Spatiotemporal Evolution of Carbon Storage and Driving Factors in Major Sugarcane-Producing Regions of Guangxi, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land Use Transfer Matrix
2.3.2. InVEST Model
2.3.3. Spatial Autocorrelation Analysis
2.3.4. Geodetector
2.3.5. Land Use/Cover Classification
3. Results
3.1. Evolution of Land Use Patterns
3.1.1. Spatiotemporal Characteristics of Land Use
3.1.2. Land Use Transfers Analysis
3.2. Spatiotemporal Characteristics of Carbon Storage
3.2.1. Carbon Storage Distribution Patterns
3.2.2. Characteristics of Carbon Storage Changes
3.2.3. Spatial Autocorrelation Analysis of Carbon Storage
3.3. Driving Factors of Carbon Storage Spatial Differentiation
3.3.1. Factor Detection Results
3.3.2. Interaction Detection Results
4. Discussion
5. Conclusions and Recommendations
- (1)
- From 2011 to 2022, the total carbon storage in Guangxi’s major sugarcane-producing regions measured 1627.03 (2011), 1633.72 (2014), 1643.10 (2018), and 1641.47 (2022) million tons, respectively, exhibiting a distinct northwest-high and southeast-low spatial pattern. The western and northern mountainous areas formed high-value carbon zones due to favorable forest growth conditions and abundant woodland resources, while the flat southeastern regions with intensive economic activities showed relatively lower carbon storage owing to higher proportions of construction land and water bodies.
- (2)
- Land use transitions significantly influenced carbon storage dynamics. Forests consistently contributed over 85% of total carbon storage, playing a pivotal role in maintaining regional carbon stocks. Cultivated land showed fluctuating carbon storage corresponding to its initial decrease and subsequent recovery, whereas grassland and water bodies demonstrated consistent declines. Although barren land and construction land accounted for minor proportions, their marked increasing trends reflected growing anthropogenic impacts on regional carbon cycles.
- (3)
- Geodetector analysis identified cultivated land proportion (q ≥ 0.976) and forest coverage rate (q ≥ 0.948) as dominant factors governing carbon storage spatial differentiation. Other factors, including NDVI, average slope, and land urbanization rate, also demonstrate relatively high q-values exceeding 0.719. The dynamic ranking of q-values reflected the phased characteristics of each driving factor’s influence, as well as revealed that agricultural intensification, ecological conservation, urbanization and industrialization processes alternately dominated the carbon cycle at different stages.
- (4)
- Interaction detection demonstrated that the interactions between cultivated land proportion, forest coverage rate, NDVI and average slope had the strongest impact on carbon storage changes. All factor interactions showed greater explanatory power than individual factors acting alone, confirming that multi-factor coordination drives carbon storage changes.
- (5)
- Policy recommendations emphasize optimizing land use structures during urbanization/agricultural development; strengthening forest conservation and ecological restoration; controlling construction land expansion; and establishing dynamic balance mechanisms between economic growth and ecological protection by leveraging factor interactions to enhance carbon sequestration capacity and support China’s dual carbon goals.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, T.; Xu, M.; Zhang, M.; Letnic, M.; Wang, J.; Wang, L. Spatial Effects of Nitrogen Deposition on Soil Organic Carbon Stocks in Patchy Degraded Saline-Alkaline Grassland. Geoderma 2023, 432, 116408. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, G.Y.; Tang, Z.S.; Shangguan, Z.P. Global Patterns of the Effects of Land-Use Changes on Soil Carbon Stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef]
- Van Pham, T.; Do, T.A.T.; Tran, H.D.; Do, A.N.T. Assessing the Impact of Ecological Security and Forest Fire Susceptibility on Carbon Stocks in Bo Trach District, Quang Binh Province, Vietnam. Ecol. Inform. 2023, 74, 101962. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land Use/Land Cover Change and Its Impact on Ecosystem Carbon Storage in Coastal Areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Daniel, J.C.; Frid, L.; Sleeter, M.B.; Fortin, M.-J. State-and-transition simulation models: A framework for forecasting landscape change. Methods Ecol. Evol. 2016, 7, 1413–1423. [Google Scholar] [CrossRef]
- Djomo, A.N.; Knohl, A.; Gravenhorst, G. Estimations of Total Ecosystem Carbon Pools Distribution and Carbon Biomass Current Annual Increment of a Moist Tropical Forest. For. Ecol. Manag. 2011, 261, 1448–1459. [Google Scholar] [CrossRef]
- Leifeld, J.; Bassin, S.; Fuhrer, J. Carbon Stocks in Swiss Agricultural Soils Predicted by Land-Use, Soil Characteristics, and Altitude. Agric. Ecosyst. Environ. 2005, 105, 255–266. [Google Scholar] [CrossRef]
- Zafar, Z.; Sajid Mehmood, M.; Zhai, S.Y.; Zubair, M.; Sajjad, M.; Qin, Y.C. Fostering Deep Learning Approaches to Evaluate the Impact of Urbanization on Vegetation and Future Prospects. Ecol. Indic. 2023, 146, 109788. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, W.; Ye, Y.; He, T.; Luo, H. Rural Residential Land Expansion and Its Impacts on Cultivated Land in China between 1990 and 2020. Land Use Policy 2023, 132, 106816. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, R.; Yao, J.; Hu, X.; Lin, J. The Effects of Urbanization on China’s Forest Loss from 2000 to 2012: Evidence from a Panel Analysis. J. Clean. Prod. 2019, 214, 270–278. [Google Scholar] [CrossRef]
- Zhou, Y.J.; He, L.J.; Zhang, E.S.; Lu, D.; Lin, A.W. Impact of cropland use transformation on ecosystem carbon sinks in a typical agroforestry mixed region: An analysis from explicit and implicit perspectives. Environ. Impact Assess. Rev. 2025, 115, 107979. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, N.; Zhang, W.; Ning, X. Can Agricultural Low-Carbon Development Benefit from Urbanization?-Empirical Evidence from China’s New-Type Urbanization Pilot Policy. J. Clean. Prod. 2024, 435, 140388. [Google Scholar] [CrossRef]
- Kim Phat, N.; Knorr, W.; Kim, S. Appropriate Measures for Conservation of Terrestrial Carbon Stocks—Analysis of Trends of Forest Management in Southeast Asia. For. Ecol. Manag. 2004, 191, 283–299. [Google Scholar] [CrossRef]
- Koning, D.J.H.G.; Veldkamp, E.; López-Ulloa, M. Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Glob. Biogeochem. Cycles 2003, 17, 1098. [Google Scholar] [CrossRef]
- Gonzalez, P.; Battles, J.J.; Collins, B.M.; Robards, T.; Saah, D.S. Aboveground Live Carbon Stock Changes of California Wildland Ecosystems, 2001–2010. For. Ecol. Manag. 2015, 348, 68–77. [Google Scholar] [CrossRef]
- Ota, H.O.; Mohan, K.C.; Udume, B.U.; Olim, D.M.; Okolo, C.C. Assessment of Land Use Management and Its Effect on Soil Quality and Carbon Stock in Ebonyi State, Southeast Nigeria. J. Environ. Manag. 2024, 358, 120889. [Google Scholar] [CrossRef]
- Chiti, T.; Benilli, N.; Mastrolonardo, G.; Certini, G. The Potential for an Old-Growth Forest to Store Carbon in the Topsoil: A Case Study at Sasso Fratino, Italy. J. For. Res. 2023, 35, 10. [Google Scholar] [CrossRef]
- Zafar, Z.; Zubair, M.; Zha, Y.; Mehmood, M.S.; Rehman, A.; Fahd, S.; Nadeem, A.A. Predictive Modeling of Regional Carbon Storage Dynamics in Response to Land Use/Land Cover Changes: An InVEST-Based Analysis. Ecol. Inform. 2024, 82, 102701. [Google Scholar] [CrossRef]
- Ma, W.; Hou, S.; Su, W.; Mao, T.; Wang, X.; Liang, T. Estimation of Carbon Stock and Economic Value of Sanjiangyuan National Park, China. Ecol. Indic. 2024, 169, 112856. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of Land Use and Cover Change (LUCC) on Terrestrial Carbon Stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Verstegen, J.A.; van der Laan, C.; Dekker, S.C.; Faaij, A.P.C.; Santos, M.J. Recent and Projected Impacts of Land Use and Land Cover Changes on Carbon Stocks and Biodiversity in East Kalimantan, Indonesia. Ecol. Indic. 2019, 103, 563–575. [Google Scholar] [CrossRef]
- Cao, M.; Tian, Y.; Wu, K.; Chen, M.; Chen, Y.; Hu, X.; Sun, Z.C.; Zuo, L.J.; Lin, J.; Luo, L.; et al. Future Land-Use Change and Its Impact on Terrestrial Ecosystem Carbon Pool Evolution along the Silk Road under SDG Scenarios. Sci. Bull. 2023, 68, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, L. Embedding Spatiotemporal Changes in Carbon Storage into Urban Agglomeration Ecosystem Management—A Case Study of the Yangtze River Delta, China. J. Clean. Prod. 2019, 237, 117764. [Google Scholar] [CrossRef]
- Li, C.; Xu, H.; Du, P.; Tang, F. Predicting Land Cover Changes and Carbon Stock Fluctuations in Fuzhou, China: A Deep Learning and InVEST Approach. Ecol. Indic. 2024, 167, 112658. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Corona-Núñez, R.; Kraxner, F.; Leduc, S.; Patrizio, P. Identifying Effects of Land Use Cover Changes and Climate Change on Terrestrial Ecosystems and Carbon Stocks in Mexico. Glob. Environ. Change 2018, 53, 12–23. [Google Scholar] [CrossRef]
- Majumder, B.; Mandal, B.; Bandyopadhyay, P.K.; Chaudhury, J. Soil Organic Carbon Pools and Productivity Relationships for a 34 Year Old Rice–Wheat–Jute Agroecosystem under Different Fertilizer Treatments. Plant Soil 2007, 297, 53–67. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, C.; Li, H. Assessment of the Impact of Rubber Plantation Expansion on Regional Carbon Storage Based on Time Series Remote Sensing and the InVEST Model. Remote Sens. 2022, 14, 6234. [Google Scholar] [CrossRef]
- Wang, D.; Wu, B.S.; Li, F.; Li, X.; Wang, Z.; Hou, J.; Cao, R.; Yang, W. Soil Organic Carbon Stock in China’s Tea Plantations and Their Great Potential of Carbon Sequestration. J. Clean. Prod. 2023, 421, 138485. [Google Scholar] [CrossRef]
- Sattolo, T.M.S.; Mariano, E.; Boschiero, B.N.; Otto, R. Soil Carbon and Nitrogen Dynamics as Affected by Land Use Change and Successive Nitrogen Fertilization of Sugarcane. Agric. Ecosyst. Environ. 2017, 247, 63–74. [Google Scholar] [CrossRef]
- Franco, A.L.C.; Cherubin, M.R.; Pavinato, P.S.; Cerri, C.E.P.; Six, J.; Davies, C.A.; Cerri, C.C. Soil Carbon, Nitrogen and Phosphorus Changes under Sugarcane Expansion in Brazil. Sci. Total Environ. 2015, 515–516, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Moitinho, M.R.; Ferraudo, A.S.; Panosso, A.R.; da Silva Bicalho, E.; Teixeira, D.D.B.; de Andrade Barbosa, M.; Tsai, S.M.; Borges, B.M.F.; de Souza Cannavan, F.; de Souzaet, J.A.M.; et al. Effects of burned and unburned sugarcane harvesting systems on soil CO2 emission and soil physical, chemical, and microbiological attributes. Catena 2021, 196, 104903. [Google Scholar] [CrossRef]
- Ma, J.; Xu, J.; He, P.; Chen, B. Carbon Uptake of the Sugarcane Agroecosystem Is Profoundly Impacted by Climate Variations Due to Seasonality and Topography. Field Crops Res. 2022, 289, 108729. [Google Scholar] [CrossRef]
- Xie, Y.; He, T.; Chen, X.; Wu, Q.; Chen, R.; Chen, N.; Que, Y. Coupling Coordination of Green Sugarcane Production and Comprehensive Social Development in Chinese Sugar Industry. Sugar Technol. 2024, 26, 1134–1146. [Google Scholar] [CrossRef]
- Adhikari, D.; Singh, P.P.; Tiwary, R.; Barik, S.K. Forest Carbon Stock-Based Bioeconomy: Mixed Models Improve Accuracy of Tree Biomass Estimates. Biomass Bioenergy 2024, 183, 107142. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Ito, A.; Takahashi, K. Careful Selection of Forest Types in Afforestation Can Increase Carbon Sequestration by 25% without Compromising Sustainability. Commun. Earth Environ. 2024, 5, 1–10. [Google Scholar] [CrossRef]
- Wei, J.N. Analysis of the Change of Sugarcane Production Distribution and Influence Factors in Guangxi. Chin. J. Trop. Agric. 2023, 43, 126–131. [Google Scholar]
- Guga, S.; Xu, J.; Riao, D.; Li, K.W.; Han, A.; Zhang, J. Combining MaxEnt Model and Landscape Pattern Theory for Analyzing Interdecadal Variation of Sugarcane Climate Suitability in Guangxi, China. Ecol. Indic. 2021, 131, 108152. [Google Scholar] [CrossRef]
- de Oliveira Bordonal, R.; Carvalho, J.L.N.; Lal, R.; de Figueiredo, E.B.; de Oliveira, B.G.; La Scala, N. Sustainability of Sugarcane Production in Brazil. A Review. Agron. Sustain. Dev. 2018, 38, 13. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Han, Z.B.; Xu, Y.Q. Impact of Land Use/Cover Change on Ecosystem Service Value in Guangxi. Sustainability 2022, 14, 10867. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, J.; Zhou, X.; Zhou, Y.; Li, Y.; Li, B.; Zhou, S. Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China. Environ. Pollut. 2020, 256, 113505. [Google Scholar] [CrossRef]
- Qiu, H.H.; Hu, B.Q.; Zhang, Z. Impacts of Land Use Change on Ecosystem Service Value Based on SDGs Report–Taking Guangxi as an Example. Ecol. Indic. 2021, 133, 108366. [Google Scholar] [CrossRef]
- Niu, X.; Wang, J.; Wu, H.; Mi, L.; Yang, Z.Q.; Song, X.F. Matrix-bound phosphine in the paddy soils of South China and its relationship to environmental factors and bacterial composition. J. Soils Sediments 2016, 16, 592–604. [Google Scholar] [CrossRef]
- Government of Guangxi Zhuang Autonomous Region. Climate·Hydrology—Physical Geography [EB/OL]. Available online: http://www.gxzf.gov.cn/mlgxi/gxrw/zrdl/t20884000.shtml (accessed on 3 July 2025).
- Wang, J.; Xiao, X.; Liu, L.; Wu, X.; Qin, Y.; Steiner, J.L.; Dong, J. Mapping Sugarcane Plantation Dynamics in Guangxi, China, by Time Series Sentinel-1, Sentinel-2 and Landsat Images. Remote Sens. Environ. 2020, 247, 111951. [Google Scholar] [CrossRef]
- Wu, Q.B.; Li, Z.X.; Li, A.M.; Wang, L.W.; Tang, S.Y.; Zhou, H.; Zhang, Y.B.; Que, Y.X. Sugarcane Varieties GT 42 and GT 44, not a Flash in the Pan, but the Flag in the Ship. Sugar Tech. 2025, 27, 627–634. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Wu, L.; Peng, Z.P. Analysis of the Construction for Sugarcane Base in Guangxi. Macroecon. Manag. 2016, 05, 80–83. (In Chinese) [Google Scholar] [CrossRef]
- Lu, X.G.; Fan, Y.G.; Qiu, L.H.; Chen, R.F.; Huang, X.; Wu, J.M. The Current State of Sugarcane Base under Construction and Its Suggestions on Development in Guangxi. Trop. Agric. Sci. Technol. 2019, 42, 51–54. (In Chinese) [Google Scholar] [CrossRef]
- Pérez-Hugalde, C.; Romero-Calcerrada, R.; Delgado-Pérez, P.; Novillo, C.J. Understanding Land Cover Change in a Special Protection Area in Central Spain through the Enhanced Land Cover Transition Matrix and a Related New Approach. J. Environ. Manag. 2011, 92, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, P.; Roosli, R. Assessing Land Use and Carbon Storage Changes Using PLUS and InVEST Models: A Multi-Scenario Simulation in Hohhot. Environ. Sustain. Indic. 2025, 26, 100655. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-Use Changes Lead to a Decrease in Carbon Storage in Arid Region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil Carbon Pools and World Life Zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Wei, X.; Shao, Y.; Cai, X.W.; Lin, Z.M. Spatio-temporal characteristics and prediction of carbon storage in terrestrial ecosystems in Lijiang River basin. J. Environ. Eng. Technol. 2023, 13, 1223–1233. [Google Scholar]
- Sun, G.; Li, Y.; Huang, R.; Mo, C. Spatial and Temporal Evolution of Carbon Stocks in Yulin City under Changing Environments. Sci. Rep. 2025, 15, 12219. [Google Scholar] [CrossRef]
- Bai, Y.; Tang, X.; Xue, F.; Long, D.J.; Li, J.H.; Tang, Y.J. Spatiotemporal variation and dynamic simulation of carbon stock based on PLUS and InVEST models in the Li River Basin, China. Sci. Rep. 2025, 15, 6060. [Google Scholar] [CrossRef]
- Sheetal, K.; Lal, P.; Kumar, A. Spatial heterogeneity for urban built-up footprint and its characterization using microwave remote sensing. Adv. Space Res. 2022, 70, 3822–3832. [Google Scholar] [CrossRef]
- Ren, D.F.; Cao, A.H. Analysis of the heterogeneity of landscape risk evolution and driving factors based on a combined GeoDa and Geodetector model. Ecol. Indic. 2022, 144, 109568. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, W.; Sun, Y.; Wang, F.; Miu, Y. Simulation of Spatial and Temporal Distribution of Forest Carbon Stocks in Long Time Series—Based on Remote Sensing and Deep Learning. Forests 2023, 14, 483. [Google Scholar] [CrossRef]
- Xiao, G.; Hu, Y.; Li, N.; Yang, D. Spatial Autocorrelation Analysis of Monitoring Data of Heavy Metals in Rice in China. Food Control 2018, 89, 32–37. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.F.; Zhu, F.B.; Zhang, W.W. Analysis of spatial pattern of aerosol optical depth and affecting factors using spatial autocorrelation and spatial autoregressive model. Environ. Earth Sci. 2016, 75, 822. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to Disentangle the Contributions of Natural and Anthropogenic Factors to NDVI Variations in the Middle Reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Nie, Q.; Wu, G.; Li, L.; Man, W.; Ma, J.; Bao, Z.; Luo, L.; Li, H. Exploring Scaling Differences and Spatial Heterogeneity in Drivers of Carbon Storage Changes: A Comprehensive Geographic Analysis Framework. Ecol. Indic. 2024, 165, 112193. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Zhang, J.; Wu, Y.; Zhou, Y. Assessment of Carbon Stocks and Influencing Factors in Terrestrial Ecosystems Based on Surface Area. iScience 2024, 27, 111431. [Google Scholar] [CrossRef]
- Lu, L.; Xue, Q.; Zhang, X.; Qin, C.; Jia, L. Spatiotemporal Variation and Quantitative Attribution of Carbon Storage Based on Multiple Satellite Data and a Coupled Model for Jinan City, China. Remote Sens. 2023, 15, 4472. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, C.; Liu, Y.; Cao, J.; Liao, G.; Lin, Z. Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China. Land 2023, 12, 1531. [Google Scholar] [CrossRef]
- Setiawan, O.; Rahayu, A.A.D.; Samawandana, G.; Tata, H.L.; Dharmawan, I.W.S.; Rachmat, H.H.; Suharti, S.; Windyoningrum, A.; Khotimah, H. Unraveling Land Use Land Cover Change, Their Driving Factors, and Implication on Carbon Storage through an Integrated Modelling Approach. Egypt. J. Remote Sens. Space Sci. 2024, 27, 615–627. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetectors: Principles and Prospects. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- GB/T 21010–2017; Ministry of Natural Resources of the People’s Republic of China. Current Land Use Classification. Standards Press of China: Beijing, China, 2017. (In Chinese)
- Peng, Y.; Cheng, W.; Xu, X.; Song, H. Analysis and Prediction of the Spatiotemporal Characteristics of Land-Use Ecological Risk and Carbon Storage in Wuhan Metropolitan Area. Ecol. Indic. 2024, 158, 111432. [Google Scholar] [CrossRef]
- Wang, H.F.; Yao, L.P.; Huang, B.; Hu, W.Y. An Integrated Approach to Exploring Soil Fertility from the Perspective of Rice (Oryza sativa L.) Yields. Soil Tillage Res. 2019, 194, 104322. [Google Scholar] [CrossRef]
- Hu, Y.; Batunacun; Zhen, L.; Zhuang, D. Assessment of Land-Use and Land-Cover Change in Guangxi, China. Sci. Rep. 2019, 9, 2189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Lin, X.; Wang, R.; Song, B. Real-Time Carbon Emissions Monitoring of High-Energy-Consumption Enterprises in Guangxi Based on Electricity Big Data. Energies 2023, 16, 5124. [Google Scholar] [CrossRef]
- Zheng, H.; Zheng, H. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Coastal Area of Shandong Province. Ecol. Indic. 2023, 153, 110474. [Google Scholar] [CrossRef]
- Ren, H.; Chen, H.; Li, L.; Li, P.; Hou, C.; Wan, H.; Zhang, Q.; Zhang, P. Spatial and Temporal Patterns of Carbon Storage from 1992 to 2002 in Forest Ecosystems in Guangdong, Southern China. Plant Soil 2013, 363, 123–138. [Google Scholar] [CrossRef]
- Pellikka, P.K.E.; Heikinheimo, V.; Hietanen, J.; Schäfer, E.; Siljander, M.; Heiskanen, J. Impact of Land Cover Change on Aboveground Carbon Stocks in Afromontane Landscape in Kenya. Appl. Geogr. 2018, 94, 178–189. [Google Scholar] [CrossRef]
- Gogoi, A.; Ahirwal, J.; Sahoo, U.K. Evaluation of Ecosystem Carbon Storage in Major Forest Types of Eastern Himalaya: Implications for Carbon Sink Management. J. Environ. Manag. 2022, 302, 113972. [Google Scholar] [CrossRef]
- Nzabarinda, V.; Bao, A.; Tie, L.; Uwamahoro, S.; Kayiranga, A.; Ochege, F.U.; Muhirwa, F.; Bao, J. Expanding Forest Carbon Sinks to Mitigate Climate Change in Africa. Renew. Sustain. Energy Rev. 2025, 207, 114849. [Google Scholar] [CrossRef]
- Gao, J.; Zou, C.; Zhang, K.; Xu, M.; Wang, Y. The Establishment of Chinese Ecological Conservation Redline and Insights into Improving International Protected Areas. J. Environ. Manag. 2020, 264, 110505. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, Z.; Li, R.; Shi, Z. Long-Term Impact of China’s Returning Farmland to Forest Program on Rural Economic Development. Sustainability 2020, 12, 1492. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Chen, Z.; Tu, S. Research on the Response of Ecosystem Service Function to Landscape Pattern Changes Caused by Land Use Transition: A Case Study of the Guangxi Zhuang Autonomous Region, China. Land 2022, 11, 752. [Google Scholar] [CrossRef]
- Wang, G.; Liao, M.; Jiang, J. Research on Agricultural Carbon Emissions and Regional Carbon Emissions Reduction Strategies in China. Sustainability 2020, 12, 2627. [Google Scholar] [CrossRef]
- Zhang, M.; Li, G.; He, T.; Zhai, G.; Guo, A.; Chen, H.; Wu, C. Reveal the Severe Spatial and Temporal Patterns of Abandoned Cropland in China over the Past 30 Years. Sci. Total Environ. 2023, 857, 159591. [Google Scholar] [CrossRef] [PubMed]
- Houghton, R.A.; Hackler, J.L. Sources and Sinks of Carbon from Land-Use Change in China. Glob. Biogeochem. Cycles 2003, 17, 1034. [Google Scholar] [CrossRef]
- Berenguer, E.; Ferreira, J.; Gardner, T.A.; Aragão, L.E.O.C.; De Camargo, P.B.; Cerri, C.E.; Durigan, M.; Oliveira Junior, R.C.D.; Vieira, I.C.G.; Barlow, J. A Large-Scale Field Assessment of Carbon Stocks in Human-Modified Tropical Forests. Glob. Change Biol. 2014, 20, 3713–3726. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Wang, R.; Zhao, D. Effects of Land Use and Cover Change on Terrestrial Carbon Stocks in Urbanized Areas: A Study from Changzhou, China. J. Clean. Prod. 2015, 103, 651–657. [Google Scholar] [CrossRef]
- Song, Z. Economic Growth and Carbon Emissions: Estimation of a Panel Threshold Model for the Transition Process in China. J. Clean. Prod. 2021, 278, 123773. [Google Scholar] [CrossRef]
- Molotoks, A.; Stehfest, E.; Doelman, J.; Albanito, F.; Fitton, N.; Dawson, T.P.; Smith, P. Global Projections of Future Cropland Expansion to 2050 and Direct Impacts on Biodiversity and Carbon Storage. Glob. Change Biol. 2018, 24, 5895–5908. [Google Scholar] [CrossRef]
- Hou, L.; Hu, H.; Liu, T.; Ma, C. Ecological Security Pattern Construction for Carbon Sink Capacity Enhancement: The Case of Chengdu Metropolitan Area. Sustainability 2025, 17, 4483. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, Q.; Lu, Z.; Li, Z.; Zhang, B.; Cheng, W. Ecosystem Service Value and Ecological Compensation in Qilian Mountain National Park: Implications for Ecological Conservation Strategies. Ecol. Indic. 2024, 167, 112661. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky Desertification in Southwest China: Impacts, Causes, and Restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.-C.; Tian, Y.; Zhang, Q.-P.; Jiang, L.-Y.; Wang, Q. Simulating the Sustainable Impact of Land Use Change on Carbon Emissions in the Upper Yellow River of Gannan: A Multi-Scenario Perspective Based on the PLUS Model. Sustainability 2024, 16, 5481. [Google Scholar] [CrossRef]
- Pan, L.; Shi, D.; Jiang, G.; Xu, Y. Impacts of Different Management Measures on Soil Nutrients and Stoichiometric Characteristics for Sloping Farmland under Erosive Environments in the Three Gorges Reservoir Area, China. Soil Tillage Res. 2024, 244, 106173. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Li, F.; Gao, W.; Guo, F.; Li, Z.; Yang, Z. Regional Mangrove Vegetation Carbon Stocks Predicted Integrating UAV-LiDAR and Satellite Data. J. Environ. Manag. 2024, 368, 122101. [Google Scholar] [CrossRef] [PubMed]
Data Type | Data Name | Year(s) | Data Source |
---|---|---|---|
Land use data | Land use type | 2011, 2014, 2018, 2022 | Remote Sensing Information Processing Institute (http://irsip.whu.edu.cn/ (accessed on 27 March 2025)) |
Natural factors | Average slope | 2022 | Resource and Environment Data Center, CAS (http://www.resdc.cn/ (accessed on 8 April 2025)) |
Forest coverage rate | 2011, 2014, 2018, 2022 | ||
DEM | 2022 | Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 8 April 2025)) | |
NDVI | 2011, 2014, 2018, 2022 | ||
Annual sunshine hours | 2011, 2014, 2018, 2020 | China Meteorological Data Network (http://data.cma.cn/ (accessed on 8 April 2025)) | |
Mean annual temperature | 2011, 2014, 2018, 2022 | ||
Annual precipitation | |||
Socioeconomic factors | Sugarcane planting area | Guangxi Bureau of Statistics/Statistical Yearbook (http://tjj.gxzf.gov.cn/ (accessed on 20 March 2025)) | |
Sugarcane yield | |||
Population | |||
Primary industry GDP | |||
General public budget expenditure | |||
Number of industrial enterprises above designated size | |||
Land urbanization rate | |||
Road network density | 2013, 2014, 2018, 2022 | National Geographic Information Resource Directory Service System (http://www.webmap.cn/ (accessed on 8 April 2025)) | |
Nighttime light index | 2011, 2014, 2018, 2022 | Resource and Environment Data Center, CAS (http://www.resdc.cn/ (accessed on 11 April 2025)) | |
Distance to adjacent cities | 2022 |
LULC_Name | C_above | C_below | C_soil | C_dead | Source |
---|---|---|---|---|---|
Cultivated land | 13.57 | 2.65 | 47.4 | 1 | [53,54] |
Forest | 58.3 | 14.58 | 96 | 3.5 | [54] |
Grass | 3.01 | 13.53 | 60 | 1 | [55] |
Water | 2.8 | 2.4 | 0 | 0 | [55] |
Barren | 3.4 | 0 | 31.4 | 0 | [53,54,55] |
Construction land | 11.45 | 0.93 | 31.4 | 0 | [54] |
Description | Interaction |
---|---|
q (X1 ∩ X2) < Min (q (X1), q (X2)) | Weaken, nonlinear |
Min (q (X1),q (X2)) < q (X1 ∩ X2) < Max (q (X1), q (X2)) | Weaken, uni- |
q (X1 ∩ X2) > Max (q (X1), q (X2)) | Enhance, bi- |
q (X1 ∩ X2) = q (X1) + q (X2) | Independent |
q (X1 ∩ X2) > q (X1) + q (X2) | Enhance, nonlinear |
Land Use Type | Description |
---|---|
Cultivated land | It refers to land used for growing crops, including mature cultivated land, newly reclaimed land, rotation land, fallow land, as well as land for agro-fruit intercropping, agro-forestry complexes, etc., covering types such as paddy fields, irrigated fields and dry land. |
Forest | It refers to land where arbors, shrubs and bamboos grow, as well as coastal mangrove land, including natural forests and artificial forests. |
Grass | It refers to land mainly covered by herbaceous plants (with a coverage rate of ≥5%), including natural grasslands, artificial pastures and shrub grasslands, etc. |
Water | It refers to natural land waters (rivers, lakes, etc.) and land for water conservancy facilities, such as reservoirs, ditches, etc. |
Barren | It refers to unused or hard-to-use land, including sandy land, bare rock, saline-alkali land, etc. |
Construction land | It covers urban land (built-up areas of large, medium and small cities and county towns), rural residential areas (independent rural settlements), as well as other construction land such as factories, mines and transportation roads. |
Land Use Types | 2011 | 2014 | 2018 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
Area/km2 | Percent/% | Area/km2 | Percent/% | Area/km2 | Percent/% | Area/km2 | Percent/% | |
Cultivated land | 37,138.581 | 30.483 | 36,329.046 | 29.818 | 35,394.517 | 29.051 | 35,731.644 | 29.328 |
Forest | 81,982.671 | 67.290 | 82,648.001 | 67.836 | 83,518.456 | 68.551 | 83,272.032 | 68.349 |
Grass | 80.771 | 0.066 | 83.938 | 0.069 | 64.929 | 0.053 | 45.320 | 0.037 |
Water | 1532.788 | 1.258 | 1541.544 | 1.265 | 1436.712 | 1.179 | 1216.842 | 0.999 |
Barren | 0.599 | 0.0005 | 0.561 | 0.0005 | 1.038 | 0.0009 | 2.186 | 0.0018 |
Construction land | 1098.976 | 0.902 | 1231.296 | 1.011 | 1418.735 | 1.164 | 1566.362 | 1.286 |
Land Use Types | 2011→2014 | 2014→2018 | 2018→2022 | 2011→2022 | ||||
---|---|---|---|---|---|---|---|---|
Area Change/km2 | Dynamic/% | Area Change/km2 | Dynamic/% | Area Change/km2 | Dynamic/% | Area Change/km2 | Dynamic/% | |
Cultivated land | −809.535 | −2.180 | −934.529 | −2.572 | 337.127 | 0.952 | −1406.937 | −3.788 |
Forest | 665.329 | 0.812 | 870.455 | 1.053 | −246.424 | −0.295 | 1289.361 | 1.573 |
Grass | 3.166 | 3.920 | −19.009 | −22.646 | −19.609 | −30.201 | −35.452 | −43.892 |
Water | 8.756 | 0.571 | −104.832 | −6.800 | −219.870 | −15.304 | −315.946 | −20.612 |
Barren | −0.038 | −6.316 | 0.477 | 85.072 | 1.148 | 110.668 | 1.588 | 265.263 |
Construction land | 132.321 | 12.040 | 187.439 | 15.223 | 147.627 | 10.406 | 467.386 | 42.529 |
Land Use Types | Cultivated Land | Forest | Grass | Water | Barren | Construction Land | Total |
---|---|---|---|---|---|---|---|
Cultivated land | 33,836.438 | 3089.237 | 20.660 | 68.477 | 0.000 | 123.770 | 37,138.581 |
Forest | 2417.180 | 79,546.946 | 13.461 | 0.000 | 0.000 | 5.085 | 81,982.671 |
Grass | 20.522 | 4.449 | 48.755 | 1.997 | 0.095 | 4.954 | 80.771 |
Water | 54.877 | 7.370 | 0.920 | 1464.638 | 0.110 | 4.874 | 1532.788 |
Barren | 0.031 | 0.000 | 0.142 | 0.001 | 0.356 | 0.069 | 0.599 |
Construction land | 0.000 | 0.000 | 0.000 | 6.431 | 0.000 | 1092.544 | 1098.976 |
Total | 36,329.046 | 82,648.001 | 83.938 | 1541.544 | 0.561 | 1231.296 | 121,834.386 |
Land Use Types | Cultivated Land | Forest | Grass | Water | Barren | Construction Land | Total |
---|---|---|---|---|---|---|---|
Cultivated land | 32,599.504 | 3505.519 | 20.101 | 31.734 | 0.036 | 172.153 | 36,329.046 |
Forest | 2649.155 | 79,989.571 | 2.083 | 0.155 | 0.001 | 7.037 | 82,648.001 |
Grass | 20.743 | 13.019 | 41.493 | 1.337 | 0.644 | 6.701 | 83.938 |
Water | 125.034 | 10.346 | 1.102 | 1398.217 | 0.038 | 6.808 | 1541.544 |
Barren | 0.045 | 0.000 | 0.151 | 0.003 | 0.320 | 0.042 | 0.561 |
Construction land | 0.036 | 0.000 | 0.000 | 5.267 | 0.000 | 1225.994 | 1231.296 |
Total | 35,394.517 | 83,518.456 | 64.929 | 1436.712 | 1.038 | 1418.735 | 121,834.386 |
Land Use Types | Cultivated Land | Forest | Grass | Water | Barren | Construction Land | Total |
---|---|---|---|---|---|---|---|
Cultivated land | 31,920.381 | 3288.267 | 12.456 | 28.718 | 0.068 | 144.627 | 35,394.517 |
Forest | 3544.106 | 79,962.305 | 2.745 | 0.616 | 0.000 | 8.684 | 83,518.456 |
Grass | 23.869 | 5.747 | 29.592 | 0.644 | 0.946 | 4.130 | 64.929 |
Water | 243.119 | 15.710 | 0.321 | 1169.828 | 0.526 | 7.209 | 1436.712 |
Barren | 0.100 | 0.000 | 0.205 | 0.004 | 0.647 | 0.082 | 1.038 |
Construction land | 0.070 | 0.003 | 0.000 | 17.033 | 0.000 | 1401.629 | 1418.735 |
Total | 35,731.644 | 83,272.032 | 45.320 | 1216.842 | 2.186 | 1566.362 | 121,834.386 |
Land Use Types | 2011 | 2014 | 2018 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
Carbon Stock | Percent/% | Carbon Stock | Percent/% | Carbon Stock | Percent/% | Carbon Stock | Percent/% | |
Cultivated land | 23,627.563 | 14.522 | 23,112.537 | 14.147 | 22,517.990 | 13.705 | 22,732.470 | 13.849 |
Forest | 138,452.341 | 85.095 | 139,575.950 | 85.434 | 141,045.974 | 85.841 | 140,629.813 | 85.673 |
Grass | 61.822 | 0.038 | 64.246 | 0.039 | 49.696 | 0.030 | 34.688 | 0.021 |
Water | 79.705 | 0.049 | 80.160 | 0.049 | 74.709 | 0.045 | 63.276 | 0.039 |
Barren | 0.208 | 0.00013 | 0.195 | 0.00012 | 0.361 | 0.00022 | 0.761 | 0.00046 |
Construction land | 481.132 | 0.296 | 539.062 | 0.330 | 621.122 | 0.378 | 685.753 | 0.418 |
Total | 162,702.772 | 100 | 163,372.150 | 100 | 164,309.852 | 100 | 164,146.761 | 100 |
Year | GMI | Z | p |
---|---|---|---|
2011 | 0.469 | 4.900 | 0.001 |
2014 | 0.423 | 4.451 | 0.001 |
2018 | 0.426 | 4.506 | 0.001 |
2022 | 0.437 | 4.578 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Wen, J.; Du, S.; Yan, C.; Pan, C. Spatiotemporal Evolution of Carbon Storage and Driving Factors in Major Sugarcane-Producing Regions of Guangxi, China. Agronomy 2025, 15, 1817. https://doi.org/10.3390/agronomy15081817
Ma J, Wen J, Du S, Yan C, Pan C. Spatiotemporal Evolution of Carbon Storage and Driving Factors in Major Sugarcane-Producing Regions of Guangxi, China. Agronomy. 2025; 15(8):1817. https://doi.org/10.3390/agronomy15081817
Chicago/Turabian StyleMa, Jianing, Jun Wen, Shirui Du, Chuanmin Yan, and Chuntian Pan. 2025. "Spatiotemporal Evolution of Carbon Storage and Driving Factors in Major Sugarcane-Producing Regions of Guangxi, China" Agronomy 15, no. 8: 1817. https://doi.org/10.3390/agronomy15081817
APA StyleMa, J., Wen, J., Du, S., Yan, C., & Pan, C. (2025). Spatiotemporal Evolution of Carbon Storage and Driving Factors in Major Sugarcane-Producing Regions of Guangxi, China. Agronomy, 15(8), 1817. https://doi.org/10.3390/agronomy15081817