | F100% | F80% | ||
R2 | 0.98 | 0.97 | 0.99 | 0.98 | Strong fit |
NRMSE | 12.46% | 14.36% | 8.45% | 10.96% | Excellent |
Dindex | 0.99 | 0.98 | 0.99 | 0.99 | Perfect agreement |
NSE | 0.97 | 0.96 | 0.98 | 0.97 | Acceptable |
Total Cotton Yields (YTot, t·ha−1) | Observed (Obs) | Simulated (Sim) | Evaluation |
---|---|---|---|
3.56 | 3.79 | ||
R2 | 0.93 | Strong fit | |
NRMSE | 8.05% | Excellent | |
Dindex | 0.95 | Perfect agreement | |
NSE | 0.78 | Acceptable | |
Regression equation | YSim = 0.954·YObs + 0.395 |
Statistical Metrics | Total Yield (YTot, t·ha−1) | Water Use (ETobs, mm) | Total Water Content (WCTot, mm) | ||||
---|---|---|---|---|---|---|---|
F100% | F80% | F100% | F80% | F100% | F80% | ||
Calibration Season (2023) | Obs. | 4.10 | 2.80 | 960.02 | 822.89 | 407.53 | 390.18 |
Sim. | 4.49 | 3.21 | 1010.10 | 872.8 | 456.83 | 493.91 | |
NRMSE | 9.51 | 14.64 | 24.49 | 21.61 | 13.03 | 27.92 | |
MAE | 0.39 | 0.41 | 50.08 | 49.91 | 49.29 | 103.09 | |
Se, % | 9.51 | 14.64 | 5.22 | 6.07 | 12.10 | 26.38 | |
Validation Season (2024) | Obs. | 4.25 | 3.10 | 920.72 | 791.62 | 448.16 | 435.13 |
Sim. | 4.33 | 3.15 | 947.10 | 815.6 | 474.91 | 498.36 | |
NRMSE | 1.88 | 1.61 | 21.52 | 25.01 | 7.25 | 17.18 | |
MAE | 0.08 | 0.05 | 26.38 | 23.58 | 26.75 | 63.23 | |
Se, % | 1.88 | 1.61 | 2.87 | 2.98 | 5.97 | 14.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsadek, E.A.; Attalah, S.; Waller, P.; Norton, R.; Hunsaker, D.J.; Williams, C.; Thorp, K.R.; Orr, E.; Elshikha, D.E.M. Simulating Water Use and Yield for Full and Deficit Flood-Irrigated Cotton in Arizona, USA. Agronomy 2025, 15, 2023. https://doi.org/10.3390/agronomy15092023
Elsadek EA, Attalah S, Waller P, Norton R, Hunsaker DJ, Williams C, Thorp KR, Orr E, Elshikha DEM. Simulating Water Use and Yield for Full and Deficit Flood-Irrigated Cotton in Arizona, USA. Agronomy. 2025; 15(9):2023. https://doi.org/10.3390/agronomy15092023
Chicago/Turabian StyleElsadek, Elsayed Ahmed, Said Attalah, Peter Waller, Randy Norton, Douglas J. Hunsaker, Clinton Williams, Kelly R. Thorp, Ethan Orr, and Diaa Eldin M. Elshikha. 2025. "Simulating Water Use and Yield for Full and Deficit Flood-Irrigated Cotton in Arizona, USA" Agronomy 15, no. 9: 2023. https://doi.org/10.3390/agronomy15092023
APA StyleElsadek, E. A., Attalah, S., Waller, P., Norton, R., Hunsaker, D. J., Williams, C., Thorp, K. R., Orr, E., & Elshikha, D. E. M. (2025). Simulating Water Use and Yield for Full and Deficit Flood-Irrigated Cotton in Arizona, USA. Agronomy, 15(9), 2023. https://doi.org/10.3390/agronomy15092023