Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Soil Sampling and Analysis
2.3. The DNDC Model
2.3.1. Model Parameter Sources
2.3.2. Model Performance Statistical Evaluation
2.3.3. Data Calculation and Statistical Analysis
3. Results
3.1. Wheat Grain Yield
3.2. Soil Organic Carbon Stock
3.3. Labile Carbon Fractions
3.3.1. Water-Soluble Organic Carbon
3.3.2. Particulate Organic Carbon
3.3.3. Light Fraction Organic Carbon
3.4. Recalcitrant Carbon Fractions
3.4.1. Mineral-Associated Organic Carbon
3.4.2. Heavy Fraction Organic Carbon
3.5. Main Predictors of SOC Sequestration
3.6. Validation of the DNDC Model
3.7. SOC Stock Simulation Under Long-Term Fertilization and Film-Mulching
3.8. Soil Organic Carbon Stock Under Future Climate Change
4. Discussion
4.1. Soil Organic Carbon Stock
4.2. Labile C Fractions and Recalcitrant C Fractions
4.3. Factors Driving SOC Sequestration
4.4. Dynamics of Soil Organic Carbon
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Water Assessment Programme. In The United Nations World Water Development Report 3:Water in a Changing World (Two Vols.); Taylor and Francis: Oxford, UK, 2009.
- Luo, L.C.; Wang, Z.H.; Huang, M.; Hui, X.L.; Wang, S.; Zhao, Y.; He, H.X.; Zhang, X.; Diao, C.P.; Cao, H.B.; et al. Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China. Field Crops Res. 2018, 218, 69–77. [Google Scholar] [CrossRef]
- Li, Y.W.; Chai, Y.W.; Ma, J.T.; Li, R.; Cheng, H.B.; Chang, L.; Chai, S.X. Straw strip mulching in a semiarid rainfed agroecosystem achieves carbon sequestration and emission reduction from winter wheat fields. Agric. Ecosyst. Environ. 2022, 334, 107990. [Google Scholar] [CrossRef]
- Cao, H.B.; Wang, Z.H.; He, G.; Dai, J.; Huang, M.; Wang, S.; Luo, L.C.; Sadras, V.O.; Hoogmoed, M.; Malhi, S.S. Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau. Field Crops Res. 2017, 209, 88–95. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Zhang, F.F.; Li, S.Q.; Yue, S.C.; Song, Q.L. The effect of long-term soil surface mulching on SOC fractions and the carbon management index in a semiarid agroecosystem. Soil Tillage Res. 2022, 216, 507–519. [Google Scholar] [CrossRef]
- Xu, M.G.; Lou, Y.L.; Sun, X.L.; Wang, W.; Baniyamuddin, M.; Zhao, K. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biol. Fertil. Soils 2011, 47, 745–752. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Duval, M.E.; Galantini, J.A.; Martínez, J.M.; Limbozzi, F. Labile soil organic carbon for assessing soil quality: Influence of management practices and edaphic conditions. Catena 2018, 171, 316–326. [Google Scholar] [CrossRef]
- Haney, R.L.; Haney, E.B.; Smith, D.R.; Harmel, R.D.; White, M.J. The soil health tool—Theory and initial broad-scale application. Appl. Soil Ecol. 2018, 125, 162–168. [Google Scholar] [CrossRef]
- Benbi, D.K.; Toor, A.S.; Kumar, S. Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant Soil 2012, 360, 145–162. [Google Scholar] [CrossRef]
- Iovieno, P.; Morra, L.; Leone, A.; Pagano, L.; Alfani, A. Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol. Fertil. Soils 2009, 45, 555–561. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef]
- Yang, H.M.; Yang, Y.M.; Huang, S.H.; Yang, W.F.; Xing, S.L.; Yang, J.F.; Jia, L.L. Effects of optimized fertilization on yield, nutrient balance, and eco-environmental benefits in wheat-maize rotation system. Chin. J. Eco-Agric. 2023, 31, 699–709. (In Chinese) [Google Scholar]
- Huang, T. The Effects of Long-Term C and N Inputs on Soil Organic C and N Pools and Environments; China Agricultural University: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Yu, Y.X.; Zhang, Y.X.; Xiao, M.; Zhao, C.Y.; Yao, H.Y. A meta-analysis of film mulching cultivation effects on soil organic carbon and soil greenhouse gas fluxes. Catena 2021, 206, 105483. [Google Scholar] [CrossRef]
- Rumpel, C.; Kogel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Richter, D.d.; Billings, S.A. ‘One physical system’: Tansley’s ecosystem as Earth’s critical zone. New Phytol. 2015, 206, 900–912. [Google Scholar] [CrossRef]
- Chabbi, A.; Kogel-Knabner, I.; Rumpel, C. Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol. Biochem. 2009, 41, 256–261. [Google Scholar] [CrossRef]
- Von Lützow, M.; Kogel-Knabner, I.; Ludwig, B.; Matzner, E.; Flessa, H.; Ekschmitt, K.; Guggenberger, G.; Marschner, B.; Kalbitz, K. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. J. Plant Nutr. Soil Sci. 2008, 171, 111–124. [Google Scholar] [CrossRef]
- Rumpel, C.; Baumann, K.; Remusat, L.; Dignac, M.-F.; Barre, P.; Deldicque, D.; Glasser, G.; Lieberwirth, I.; Chabbi, A. Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth. Soil Biol. Biochem. 2015, 85, 82–88. [Google Scholar] [CrossRef]
- Valkama, E.; Kunypiyaeva, G.; Zhapayev, R.; Karabayev, M.; Zhusupbekov, E.; Perego, A.; Schillaci, C.; Sacco, D.; Moretti, B.; Grignani, C.; et al. Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma 2020, 369, 114298. [Google Scholar] [CrossRef]
- Yan, X.B. Simulation of Soil Organic Carbon and Crop Yield in Dryland Farmland Under Different Mulching Conditions Based on DNDC Model; Northwest University: Xi’an, China, 2022. (In Chinese) [Google Scholar]
- Zhang, J.; Hu, K.L.; Li, K.J.; Zheng, C.L.; Li, B.G. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil Tillage Res. 2017, 165, 302–314. [Google Scholar] [CrossRef]
- Liu, X.; Si, P.F.; Zhang, Z.; Chen, B.Q.; Dong, W.Y.; Yan, C.R.; Liu, E.K. Effects of film mulching on soil aggregations and organic carbon contents in Northern dryland regions. Acta Ecol. Sin. 2018, 38, 7870–7877. (In Chinese) [Google Scholar]
- Lv, X.X.; Ding, X.L.; Zhang, B.; Sun, H.Y.; Wang, J.K. Effects of long-term fertilization and plastic-mulching on the stability and organic carbon contents of brown soil aggregates. J. Agric. Resour. Environ. 2018, 35, 1. (In Chinese) [Google Scholar]
- Lu, C.; Zhang, H.Y.; Liu, N.; Zhang, X.L.; Pang, H.C.; Li, Y.Y. Increasing soil organic carbon in aggregates and microflora diversity in moderate salt-affected soils through no till combined with plastic film mulching. Trans. Chin. Soc. Agric. Eng. 2019, 35, 116–124. (In Chinese) [Google Scholar]
- Zhang, F.F.; Gao, N.; Wu, S.Z.; Bai, J.; Li, Y.; Yue, S.C.; Li, S.Q. Effects of long-term film mulching and nitrogen application on soil dissolved organic matter content and structure characteris-tics in different soil layers. Acta Sci. Circumstantiae 2023, 43, 300–313. (In Chinese) [Google Scholar]
- Ye, Z.Z.; Wang, S.Y.; Lu, X.; Shi, D.P.; Lv, S.Q.; Li, J.; Yang, Z.Y.; Wang, L.Q. Effects of straw retention, film mulching, and nitrogen input on soil quality in dryland wheat field. Environ. Sci. 2024, 45, 2292–2303. (In Chinese) [Google Scholar]
- Cao, H.B.; Xie, J.Y.; Liu, F.; Yong, G.J.; Wang, C.H.; Wang, R.J.; Xie, Y.H.; Li, T. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching. Sci. Agric. Sin. 2021, 54, 4611–4622. (In Chinese) [Google Scholar]
- Wang, Y.H.; Pang, J.W.; Wei, T.; Gao, F.; Liu, E.K.; Jia, Z.K.; Zhang, P. Coupled effects of film mulching and straw-derived carbon inputs on soil aggregate characteristics and crop yields in semiarid areas. Acta Pedol. Sin. 2024, 61, 272–284. (In Chinese) [Google Scholar]
- Chai, Y.W.; Chai, Q.; Yang, C.G.; Chen, Y.Z.; Li, R.; Li, Y.W.; Chang, L.; Lan, X.M.; Cheng, H.B.; Chai, S.X. Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China. Agric. Water Manag. 2022, 262, 107420. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Ellert, B.H. Light Fraction and Macro-organic matter in mineral soils. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Li, B.B.; Wu, L.F. Concentration and components of dissolved organic carbon in soil profiles after crop residues were incorporated into the topsoil. J. Agro-Environ. Sci. 2019, 38, 1567–1577. (In Chinese) [Google Scholar]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Li, Z.T.; Yang, J.Y.; Smith, W.N.; Drury, C.F.; Lemke, R.L.; Grant, B.; He, W.T.; Li, X.G. Simulation of long-term spring wheat yields, soil organic C, N and water dynamics using DSSAT-CSM in a semi-arid region of the Canadian prairies. Nutr. Cycl. Agroecosyst. 2015, 101, 401–419. [Google Scholar] [CrossRef]
- He, W.; Yang, J.Y.; Drury, C.F.; Smith, W.N.; Grant, B.B.; He, P.; Qian, B.; Zhou, W.; Hoogenboom, G. Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. Agric. Syst. 2018, 159, 187–198. [Google Scholar] [CrossRef]
- Zhang, L.M.; Yu, D.S.; Shi, X.Z.; Xu, S.X.; Wang, S.H.; Xing, S.H.; Zhao, Y.C. Simulation soil organic carbon change in China’s Tai-Lake paddy soils. Soil Tillage Res. 2012, 121, 1–9. [Google Scholar] [CrossRef]
- Liu, S.; Yang, J.Y.; Zhang, X.Y.; Drury, C.F.; Reynolds, W.D.; Hoogenboom, G. Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China. Agric. Water Manag. 2013, 123, 32–44. [Google Scholar] [CrossRef]
- Holeplass, H.; Singh, B.R.; Lal, R. Carbon sequestration in soil aggregates under different crop rotations and nitrogen fertilization in an inceptisol in southeastern Norway. Nutr. Cycl. Agroecosyst. 2004, 70, 167–177. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kuzyakov, Y.; Sanaullah, M.; Heitkamp, F.; Zelenev, V.; Kumar, A.; Blagodatskaya, E. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: Mechanisms and thresholds. Biol. Fertil. Soils 2017, 53, 287–301. [Google Scholar] [CrossRef]
- Michalzik, B.; Kalbitz, K.; Park, J.H.; Solinger, S.; Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen –a synthesis for temperate forests. Biogeochemistry 2001, 52, 173–205. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Khan, S.A.; Ellsworth, T.R. Synthetic nitrogen fertilizers deplete soil nitrogen: A global dilemma for sustainable cereal production. J. Environ. Qual. 2009, 38, 2295–2314. [Google Scholar] [CrossRef]
- Zhong, Y.Q.W.; Yan, W.M.; Shangguan, Z.P. Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field. Catena 2015, 135, 38–46. [Google Scholar] [CrossRef]
- Zhao, X.D.; Qin, X.R.; Li, T.L.; Cao, H.B.; Xie, Y.H. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China. J. Integr. Agric. 2023, 22, 1560–1573. [Google Scholar] [CrossRef]
- Button, E.; Pett-Ridge, J.; Murphy, D.; Kuzyakov, Y.; Chadwick, D.; Jones, D. Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biol. Biochem. 2022, 170, 108697. [Google Scholar] [CrossRef]
- He, M.; Fang, K.; Chen, L.Y.; Feng, X.H.; Qin, S.Q.; Kou, D.; He, H.B.; Liang, C.; Yang, Y.H. Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Glob. Change Biol. 2022, 28, 936–949. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Hou, Y.H.; Zhou, S.R.; Zhu, B. Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant Soil 2021, 458, 93–103. [Google Scholar] [CrossRef]
- Xia, Q.; Rufty, T.; Shi, W. Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biol. Biochem. 2020, 149, 107953. [Google Scholar] [CrossRef]
- Angst, G.; Pokorný, J.; Mueller, C.W.; Prater, I.; Preusser, S.; Kandeler, E.; Meador, T.; Straková, P.; Hájek, T.; van Buiten, G.; et al. Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biol. Biochem. 2021, 159, 108302. [Google Scholar] [CrossRef]
- Luo, S.S.; Zhu, L.; Liu, J.L.; Bu, L.D.; Yue, S.C.; Shen, Y.F.; Li, S.Q. Sensitivity of soil organic carbon stocks and fractions to soil surface mulching in semiarid farmland. Eur. J. Soil Biol. 2015, 67, 35–42. [Google Scholar] [CrossRef]
- Si, P.F. Effects of Autumn Plastic Film Mulching on Soil Organic Carbon and Its Influence Mechanism in Dryland of Northern China; Shenyang Agricultural University: Shenyang, China, 2019. (In Chinese) [Google Scholar]
- Dong, Q.G.; Yang, Y.C.; Yu, K.; Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 2018, 201, 133–143. [Google Scholar] [CrossRef]
- Zhao, R.Y.; Li, Z.C.; Wang, B.; Ge, X.G.; Dai, Y.X.; Zhao, Z.X.; Zhang, Y.J. Duration of mulching caused variable pools of labile organic carbon in a Phyllostachys edulis plantation. Chin. J. Plant Ecol. 2017, 41, 418–429. [Google Scholar]
- Yagi, R.; Ferreira, M.E.; Cruz, M.C.P.D.; Barbosa, J.C.; Araújo, L.A.N.D. Soil organic matter as a function of nitrogen fertilization in crop succession. Sci. Agric. 2005, 62, 374–380. [Google Scholar] [CrossRef]
- Li, M. Study on Dynamic of Maize (Zea Mays L.) Yield, Soil Water and Soil Carbon Under the Dry-Farming PLASTIC Mulching System of Ridge and Furrow; Lanzhou University: Lanzhou, China, 2020. (In Chinese) [Google Scholar]
- Cai, A.D.; Zhang, W.J.; Yang, P.P.; Han, T.F.; Xu, M.G. Effect Degree of Fertilization Practices on Soil Organic Carbon and Fraction of Croplands in China—Based on Meta-Analysis. Sci. Agric. Sin. 2015, 48, 2995–3004. (In Chinese) [Google Scholar]
- Wei, Y.M. Effects of Fire Disturbance on Soil Properties and Soil Organic Carbon Components in a Larixgmelinii Forest; Northeast Forestry University: Harbin, China, 2015. (In Chinese) [Google Scholar]
- Zhang, X. Effects of Agricultural Management Soil Organic Carbon Pool Changes and Stabilization Mechanism in WeiBei Highland; Northwest A & F University: Xianyang, China, 2022. (In Chinese) [Google Scholar]
- Ma, Q.J.; Zhang, Q.; Niu, J.B.; Li, X.G. Plastic-film mulch cropping increases mineral-associated organic carbon accumulation in maize cropped soils as revealed by natural 13C/12C ratio signature. Geoderma 2020, 370, 114350. [Google Scholar] [CrossRef]
- Wang, C.H.; Liu, F.; Gao, J.Y.; Zhang, H.F.; Xie, Y.H.; Cao, H.B.; Xie, J.Y. The variation characteristics of soil organic carbon component content under nitrogen reduction and film mulching. Sci. Agric. Sin. 2022, 55, 3779–3790. (In Chinese) [Google Scholar]
- Wang, Y.P.; Li, X.G.; Fu, T.T.; Wang, L.; Turner, N.C.; Siddique, K.H.M.; Li, F.M. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric. For. Meteorol. 2016, 228, 42–51. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Y.; Li, S.Q.; Yue, S.C. High-yield characteristics and root support of rain-fed maize under film mulching. Agron. J. 2020, 112, 2115–2131. [Google Scholar] [CrossRef]
- Jilling, A.; Keiluweit, M.; Contosta, A.R.; Frey, S.; Schimel, J.; Schnecker, J.; Smith, R.G.; Tiemann, L.; Grandy, A.S. Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 2018, 139, 103–122. [Google Scholar] [CrossRef]
- Wang, X.J.; Qi, P.; Cai, L.Q.; Chen, X.L.; Xie, J.H.; Gan, H.J.; Zhang, R.Z. Effects of alternative fertilization practices on components of the soil organic carbon pool and yield stability in rain-fed maize production on the Loess Plateau. Acta Pratacult. Sin. (In Chinese). 2020, 29, 58–69. [Google Scholar]
- Schmidt, J.; Schulz, E.; Michalzik, B.; Buscot, F.; Gutknecht, J.L.M. Carbon input and crop-related changes in microbial biomarker levels strongly affect the turnover and composition of soil organic carbon. Soil Biol. Biochem. 2015, 85, 39–50. [Google Scholar] [CrossRef]
- Guan, Z.H.; Li, X.G.; Wang, L.; Mou, X.M.; Kuzyakov, Y. Conversion of Tibetan grasslands to croplands decreases accumulation of microbially synthesized compounds in soil. Soil Biol. Biochem. 2018, 123, 10–20. (In Chinese) [Google Scholar] [CrossRef]
- Lützow, M.v.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions–A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Clemente, J.S.; Simpson, A.J.; Simpson, M.J. Association of specific organic matter compounds in size fractions of soils under different environmental controls. Org. Geochem. 2011, 42, 1169–1180. [Google Scholar] [CrossRef]
- Liang, C.; Balser, T.C. Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy. Nat. Rev. Microbiol. 2011, 9, 75. [Google Scholar] [CrossRef]
- Jin, X.X.; An, T.T.; Gall, A.R.; Li, S.Y.; Filley, T.; Wang, J.K. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma 2018, 313, 154–162. [Google Scholar] [CrossRef]
- Yu, Y.X.; Tao, H.; Yao, H.Y.; Zhao, C.Y. Assessment of the effect of plastic mulching on soil respiration in the arid agricultural region of China under future climate scenarios. Agric. For. Meteorol. 2018, 256, 1–9. [Google Scholar] [CrossRef]
- Yang, J.J.; Qin, R.Z.; Shi, X.P.; Wei, H.H.; Sun, G.J.; Li, F.M.; Zhang, F. The effects of plastic film mulching and straw mulching on licorice root yield and soil organic carbon content in a dryland farming. Sci. Total Environ. 2022, 826, 154113. [Google Scholar] [CrossRef]
- Che, Y.; Qiu, L.X.; Wu, L.Y.; Long, J.; Wu, T.; Li, J.; Xing, S.H.; Zhang, L.M. Response of Soil Organic Carbon Accumulation in Paddy Fields in Fujian Province to Future Temperature Increases. Environ. Sci. 2023, 44, 2775–2785. (In Chinese) [Google Scholar]
- Wei, X.Y.; Van Meerbeek, K.; Yue, K.; Ni, X.Y.; Desie, E.; Hedenec, P.; Yang, J.; Wu, F.Z. Responses of soil C pools to combined warming and altered precipitation regimes: A meta-analysis. Glob. Ecol. Biogeogr. 2023, 32, 1660–1675. [Google Scholar] [CrossRef]
- Han, J.; Jia, Z.K.; Wu, W.; Li, C.S.; Han, Q.F.; Zhang, J. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Res. 2014, 155, 202–212. [Google Scholar] [CrossRef]
- Zheng, Q.F. Study on the Impacts of Future Climate Change of Soil Organic Carbon of Upland in the Northern of Jiangsu Province; Fujian Agriculture and Forestry University: Fuzhou, China, 2016. (In Chinese) [Google Scholar]
- Davidson, E.A.; Belk, E.; Boone, R.D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Change Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Li, M.; Zhang, Y.; Li, F.; Li, C. Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change? Agric. Syst. 2017, 150, 67–77. [Google Scholar] [CrossRef]
Treatment | Average Observations Mg ha−1 | Average Simulations Mg ha−1 | MBE Mg ha−1 | n-RMSE (%) | E (%) | d |
---|---|---|---|---|---|---|
FP | 23.98 | 24.19 | 0.21 | 4.86 | −1.16 | 0.82 |
MF | 21.75 | 23.55 | 1.80 | 9.01 | −8.68 | 0.92 |
RF | 23.62 | 24.26 | 0.63 | 6.28 | −3.08 | 0.85 |
FH | 24.87 | 24.27 | −0.61 | 2.94 | 2.42 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Chen, X.; Luo, Y.; Wu, Z.; Duan, C.; Cao, M.; Mazza Rodrigues, J.L.; Xie, J.; Li, T. Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios. Agronomy 2025, 15, 1808. https://doi.org/10.3390/agronomy15081808
Cao H, Chen X, Luo Y, Wu Z, Duan C, Cao M, Mazza Rodrigues JL, Xie J, Li T. Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios. Agronomy. 2025; 15(8):1808. https://doi.org/10.3390/agronomy15081808
Chicago/Turabian StyleCao, Hanbing, Xinru Chen, Yunqi Luo, Zhanxiang Wu, Chengjiao Duan, Mengru Cao, Jorge L. Mazza Rodrigues, Junyu Xie, and Tingliang Li. 2025. "Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios" Agronomy 15, no. 8: 1808. https://doi.org/10.3390/agronomy15081808
APA StyleCao, H., Chen, X., Luo, Y., Wu, Z., Duan, C., Cao, M., Mazza Rodrigues, J. L., Xie, J., & Li, T. (2025). Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios. Agronomy, 15(8), 1808. https://doi.org/10.3390/agronomy15081808