Review—Seed Treatment: Importance, Application, Impact, and Opportunities for Increasing Sustainability
Abstract
1. Introduction
2. Application of Existing Seed Preparation and Processing Technologies, Their Impact on Plant Growth, Quality, and the Environment
2.1. Chemical Seed Treatment and Environmental Impact
2.2. Physical Seed Treatment and Environmental Impact
2.3. Biological Treatment and Environmental Impact
3. Principles of Ozonation, Mechanism of Action, and Effects on Seeds and Plants
3.1. Possibilities of Using Ozone for Seed Treatment
3.2. Summary and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2020: Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020; p. 178. [Google Scholar]
- FAO. The State of Food and Agriculture 2021: Making Agrifood Systems More Resilient to Shocks and Stresses; FAO: Rome, Italy, 2021; p. 182. [Google Scholar]
- Różewicz, M.; Wyzińska, M.; Grabiński, J. The Most Important Fungal Diseases of Cereals—Problems and Possible Solutions. Agronomy 2021, 11, 714. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, Q. Efficacy of Ozonated Water Against Erwinia carotovora subsp. carotovora in Brassica campestris ssp. chinensis. Ozone Sci. Eng. 2017, 39, 127–136. [Google Scholar] [CrossRef]
- Çetinkaya, N.; Pazarlar, S.; Paylan, İ.C. Ozone treatment inactivates common bacteria and fungi associated with selected crop seeds and ornamental bulbs. Saudi J. Biol. Sci. 2022, 29, 103480. [Google Scholar] [CrossRef]
- Rodarte Sanchez, D.; Møller Jespersen, B.; Rasmussen, L.H.; Andersen, M.L. Fungicidal effect of gaseous ozone in malting barley: Implications for Fusarium infections and grain germination. J. Cereal Sci. 2024, 118, 103973. [Google Scholar] [CrossRef]
- Sivaranjani, S.; Prasath, V.A.; Pandiselvam, R.; Kothakota, A.; Mousavi Khaneghah, A. Recent advances in applications of ozone in the cereal industry. Food Sci. Technol. 2021, 146, 111412. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Manikantan, M.R.; Divya, V.; Ashokkumar, C.; Kaavya, R.; Kothakota, A.; Ramesh, S.V. Ozone: An Advanced Oxidation Technology for Starch Modification. Ozone Sci. Eng. 2019, 41, 491–507. [Google Scholar] [CrossRef]
- European Commission. Annual Activity Report 2020: DG CLIMATE ACTION; European Commission: Luxembourg, 2020; p. 56. [Google Scholar]
- Hozzein, W.N.; Abuelsoud, W.; Wadaan, M.A.M.; Shuikan, A.M.; Selim, S.; Al Jaouni, S.; AbdElgawad, H. Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. Sci. Total Environ. 2019, 651, 2787–2798. [Google Scholar] [CrossRef]
- Rady, M.M.; Kuşvuran, A.; Alharby, H.F.; Alzahrani, Y.; Kuşvuran, S. Pretreatment with Proline or an Organic Bio-stimulant Induces Salt Tolerance in Wheat Plants by Improving Antioxidant Redox State and Enzymatic Activities and Reducing the Oxidative Stress. J. Plant Growth Regul. 2019, 38, 449–462. [Google Scholar] [CrossRef]
- Iqbal, M.; Barchia, F.; Romeida, A. Pertumbuhan dan hasil tanaman melon (Cucumis melo L.) pada komposisi media tanam dan frekuensi pemupukan yang berbeda. J. Ilmu-Ilmu Pertan. Indones. 2019, 21, 108–114. [Google Scholar] [CrossRef]
- Sekmen Cetinel, A.H.; Yalcinkaya, T.; Akyol, T.Y.; Gokce, A.; Turkan, I. Pretreatment of seeds with hydrogen peroxide improves deep-sowing tolerance of wheat seedlings. Plant Physiol. Biochem. 2021, 167, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Mulvaney, M.J.; Verhulst, N.; Herrera, J.M.; Mezzalama, M.; Govaerts, B. Improved wheat performance with seed treatments under dry sowing on permanent raised beds. Field Crops Res. 2014, 164, 189–198. [Google Scholar] [CrossRef]
- Shahbaz, M.; Riaz, M.; Ali, S.; Ahmad, F.; Hussain, A.; Nabi, G.; Chaudhry, M.T.; Muhammad, S. Effect of Seed Dressing Chemicals on Emergence, Yield and Against Soil & Seed Born Diseases of Wheat. Pak. J. Phytopathol. 2018, 30, 183. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, W.; He, J.; Zhang, L.; Wei, Y.; Yang, M. Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicol. Environ. Saf. 2020, 187, 109785. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Wang, D.; Xie, K.; Lu, Y.; Shi, C.; EL Sabagh, A.; Gu, W.; Xu, P. Pre-sowing seed treatment with kinetin and calcium mitigates salt induced inhibition of seed germination and seedling growth of choysum (Brassica rapa var. parachinensis). Ecotoxicol. Environ. Saf. 2021, 227, 112921. [Google Scholar] [CrossRef]
- Liubych, V.V. Performance of soft winter wheat under the effect of growth regulators. Adv. Agritechnol. 2022, 10, 1–4. [Google Scholar] [CrossRef]
- Dung, T.V.; Qui, N.V.; Khanh, T.H.; Tan, D.B.; Long, V.V.; Cong, N.C.; Masaaki, M.; Sashi, K. Effects of Land Preparation and Iron-coated Rice Seeds on Yield, Growth Parameters, and Soil Properties in the Mekong Delta, Vietnam. Vietnam J. Agric. Sci. 2023, 6, 1755–1764. [Google Scholar] [CrossRef]
- Penido, A.C.; Rodrigues, V.O.; Carvalho, M.V.d.; Krepischi, L.S.; Pereira, C.C.; Oliveira, J.A. Effect of chemical treatment on the physiological and sanitary quality of stored coffee seeds. J. Seed Sci. 2021, 43, 1. [Google Scholar] [CrossRef]
- Oliveira, G.R.F.d.; Cicero, S.M.; Krzyzanowski, F.C.; Gomes-Junior, F.G.; Batista, T.B.; França-Neto, J.d.B. Treatment of soybean seeds with mechanical damage: Effects on their physiological potential. J. Seed Sci. 2021, 43, e202143023. [Google Scholar] [CrossRef]
- Dimant, E.; Degani, O. Molecular Real-Time PCR Monitoring of Onion Fusarium Basal Rot Chemical Control. J. Fungi 2023, 9, 809. [Google Scholar] [CrossRef]
- Zhou, Q.; Cheng, X.; Wang, S.; Liu, S.; Wei, C. Effects of Chemical Insecticide Imidacloprid on the Release of C6 Green Leaf Volatiles in Tea Plants (Camellia sinensis). Sci. Rep. 2019, 9, 625. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, T.; Song, Z.; Ding, C.; Chen, H. Molecular mechanism study of Astragalus adsurgens Pall synergistically induced by plasma and plasma-activated water. Plasma Sci. Technol. 2022, 24, 75502. [Google Scholar] [CrossRef]
- Santos, R.F.d.; Placido, H.F.; Lara, L.M.; Zeni Neto, H.; Henning, F.A.; Braccini, A.L. Physiological potential of soybean seeds treated and stored under uncontrolled conditions. J. Seed Sci. 2023, 45, e202345005. [Google Scholar] [CrossRef]
- Catão, H.C.R.M.; Pontes, B.S.; Pinheiro, D.T.; Oliveira Filho, M.A.d.; Santos, A.L.C.; Zolla, M.C. Chemical treatment and mobilization of reserves of soybean seeds under water deficit. J. Seed Sci. 2024, 46, e202446005. [Google Scholar] [CrossRef]
- Mayton, H.; Amirkhani, M.; Loos, M.; Johnson, B.; Fike, J.; Johnson, C.; Myers, K.; Starr, J.; Bergstrom, G.C.; Taylor, A. Evaluation of Industrial Hemp Seed Treatments for Management of Damping-Off for Enhanced Stand Establishment. Agriculture 2022, 12, 591. [Google Scholar] [CrossRef]
- Silva, K.M.d.J.; Pinho, R.G.V.; Pinho, É.V.d.R.V.; Oliveira, R.M.d.; Santos, H.O.d.; Silva, T.S. Chemical treatment and size of corn seed on physiological and sanitary quality during storage. J. Seed Sci. 2020, 42, e202042010. [Google Scholar] [CrossRef]
- Couto, A.P.S.; Brzezinski, C.R.; Abati, J.; Colombo, R.C.; Henning, F.A.; Fonseca, I.C.d.B.; Zucareli, C. Electrical conductivity test in the evaluation of the physiological potential of treated and stored soybean seeds. Semina. Ciências Agrárias Rev. Cult. Científica Univ. Estadual Londrina 2021, 42, 3135–3148. [Google Scholar] [CrossRef]
- Savvides, A.; Ali, S.; Tester, M.; Fotopoulos, V. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible? Trends Plant Sci. 2016, 21, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Malko, M.M.; Khanzada, A.; Wang, X.; Samo, A.; Li, Q.; Jiang, D.; Cai, J. Chemical treatment refines drought tolerance in wheat and its implications in changing climate: A review. Plant Stress 2022, 6, 100118. [Google Scholar] [CrossRef]
- Nyoni, N.; Ndlovu, E.; Maphosa, M. Effect of priming regimes on seed germination of field crops. Afr. Crop Sci. J. 2020, 28, 169–176. [Google Scholar] [CrossRef]
- Lei, C.; Bagavathiannan, M.; Wang, H.; Sharpe, S.M.; Meng, W.; Yu, J. Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy 2021, 11, 2194. [Google Scholar] [CrossRef]
- Day, S. Impact of seed priming on germination performance of fresh and aged seeds of Canola. Int. J. Agric. Environ. Food Sci. (Online) 2022, 6, 37–40. [Google Scholar] [CrossRef]
- Mutetwa, M.; Chaibva, P.; Chagonda, I.; Makuvaro, V.; Mtaita, T.; Ngezimana, W.; Masaka, J.; Manjeru, P. Hydropriming improves seed germination in horned melon (Cucumis metuliferus E. Mey. Ex Naudin) landraces. Eureka Life Sci. 2023, 6, 3–12. [Google Scholar] [CrossRef]
- Thapa, S.; Baral, B.; Shrestha, M.; Chandra Dahal, D.K. Effect of different priming methods on germination behaviour of broadleaf mustard cv. marpha chauda paate. Trop. Agrobiodivers. 2022, 3, 52–59. [Google Scholar] [CrossRef]
- Barros, T.T.V.; Pinheiro, D.T.; Gama, G.F.V.; Dias, D.C.F.d.S.; Silva, L.J.d. Osmopriming, antioxidative action, and thermal stress in sunflower seeds with different vigor levels. Semin. Ciências Agrárias Rev. Cult. Científica Univ. Estadual Londrina 2021, 42, 1435–1452. [Google Scholar] [CrossRef]
- Kakar, H.A.; Ullah, S.; Shah, W.; Ali, B.; Satti, S.Z.; Ullah, R.; Muhammad, Z.; Eldin, S.M.; Ali, I.; Alwahibi, M.S.; et al. Seed Priming Modulates Physiological and Agronomic Attributes of Maize (Zea mays L.) under Induced Polyethylene Glycol Osmotic Stress. ACS Omega 2023, 8, 22788–22808. [Google Scholar] [CrossRef]
- Donia, D.T.; Carbone, M. Seed Priming with Zinc Oxide Nanoparticles to Enhance Crop Tolerance to Environmental Stresses. Int. J. Mol. Sci. 2023, 24, 17612. [Google Scholar] [CrossRef] [PubMed]
- Tolrà, R.; González-Cobo, C.; Corrales, I.; Padilla, R.; Llugany, M. Seed Halopriming as an Effective Strategy to Enhance Salt Tolerance in Cakile maritima: Activation of Antioxidant and Genetic Responses. Antioxidants 2025, 14, 353. [Google Scholar] [CrossRef]
- Hidayah, A.; Nisak, R.R.; Susanto, F.A.; Nuringtyas, T.R.; Yamaguchi, N.; Purwestri, Y.A. Seed Halopriming Improves Salinity Tolerance of Some Rice Cultivars During Seedling Stage. Bot. Stud. 2022, 63, 24. [Google Scholar] [CrossRef]
- Singh, M.; Singh, A.; Jaswal, A.; Sarkar, S. System of Wheat Intensification: An Innovative and Futuristic Approach to Augment Yield of Wheat Crop. Nat. Environ. Pollut. Technol. 2024, 23, 569–575. [Google Scholar] [CrossRef]
- Mengesha, G.G.; Abebe, S.M.; Mekonnen, A.A.; G/Mikael Esho, A.; Lera, Z.T.; Shertore, M.M.; Fedilu, K.B.; Tadesse, Y.B.; Tsakamo, Y.T.; Issa, B.T.; et al. Effects of cultivar resistances and chemical seed treatments on fusarium head blight and bread wheat yield-related parameters under field condition in southern Ethiopia. Heliyon 2022, 8, e08659. [Google Scholar] [CrossRef] [PubMed]
- Hien, L.T.; Van, N.T. Effects of nano copper used in seed treatment for germination, growth, and productivity of maize. Acad. J. Biol. 2018, 40, 91. [Google Scholar] [CrossRef]
- Rocha, D.K.; Carvalho, E.R.; Pires, R.M.d.O.; Santos, H.O.d.; Penido, A.C.; Andrade, D.B.d. Does the substrate affect the germination of soybean seeds treated with phytosanitary products? Ciência Agrotecnologia 2020, 44, e020119. [Google Scholar] [CrossRef]
- Rudelt, J.; Klink, H.; Verreet, J. Choice of fungicide seed treatment solution composition affecting dust emission from cereal crop seeds. J. Kult. 2017, 69, 303–308. [Google Scholar] [CrossRef]
- Sehrish, A.; Parajulee, M.; Vyavhare, S.; Coldren, C.; Laza, H.; Simpson, C.R. Effects of Neonicotinoid Seed Treatments on Cotton Seedling Physiology, Nutrition, and Growth. Agronomy 2024, 14, 799. [Google Scholar] [CrossRef]
- Santos, M.S.; Rondina, A.B.L.; Nogueira, M.A.; Hungria, M. Compatibility of Azospirillum brasilense with Pesticides Used for Treatment of Maize Seeds. Int. J. Microbiol. 2020, 2020, 8833879. [Google Scholar] [CrossRef] [PubMed]
- Gaddam, P.K.; Yarasi, B.; Rao, P.J.M.; Reddy, M.R. Seed Treatment Effects on Seed Quality and Longevity of Soybean Seed Collected from Different Locations in Telangana State, India. Int. J. Environ. Clim. Change 2023, 13, 3152–3163. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Corrales, D.C.; Soltani, E. Biological seed treatments promote crop establishment and yield: A global meta-analysis. Agron. Sustain. Dev. 2022, 42, 45. [Google Scholar] [CrossRef]
- Hegde, S.G.; Duhan, D.S.; Karande, P.J. A review on biopriming in vegetable crops for yield and quality traits. Veg. Sci. 2022, 49, 248–258. [Google Scholar] [CrossRef]
- Cardoso, A.I.I.; Kronka, A.Z.; Lanna, N.B.L.; Silva, P.N.L.; Colombari, L.F.; Santos, P.L.d.; Pierozzi, C.G. Treatment with Thiabendazole can enhance germination, vigor and reduce incidence of fungi in zucchini seeds. Aust. J. Crop Sci. 2016, 10, 1589–1593. [Google Scholar] [CrossRef]
- Sui, L.; Li, J.; Philp, J.; Yang, K.; Wei, Y.; Li, H.; Li, J.; Li, L.; Ryder, M.; Toh, R.; et al. Trichoderma atroviride seed dressing influenced the fungal community and pathogenic fungi in the wheat rhizosphere. Sci. Rep. 2022, 12, 9677. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.R.d.; Silva, I.C.d.; Souza, C.A.F.d.; Avelino, J.R.L.; Santos, J.E.C.C.; Medeiros, E.V.d.; Pinto, K.M.S. Plant extract as a strategy for the management of seed pathogens: A critical review. Res. Soc. Dev. 2021, 10, e174101421846. [Google Scholar] [CrossRef]
- Ali, S.I.; Gaafar, A.A.; Metwally, S.A.; Habba, I.E.; Abdel khalek, M.R. The reactive influences of pre-sowing He-Ne laser seed irradiation and drought stress on growth, fatty acids, phenolic ingredients, and antioxidant properties of Celosia argentea. Sci. Hortic. 2020, 261, 108989. [Google Scholar] [CrossRef]
- Qiu, Z.; Yuan, M.; He, Y.; Li, Y.; Zhang, L. Physiological and transcriptome analysis of He-Ne laser pretreated wheat seedlings in response to drought stress. Sci. Rep. 2017, 7, 6108. [Google Scholar] [CrossRef]
- Jamil, Y.; Perveen, R.; Ashraf, M.; Ali, Q.; Iqbal, M.; Ahmad, M.R. He-Ne laser-induced changes in germination, thermodynamic parameters, internal energy, enzyme activities and physiological attributes of wheat during germination and early growth. Laser Phys. Lett. 2013, 10, 45606. [Google Scholar] [CrossRef]
- AlSalhi, M.S.; Tashish, W.; Al-Osaif, S.S.; Atif, M. Effects of He-Ne laser and argon laser irradiation on growth, germination, and physico-biochemical characteristics of wheat seeds (Triticumaestivum L.). Laser Phys. 2019, 29, 15602. [Google Scholar] [CrossRef]
- Ri, P.; Choe, S.; Jang, Y. Study on laser pre-sowing treatment of rice seeds by free-falling transport method. Inf. Process. Agric. 2019, 6, 515–521. [Google Scholar] [CrossRef]
- Iqbal, M.; Haq, Z.u.; Jamil, Y.; Nisar, J. Pre-sowing seed magnetic field treatment influence on germination, seedling growth and enzymatic activities of melon (Cucumis melo L.). Biocatal. Agric. Biotechnol. 2016, 6, 176–183. [Google Scholar] [CrossRef]
- Iqbal, M.; ul Haq, Z.; Malik, A.; Ayoub, C.M.; Jamil, Y.; Nisar, J. Pre-sowing seed magnetic field stimulation: A good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatal. Agric. Biotechnol. 2016, 5, 30–37. [Google Scholar] [CrossRef]
- Haq, Z.u.; Iqbal, M.; Jamil, Y.; Anwar, H.; Younis, A.; Arif, M.; Fareed, M.Z.; Hussain, F. Magnetically treated water irrigation effect on turnip seed germination, seedling growth and enzymatic activities. Inf. Process. Agric. 2016, 3, 99–106. [Google Scholar] [CrossRef]
- Boix, Y.F.; Dubois, A.F.; Quintero, Y.P.; Alemán, E.I.; Victório, C.P.; Aguilera, J.G.; Betancourt, M.N.; Morales-Aranibar, L. Magnetically Treated Water in Phaseolus vulgaris L.: An Alternative to Develop Organic Farming in Cuba. Plants 2023, 12, 340. [Google Scholar] [CrossRef]
- Selim, A.H.; El-Nady, M.F. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronaut. 2011, 69, 387–396. [Google Scholar] [CrossRef]
- Flórez, M.; Carbonell, M.V.; Martínez, E. Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environ. Exp. Bot. 2007, 59, 68–75. [Google Scholar] [CrossRef]
- Ružič, R.; Jerman, I. Weak magnetic field decreases heat stress in cress seedlings. Electromagn. Biol. Med. 2002, 21, 69–80. [Google Scholar] [CrossRef]
- Sharma, R.; Pandey, S.T.; Verma, O.; Srivastava, R.C.; Guru, S.K. Physiological seedling vigour parameters of wheat as influenced by different seed invigoration techniques. Int. J. Chem. Stud. 2020, 8, 1549–1552. [Google Scholar] [CrossRef]
- García-Mosqueda, C.; Cerón-García, A.; León-Galván, M.F.; Ozuna, C.; López-Malo, A.; Sosa-Morales, M.E. Changes in phenolics and flavonoids in amaranth and soybean sprouts after UV-C treatment. J. Food Sci. 2023, 88, 1280–1291. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Mao, X.; Yuan, C.; You, Y.; Zhao, J.; Zhou, S.; Wu, Y. Effect of UV-C irradiation treatment on mycotoxins production in Fusarium species inoculated wheat seeds during wheat germination. Food Chem. 2025, 467, 142369. [Google Scholar] [CrossRef]
- Grainge, G.; Nakabayashi, K.; Steinbrecher, T.; Kennedy, S.; Ren, J.; Iza, F.; Leubner-Metzger, G. Molecular mechanisms of seed dormancy release by gas plasma-activated water technology. J. Exp. Bot. 2022, 73, 4065–4078. [Google Scholar] [CrossRef]
- Filatova, I.I.; Azharonok, V.V.; Goncharik, S.V.; Lushkevich, V.A.; Zhukovsky, A.G.; Gadzhieva, G.I. Effect of RF Plasma Treatment on the Germination and Phytosanitary State of Seeds. J. Appl. Spectrosc. 2014, 81, 250–256. [Google Scholar] [CrossRef]
- Dawood, N. Effect of RF plasma on Moringa seeds germination and growth. J. Taibah Univ. Sci. 2020, 14, 279–284. [Google Scholar] [CrossRef]
- Ford, M.; Coad, B.R. Plasma glows and shifting water flows: Measuring the changes to water transport phenomena in seeds after plasma treatment. Food Chem. 2025, 479, 143733. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, Y.; Zhang, H.; Qu, G.; Wang, T.; Sun, Q.; Liang, D. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep. 2017, 7, 16680. [Google Scholar] [CrossRef] [PubMed]
- Chalise, R.; Bhandari, P.; Sharma, S.; Basnet, S.; Subedi, D.P.; Khanal, R. Enhancement of wheat yield by atmospheric pressure plasma treatment. AIP Adv. 2023, 13, 065104. [Google Scholar] [CrossRef]
- Roy, N.C.; Hasan, M.M.; Kabir, A.H.; Reza, M.A.; Talukder, M.R.; Chowdhury, A.N. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat. Plasma Sci. Technol. 2018, 20, 115501. [Google Scholar] [CrossRef]
- Mukherjee, M.; Dutta, S.P.; Balaji, U.; Pandey, S.; Sankaran, K.J.; Lenka, D. Dielectric barrier discharge (DBD) plasma treatment for microbial disinfection and enhanced germination in paddy seeds. Appl. Food Res. 2025, 5, 100854. [Google Scholar] [CrossRef]
- Alves Junior, C.; de Oliveira Vitoriano, J.; da Silva, D.L.S.; de Lima Farias, M.; de Lima Dantas, N.B. Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma. Sci. Rep. 2016, 6, 33722. [Google Scholar] [CrossRef]
- Nishioka, T.; Takai, Y.; Kawaradani, M.; Okada, K.; Tanimoto, H.; Misawa, T.; Kusakari, S. Seed Disinfection Effect of Atmospheric Pressure Plasma and Low Pressure Plasma on Rhizoctonia solani. Biocontrol Sci. 2014, 19, 99–102. [Google Scholar] [CrossRef]
- Nicolau, J.P.B.; Pereira, M.D.; Silva, F.E.d.; Souza, D.L.d.S.; Medeiros, A.D.d.; Alves, C.Z. Atmospheric plasma overcomes dormancy of Pityrocarpa moniliformis (Benth) Luckow & R. W. Jobson seeds. J. Seed Sci. 2022, 44, e202244041. [Google Scholar] [CrossRef]
- Tong, J.; He, R.; Zhang, X.; Zhan, R.; Chen, W.; Yang, S. Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata. Plasma Sci. Technol. 2014, 16, 260–266. [Google Scholar] [CrossRef]
- Liu, C.; Cui, J.; Zhang, D.; Tang, H.; Gong, B.; Zu, S.; Zhong, C. Decontamination of infected plant seeds utilizing atmospheric gliding arc discharge plasma treatment. Plasma Sci. Technol. 2021, 23, 105501. [Google Scholar] [CrossRef]
- Halim, A.N.H.; Shahrudin, N.F.; Safaai, S.S.; Raja Ibrahim, R.K. The effect of atmospheric plasma jet treatment on honeydew melon seed. J. Phys. Conf. Ser. 2023, 2432, 12018. [Google Scholar] [CrossRef]
- Guragain, R.P.; Baniya, H.B.; Dhungana, S.; Chhetri, G.K.; Sedhai, B.; Basnet, N.; Shakya, A.; Pandey, B.P.; Pradhan, S.P.; Joshi, U.M.; et al. Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus). Plasma Sci. Technol. 2022, 24, 15502. [Google Scholar] [CrossRef]
- Guo, Q.; Meng, Y.; Qu, G.; Wang, T.; Yang, F.; Liang, D.; Hu, S. Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment. Bioelectromagnetics 2017, 39, 120–131. [Google Scholar] [CrossRef]
- Henselová, M.; Slováková, Ľ.; Martinka, M.; Zahoranová, A. Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 2012, 67, 490–497. [Google Scholar] [CrossRef]
- Filatova, I.; Lyushkevich, V.; Goncharik, S.; Zhukovsky, A.; Krupenko, N.; Kalatskaja, J. The effect of low-pressure plasma treatment of seeds on the plant resistance to pathogens and crop yields. J. Phys. D Appl. Phys. 2020, 53, 244001. [Google Scholar] [CrossRef]
- Sarapirom, S.; Yu, L.D. Low-pressure and atmospheric plasma treatments of sunflower seeds. Surf. Coat. Technol. 2021, 406, 126638. [Google Scholar] [CrossRef]
- Dobrin, D.; Magureanu, M.; Mandache, N.B.; Ionita, M. The effect of non-thermal plasma treatment on wheat germination and early growth. Innov. Food Sci. Emerg. Technol. 2015, 29, 255–260. [Google Scholar] [CrossRef]
- Filatova, I.; Azharonok, V.; Kadyrov, M.; Beljavsky, V.; Gvozdov, A.; Shik, A.; Antonuk, A. The effect of plasma treatment of seeds of some grain and legumes on their sowing quality and productivity. Rom. J. Phys. 2011, 56, 139–143. [Google Scholar]
- Waskow, A.; Butscher, D.; Oberbossel, G.; Klöti, D.; Rudolf von Rohr, P.; Büttner-Mainik, A.; Drissner, D.; Schuppler, M. Low-energy electron beam has severe impact on seedling development compared to cold atmospheric pressure plasma. Sci. Rep. 2021, 11, 16373. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Akkermans, S.; Boehm, D.; Cullen, P.J.; Van Impe, J.; Bourke, P. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res. Int. 2018, 106, 509–521. [Google Scholar] [CrossRef]
- Ahmed, N.; Siow, K.S.; Wee, M.F.M.R.; Patra, A. A study to examine the ageing behaviour of cold plasma-treated agricultural seeds. Sci. Rep. 2023, 13, 1675. [Google Scholar] [CrossRef]
- Sera, B.; Spatenka, P.; Sery, M.; Vrchotova, N.; Hruskova, I. Influence of Plasma Treatment on Wheat and Oat Germination and Early Growth. Trans. Plasma Sci. 2010, 38, 2963–2968. [Google Scholar] [CrossRef]
- Li, L.; Jiang, J.F.; Li, J.; Shen, M.; He, X.; Shao, H.; Dong, Y. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014, 4, 5859. [Google Scholar] [CrossRef]
- de Groot, G.J.J.B.; Hundt, A.; Murphy, A.B.; Bange, M.P.; Mai-Prochnow, A. Cold plasma treatment for cotton seed germination improvement. Sci. Rep. 2018, 8, 14372. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, L.; Dong, Y. Seed priming with cold plasma mitigated the negative influence of drought stress on growth and yield of rapeseed (Brassica napus L.). Ind. Crops Prod. 2025, 228, 120899. [Google Scholar] [CrossRef]
- Karaayak, P.E.; Inanoglu, S.; Karwe, M.V. Impact of Cold Plasma Treatment of Sweet Basil Seeds on the Growth and Quality of Basil Plants in a Lab-Scale Hydroponic System. ACS Agric. Sci. Technol. 2023, 3, 675–682. [Google Scholar] [CrossRef]
- Gidea, M.; Teodorescu, R.; Tudor, V.; Mihalascu, C.; Mihalache, D.; Burghila, D.; Slave, C.; Magureanu, M. Research regarding the impact of cold plasma treatment applied to wheat crop seeds. Rom. Biotechnol. Lett. 2019, 24, 922–928. [Google Scholar] [CrossRef]
- Ahn, C.; Gill, J.; Ruzic, D.N. Growth of Plasma-Treated Corn Seeds under Realistic Conditions. Sci. Rep. 2019, 9, 4355. [Google Scholar] [CrossRef]
- Holc, M.; Mozetič, M.; Zaplotnik, R.; Vesel, A.; Gselman, P.; Recek, N. Effect of Oxygen Plasma Treatment on Wheat Emergence and Yield in the Field. Plants 2022, 11, 2489. [Google Scholar] [CrossRef]
- Starič, P.; Mravlje, J.; Mozetič, M.; Zaplotnik, R.; Šetina Batič, B.; Junkar, I.; Vogel Mikuš, K. The Influence of Glow and Afterglow Cold Plasma Treatment on Biochemistry, Morphology, and Physiology of Wheat Seeds. Int. J. Mol. Sci. 2022, 23, 7369. [Google Scholar] [CrossRef]
- Guo, Y.; Fan, T.; Liu, X.; Chen, M.; Zhang, N.; Chen, Y.; Wang, X. Nanosecond-pulsed plasma protects against bacterial fruit blotch and promotes melon seedling growth. J. Sci. Food Agric. 2024, 104, 7917–7927. [Google Scholar] [CrossRef]
- Hafeez, M.B.; Zahra, N.; Ahmad, N.; Shi, Z.; Raza, A.; Wang, X.; Li, J.; Wicke, S. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. Plant Biol. 2023, 25, 8–23. [Google Scholar] [CrossRef]
- Braga, G.U.L.; Rangel, D.E.N.; Fernandes, É.K.K.; Flint, S.D.; Roberts, D.W. Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr. Genet. 2015, 61, 405–425. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.D.; Lang, G.H.; Lindemann, I.d.S.; Timm, N.d.S.; Hoffmann, J.F.; Ziegler, V.; de Oliveira, M. Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chem. 2021, 339, 127810. [Google Scholar] [CrossRef]
- Nada, S.; Nikola, T.; Bozidar, U.; Ilija, D.; Andreja, R. Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control 2022, 136, 108855. [Google Scholar] [CrossRef]
- Wang, Y.; Shang, J.; Cai, M.; Liu, Y.; Yang, K. Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: A review of the past five years. Crit. Rev. Food Sci. Nutr. 2023, 63, 11668–11678. [Google Scholar] [CrossRef] [PubMed]
- von Keudell, A.; Schulz-von der Gathen, V. Foundations of low-temperature plasma physics-an introduction. Plasma Sources Sci. Technol. 2017, 26, 113001. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Ezhilarasi, P.N.; Rajauria, G. Application of cold plasma on food matrices: A review on current and future prospects. J. Food Process. Preserv. 2021, 45, e15070. [Google Scholar] [CrossRef]
- Zhang, B. Application of low-temperature plasma technology in the field of agriculture. Trans. Environ. Energy Earth Sci. 2024, 1, 19–24. [Google Scholar] [CrossRef]
- Rongsangchaicharean, T.; Ruangwong, K.; Onwimol, D.; Tephiruk, N.; Suwannarat, S.; Srisonphan, S. Effect of dielectric barrier discharge plasma on rice (Oryza sativa L.) seed hydration and hygroscopicity. J. Phys. D Appl. Phys. 2022, 55, 365201. [Google Scholar] [CrossRef]
- Susmita, C.; Kumar, S.P.J.; Chintagunta, A.D.; Lichtfouse, E.; Naik, B.; Ramya, P.; Kumari, K.; Kumar, S. Non-thermal plasmas for disease control and abiotic stress management in plants. Environ. Chem. Lett. 2022, 20, 2135–2164. [Google Scholar] [CrossRef]
- Mravlje, J.; Regvar, M.; Vogel-Mikuš, K. Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. J. Fungi 2021, 7, 650. [Google Scholar] [CrossRef]
- Waskow, A.; Howling, A.; Furno, I. Mechanisms of Plasma-Seed Treatments as a Potential Seed Processing Technology. Front. Phys. 2021, 9, 617345. [Google Scholar] [CrossRef]
- Veit, A.; Xu, Y.; Zheng, R.; Chakraborty, N.; Sycara, K. Multiagent Coordination for Energy Consumption Scheduling in Consumer Cooperatives. Proc. AAAI Conf. Artif. Intell. 2013, 27, 1362–1368. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Lubis, L.H.; Mesyadi, M.; Nasution, M.I. Integration of Solar Panels and Arduino for Aquaponic System Automation and Solar Energy Efficiency. Indones. Phys. Rev. 2024, 8, 222–237. [Google Scholar] [CrossRef]
- Reis, L.V.; Carvalho, E.R.; Reis, V.U.V.; Nardelli, A.C.P.; Andrade, D.B.d.; Oliveira Junior, A. Treatment technologies for soybean seeds: Dose effectiveness, mechanical damage and seed coating. Ciência Agrotecnologia 2023, 47, e013622. [Google Scholar] [CrossRef]
- Bieńkowski, T.; Żuk-Gołaszewska, K.; Kurowski, T.; Gołaszewski, J. Agrotechnical indicators for Trigonella foenum-gracum L. production in the environmental conditions of northeastern Europe. Turk. J. Field Crops 2016, 21, 16. [Google Scholar] [CrossRef]
- Song, J.; Kim, S.B.; Ryu, S.; Oh, J.; Kim, D. Emerging Plasma Technology That Alleviates Crop Stress During the Early Growth Stages of Plants: A Review. Front. Plant Sci. 2020, 11, 988. [Google Scholar] [CrossRef]
- Spadaro, D.; Herforth-Rahmé, J.; van der Wolf, J. Organic seed treatments of vegetables to prevent seedborne diseases. Acta Hortic. 2017, 1, 23–32. [Google Scholar] [CrossRef]
- Fabiano, A.R.; Schwan-Estrada, K.R.F.; Robinson, L.C.; Guilherme, B.P.B.; Rodrigo, R.; Rafael, B.B.; Valdenir, C. Agronomic performance of soybean treated with Bacillus amyloliquefaciens. Afr. J. Microbiol. Res. 2018, 12, 1020–1027. [Google Scholar] [CrossRef]
- Konappa, N.; Krishnamurthy, S.; Arakere, U.C.; Chowdappa, S.; Ramachandrappa, N.S. Efficacy of indigenous plant growth-promoting rhizobacteria and Trichoderma strains in eliciting resistance against bacterial wilt in a tomato. Egypt. J. Biol. Pest Control 2020, 30, 106. [Google Scholar] [CrossRef]
- Röske, V.M.; Guimarães, V.F.; Brito, T.S.; Lerner, A.W.; Junior, R.C.; Silva, A.S.L.; Anklan, M.A. Inoculation and co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense in soybean crop with the use of soil bio-activator. Commun. Plant Sci. 2022, 12, 24–32. [Google Scholar] [CrossRef]
- Neto, H.F.I.; Silva, A.C.d.; Sumida, C.H.; Gouveia, M.d.S.; Pellizzaro, V.; Takahashi, L.S.A. Physiological potential of green bean seeds treated with Bacillus subtilis. J. Seed Sci. 2021, 43, e202143016. [Google Scholar] [CrossRef]
- Umapathi, M.; Chandrasekhar, C.N.; Senthil, A.; Kalaiselvi, T.; Santhi, R.; Ravikesavan, R. Effect of bacterial endophytes inoculation on morphological and physiological traits of sorghum (Sorghum bicolor (L.) Moench) under drought. J. Pharmacogn. Phytochem. 2021, 10, 1021–1028. [Google Scholar] [CrossRef]
- Bisen, K.; Keswani, C.; Mishra, S.; Saxena, A.; Rakshit, A.; Singh, H.B. Unrealized Potential of Seed Biopriming for Versatile Agriculture. In Nutrient use Efficiency: From Basics to Advances; Springer India: New Delhi, India, 2014; pp. 193–206. [Google Scholar]
- Srivastava, S.; Tyagi, R.; Sharma, S. Seed biopriming as a promising approach for stress tolerance and enhancement of crop productivity: A review. J. Sci. Food Agric. 2023, 104, 1244–1257. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K.; Singh, S.; Singh, H.B.; Sarma, B.K. Compatible Rhizosphere-Competent Microbial Consortium Adds Value to the Nutritional Quality in Edible Parts of Chickpea. J. Agric. Food Chem. 2017, 65, 6122–6130. [Google Scholar] [CrossRef]
- Ahmed, A.; Ibrahim, H. Evaluating the effect of biofertilization in improving growth and productivity of soya bean under qantra sharq conditions. Egypt. J. Desert Res. 2023, 73, 367–394. [Google Scholar] [CrossRef]
- Klaedtke, S.; Jacques, M.; Raggi, L.; Préveaux, A.; Bonneau, S.; Negri, V.; Chable, V.; Barret, M. Terroir is a key driver of seed-associated microbial assemblages. Environ. Microbiol. 2016, 18, 1792–1804. [Google Scholar] [CrossRef]
- Kandasamy, S.; Weerasuriya, N.; Gritsiouk, D.; Patterson, G.; Saldias, S.; Ali, S.; Lazarovits, G. Size Variability in Seed Lot Impact Seed Nutritional Balance, Seedling Vigor, Microbial Composition and Plant Performance of Common Corn Hybrids. Agronomy 2020, 10, 157. [Google Scholar] [CrossRef]
- Diakaki, M.; van der Heijden, L.; Lopez-Reyes, J.G.; van Nieuwenhoven, A.; Notten, M.; Storcken, M.; Butterbach, P.; Köhl, J.; de Boer, W.; Postma, J. Beetroot and spinach seed microbiomes can suppress Pythium ultimum infection: Results from a large-scale screening. Seed Sci. Res. 2022, 32, 274–282. [Google Scholar] [CrossRef]
- Marwal, A.; Sahu, A.K.; Gaur, R.K. New Insights in the Functional Genomics of Plants Responding to Abiotic Stress. In Molecular Approaches in Plant Abiotic Stress, 1st ed.; CRC Press: London, UK, 2013; pp. 158–180. [Google Scholar]
- Meena, M.; Yadav, G.; Sonigra, P.; Nagda, A.; Mehta, T.; Swapnil, P.; Harish; Marwal, A. Role of elicitors to initiate the induction of systemic resistance in plants to biotic stress. Plant Stress 2022, 5, 100103. [Google Scholar] [CrossRef]
- Sharma, T.; Malik, A.; Dhabhai, A.; Tailor, S.; Jain, K.; Meena, M.; Marwal, A. Chapter 15—An overview of the effect of seed priming induced physiochemical and molecular processes in plants: Abiotic stress tolerance. In Exogenous Priming and Engineering of Plant Metabolic and Regulatory Genes; Elsevier Inc.: Amsterdam, The Netherlands, 2025; pp. 215–232. [Google Scholar]
- Sharma, A.K.; Bhattacharyya, P.N. Effect of Beneficial Microorganisms on Cowpea Productivity and Soil Health. J. Adv. Res. Pharm. Biol. Sci. 2016, 2, 15–21. [Google Scholar] [CrossRef]
- Kumar, P.V.; Bara, B.M.; Lavanya, G.R. Potential of Zinc Glycinate and Calcium Chloride on Morphological and Yield Characters of Wheat (Triticum aestivum L). Int. J. Environ. Clim. Change 2023, 13, 4031–4037. [Google Scholar] [CrossRef]
- Khasanov, E.; Khamaletdinov, R.; Mudarisov, S.; Shirokov, D.; Akhunov, R. Optimization parameters of the spiral mixing chamber of the device for pre-sowing seed treatment with biological preparations. Comput. Electron. Agric. 2020, 173, 105437. [Google Scholar] [CrossRef]
- Smith, R.S.; Shiel, R.S.; Bardgett, R.D.; Millward, D.; Corkhill, P.; Evans, P.; Quirk, H.; Hobbs, P.J.; Kometa, S.T. Long-Term Change in Vegetation and Soil Microbial Communities during the Phased Restoration of Traditional Meadow Grassland. J. Appl. Ecol. 2008, 45, 670–679. [Google Scholar] [CrossRef]
- Song, S.; Xiong, K.; Chi, Y. Ecological Stoichiometric Characteristics of Plant–Soil–Microorganism of Grassland Ecosystems under Different Restoration Modes in the Karst Desertification Area. Agronomy 2023, 13, 2016. [Google Scholar] [CrossRef]
- Gleń-Karolczyk, K.; Boligłowa, E.; Gospodarek, J.; Antonkiewicz, J.; Luty, L. Effect of Seed Dressing and Soil Chemical Properties on Communities of Microorganisms Associated with Pre-Emergence Damping-Off of Broad Bean Seedlings. Agronomy 2021, 11, 1889. [Google Scholar] [CrossRef]
- Fernandes, J.P.T.; Nascente, A.S.; Filippi, M.C.C.d.; Silva, M.A. Upland rice seedling performance promoted by multifunctional microorganisms. Semin. Ciências Agrárias Rev. Cult. Científica Univ. Estadual Londrina 2021, 42, 429–438. [Google Scholar] [CrossRef]
- Dziwulska-Hunek, A.; Szymanek, M.; Dziwulski, J. Managing the quality of seeds from cereal conditioned with effective microorganisms (EM) and red light (RL). Agron. Sci. (Online) 2022, 77, 89–99. [Google Scholar] [CrossRef]
- Palmer, C.; Siller, A.; Naylor, R.; Hashemi, M.; Keiser, A. Increased winter-killed cover crop seeding rate may not increase soil health outcomes. Soil Sci. Soc. Am. J. 2024, 88, 1808–1819. [Google Scholar] [CrossRef]
- Faisal, Z.G. Promoting Seed Germination of Some Plant Species by Rhamnolipid Produced by Pseudomonas aeruginosa. Scientifica 2024, 2024, 7137413. [Google Scholar] [CrossRef]
- O’Callaghan, M. Microbial inoculation of seed for improved crop performance: Issues and opportunities. Appl. Microbiol. Biotechnol. 2016, 100, 5729–5746. [Google Scholar] [CrossRef]
- Godar, S.; Mansour, T.; Ousmane, S.; Mame, S.M.; Samba, N.S. Reducing mineral fertilizer use for sustainable agriculture: The influence of seed coating with arbuscular mycorrhizal fungal spores and Leifsonia bacteria on maize (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench) production. Int. J. Nutr. Metab. 2023, 15, 1–13. [Google Scholar] [CrossRef]
- Al-Karim, U.A. Evaluation of biological seed treatments for management of Rotylenchulus reniformis on cotton. Pak. J. Nematol. 2020, 38, 57–65. [Google Scholar] [CrossRef]
- Kimmelshue, C.; Goggi, A.S.; Cademartiri, R. The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Sci. Rep. 2019, 9, 17950. [Google Scholar] [CrossRef]
- Torres-Cortés, G.; Garcia, B.J.; Compant, S.; Rezki, S.; Jones, P.; Préveaux, A.; Briand, M.; Roulet, A.; Bouchez, O.; Jacobson, D.; et al. Differences in resource use lead to coexistence of seed-transmitted microbial populations. Sci. Rep. 2019, 9, 6648. [Google Scholar] [CrossRef]
- Kessler, A.C.; Koehler, A.M. Seed Treatments for Management of Soybean Cyst Nematode, Heterodera glycines, in Mid-Atlantic Soybean Production. J. Nematol. 2023, 55, 20230026. [Google Scholar] [CrossRef]
- Safin, R.; Karimova, L.; Nizhegorodtseva, L.; Stepankova, D.; Shaimullina, G.; Nazarov, R. Effect of various biological control agents (BCAs) on drought resistance and spring barley productivity. BIO Web Conf. 2020, 17, 63. [Google Scholar] [CrossRef]
- Barrera, D.; Luera, J.; Lavallee, K.; Soti, P. Influence of microbial priming and seeding depth on germination and growth of native wildflowers. Ecol. Process. 2021, 10, 19. [Google Scholar] [CrossRef]
- Guedes, N.A.; Queiroz, V.T.d.; Filho, A.M.M.; Costa, A.V.; Saraiva, S.H.; Alexandre, R.S.; Maximino, R.C.; Bernardes, P.C. Texture profile of filmogenic solutions with potential application for seed biodegradable coatings/perfil de textura de soluções filmogénicas com potencial aplicação de revestimentos biodegradáveis de sementes. Braz. J. Dev. 2021, 7, 2538–2547. [Google Scholar] [CrossRef]
- Rodriguez, M.C.; Sautua, F.; Scandiani, M.; Carmona, M.; Asurmendi, S. Current recommendations and novel strategies for sustainable management of soybean sudden death syndrome. Pest Manag. Sci. 2021, 77, 4238–4248. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, M.L. Seed Invigouration Techniques—Important Tool for Sustainable Agriculture—A Review. Int. J. Curr. Res. Biosci. Plant Biol. 2017, 4, 119–122. [Google Scholar] [CrossRef]
- Anniwaer, A.; Su, Y.; Zhou, X.; Zhang, Y. Impacts of snow on seed germination are independent of seed traits and plant ecological characteristics in a temperate desert of Central Asia. J. Arid Land 2020, 12, 775–790. [Google Scholar] [CrossRef]
- Teterin, V.; Terentyev, V.; Andreev, K.; Shemyakin, A.; Teterina, O. Study of the parameters and operating modes of the installation for aerosol treatment of seed grain. E3S Web Conf. 2020, 203, 2011. [Google Scholar] [CrossRef]
- Wahyuni, A.; Putri, R.; Hakim, N.A.; Septiana, S. Enhancement of Soybean Growth using Biological Agents Seed Treatment and Fertilization. IOP Conf. Ser. Earth Environ. Sci. 2022, 1012, 12064. [Google Scholar] [CrossRef]
- Patil, S.; Bourke, P. Chapter 9—Ozone Processing of Fluid Foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Cullen, P.J., Tiwari, B.K., Valdramidis, V.P., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 225–261. [Google Scholar]
- Alexopoulos, A.; Plessas, S.; Ceciu, S.; Lazar, V.; Mantzourani, I.; Voidarou, C.; Stavropoulou, E.; Bezirtzoglou, E. Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce (Lactuca sativa) and green bell pepper (Capsicum annuum). Food Control 2013, 30, 491–496. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Sunoj, S.; Manikantan, M.R.; Kothakota, A.; Hebbar, K.B. Application and Kinetics of Ozone in Food Preservation. Ozone Sci. Eng. 2017, 39, 115–126. [Google Scholar] [CrossRef]
- Dubey, P.; Singh, A.; Yousuf, O. Ozonation: An Evolving Disinfectant Technology for the Food Industry. Food Bioprocess Technol. 2022, 15, 2102–2113. [Google Scholar] [CrossRef]
- Bahchevnikov, O.; Braginets, A. Ozone in Grain Storage and Processing: Review. Teh. Tehnol. Piŝevyh Proizv. (Online) 2024, 54, 483–494. [Google Scholar] [CrossRef]
- Li, M.; Peng, J.; Zhu, K.; Guo, X.; Zhang, M.; Peng, W.; Zhou, H. Delineating the microbial and physical–chemical changes during storage of ozone treated wheat flour. Innov. Food Sci. Emerg. Technol. 2013, 20, 223–229. [Google Scholar] [CrossRef]
- McClurkin, J.D.; Maier, D.E.; Ileleji, K.E. Half-life time of ozone as a function of air movement and conditions in a sealed container. J. Stored Prod. Res. 2013, 55, 41–47. [Google Scholar] [CrossRef]
- Pareek, S. Novel Postharvest Treatments of Fresh Produce, 1st ed.; CRC Press Inc.: London, UK, 2017; p. 702. [Google Scholar]
- Rojas-Valencia, M.N. Chapter: Science against microbial pathogens: Communicating current research and technological advances. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; pp. 263–271. [Google Scholar]
- Nagatomo, T.; Abiru, T.; Mitsugi, F.; Ebihara, K.; Nagahama, K. Study on ozone treatment of soil for agricultural application of surface dielectric barrier discharge. Jpn. J. Appl. Phys. 2016, 55, 01AB06. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Brennan, C.S.; Curran, T.; Gallagher, E.; Cullen, P.J.; O’Donnell, C.P. Application of ozone in grain processing. J. Cereal Sci. 2010, 51, 248–255. [Google Scholar] [CrossRef]
- de Alencar, E.R.; FaroniI, L.R.D.; Martins, M.A.; de Costa, A.R.; Cecon, P.R. Decomposition kinetics of gaseous ozone in peanuts. Eng. Agrícola 2011, 31, 930–939. [Google Scholar] [CrossRef]
- O’Donnell, C.; Tiwari, B.K.; Cullen, P.J.; Rice, R.G. Status and Trends of Ozone in Food Processing. In Ozone in Food Processing; Wiley-Blackwell: Oxford, UK, 2012; pp. 1–6. [Google Scholar]
- Sujayasree, O.J.; Chaitanya, A.K.; Bhoite, R.; Pandiselvam, R.; Kothakota, A.; Gavahian, M.; Mousavi Khaneghah, A. Ozone: An Advanced Oxidation Technology to Enhance Sustainable Food Consumption through Mycotoxin Degradation. Ozone Sci. Eng. 2022, 44, 17–37. [Google Scholar] [CrossRef]
- Brito Júnior, J.G.d.; Faroni, L.R.D.; Cecon, P.R.; Benevenuto, W.C.A.d.N.; Benevenuto Júnior, A.A.; Heleno, F.F. Efficacy of ozone in the microbiological disinfection of maize grains. Braz. J. Food Technol. 2018, 21, e201702. [Google Scholar] [CrossRef]
- Baskakov, I.V.; Orobinsky, V.I.; Gulevsky, V.A.; Gievsky, A.M.; Chernyshov, A.V. Influence of ozonation in seed storage on corn grain yield and its quality. IOP Conf. Ser. Earth Environ. Sci. 2020, 488, 12007. [Google Scholar] [CrossRef]
- Yuan, R.; Qin, Y.; He, C.; Wang, Z.; Bai, L.; Zhao, H.; Jiang, Z.; Meng, L.; He, X. Fe-Mn-Cu-Ce/Al2O3 as an efficient catalyst for catalytic ozonation of bio-treated coking wastewater: Characteristics, efficiency, and mechanism. Arab. J. Chem. 2023, 16, 104415. [Google Scholar] [CrossRef]
- Zhong, J.; Mao, X.F.; Wang, G.; Li, H.; Li, J.; Qu, S.; Zhao, J. Synthesis of Cu/Mn/Ce polymetallic oxide catalysts and catalytic ozone treatment of wastewater. RSC Adv. 2024, 14, 35993–36004. [Google Scholar] [CrossRef]
- Zapałowska, A.; Matłok, N.; Zardzewiały, M.; Piechowiak, T.; Balawejder, M. Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.). Plants 2021, 10, 847. [Google Scholar] [CrossRef] [PubMed]
- Piechowiak, T.; Antos, P.; Kosowski, P.; Skrobacz, K.; Józefczyk, R.; Balawejder, M. Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agric. Food Sci. 2019, 28, 35–44. [Google Scholar] [CrossRef]
- Granella, S.J.; Christ, D.; Werncke, I.; Bechlin, T.R.; Machado Coelho, S.R. Effect of drying and ozonation process on naturally contaminated wheat seeds. J. Cereal Sci. 2018, 80, 205–211. [Google Scholar] [CrossRef]
- Xue, W.; Macleod, J.; Blaxland, J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef] [PubMed]
- Pandiselvam, R.; Mayookha, V.P.; Kothakota, A.; Sharmila, L.; Ramesh, S.V.; Bharathi, C.P.; Gomathy, K.; Srikanth, V. Impact of Ozone Treatment on Seed Germination—A Systematic Review. Ozone Sci. Eng. 2019, 42, 331–346. [Google Scholar] [CrossRef]
- Kim, J.; Yousef, A.E.; Khadre, M.A. Ozone and its current and future application in the food industry. Adv. Food Nutr. Res. 2003, 45, 167–218. [Google Scholar]
- Baskakov, I.V.; Orobinsky, V.I.; Gievsky, A.M.; Chernyshov, A.V.; Gulevsky, V.A. Modes of treating pre-sowing grain seeds with ozone. IOP Conf. Ser. Earth Environ. Sci. 2022, 954, 12009. [Google Scholar] [CrossRef]
- Evrendilek, G.A. Ozone Processing of Corn Grains: Effect on Seed Vigor and Surface Disinfection. Ozone Sci. Eng. 2024, 46, 163–173. [Google Scholar] [CrossRef]
- Uzoma, S.; de Alencar, E.R.; Faroni, L.R.D.; Silva, M.V.d.A.; Sitoe, E.d.P.E.; Pandiselvam, R.; Machado, S.G. Association between low-temperature drying and ozonation processes to control pests and preserve maize quality. Food Control 2024, 156, 110119. [Google Scholar] [CrossRef]
- Maximiano, C.V.; Carmona, R.; Souza, N.O.S.; Alencar, E.R.d.; Blum, L.E.B. Physiological and sanitary quality of maize seeds preconditioned in ozonated water. Rev. Bras. Eng. Agrícola Ambient. 2018, 22, 360–365. [Google Scholar] [CrossRef]
- Shingala, A.M.; Dabhi, M. Influence of ozone treatment on wheat (Triticum aestivum) germination during bulk storage. J. Cereal Res. 2022, 14, 283–290. [Google Scholar] [CrossRef]
- Lazukin, A.; Serdukov, Y.; Pinchuk, M.; Stepanova, O.; Krivov, S.; Lyubushkina, I. Treatment of spring wheat seeds by ozone generated from humid air and dry oxygen. Res. Agric. Eng. 2018, 64, 34–40. [Google Scholar] [CrossRef]
- Avdeeva, V.; Zorina, E.; Bezgina, J.; Kolosova, O. Influence of ozone on germination and germinating energy of winter wheat seeds. Eng. Rural Dev. 2018, 23, 543–546. [Google Scholar] [CrossRef]
- Bernate, I.; Kince, T.; Radenkovs, V.; Juhnevica-Radenkova, K.; Cinkmanis, I.; Bruveris, J.; Sabovics, M. Impact of Ozone Exposure on the Biochemical Composition of Wheat, Broccoli, Alfalfa, and Radish Seeds During Germination. Agronomy 2024, 14, 2571. [Google Scholar] [CrossRef]
- Dong, X.; Sun, L.; Maker, G.; Ren, Y.; Yu, X. Ozone Treatment Increases the Release of VOC from Barley, Which Modifies Seed Germination. J. Agric. Food Chem. 2022, 70, 3127–3135. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, N.; Kovalenko, G.; Bashtan, N.; Mozgovska, A.; Miroshnichenko, T.; Strybul, T.; Ivchenko, T.; Kuts, O. Physical Factors of Beetroot Seed Presowing Treatment Affect Sowing Quality and Crop Yield. Probl. Cryobiol. Cryomed. 2022, 32, 183–195. [Google Scholar] [CrossRef]
- Rodrigues, V.O.; Penido, A.C.; Pereira, D.d.S.; Oliveira, A.M.S.; Mendes, A.E.S.; Oliveira, J.A. Sanitary and Physiological Quality of Soybean Seeds Treated With Ozone. J. Agric. Sci. (Tor.) 2019, 11, 183. [Google Scholar] [CrossRef]
- Ambarsari, I.; Cempaka, I.G.; Santoso, S.B.; Wulanjari, M.E.; Nur, M. The Effects of Ozone Exposure on Aged Soybean Seeds Stored in Different Packaging. Xue Bao (Xi Nan Jiao Tong Da Xue China) 2021, 56, 165–175. [Google Scholar] [CrossRef]
- Stommel, J.R.; Dumm, J.M.; Hammond, J. Effect of Ozone on Inactivation of Purified Pepper Mild Mottle Virus and Contaminated Pepper Seed. PhytoFrontiers 2021, 1, 85–93. [Google Scholar] [CrossRef]
- Rodrigues, V.O.; Costa, F.R.; Nery, M.C.; Cruz, S.M.; Melo, S.G.F.d.; Carvalho, M.L.M.d. Treating sunflower seeds subjected to ozonization. J. Seed Sci. 2015, 37, 202–210. [Google Scholar] [CrossRef]
- Landesmann, J.B.; Gundel, P.E.; Martínez-Ghersa, M.A.; Ghersa, C.M. Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis. PLoS ONE 2013, 8, e75820. [Google Scholar] [CrossRef]
- Gundel, P.E.; Sorzoli, N.; Ueno, A.C.; Ghersa, C.M.; Seal, C.E.; Bastías, D.A.; Martínez-Ghersa, M.A. Impact of ozone on the viability and antioxidant content of grass seeds is affected by a vertically transmitted symbiotic fungus. Environ. Exp. Bot. 2015, 113, 40–46. [Google Scholar] [CrossRef]
- Golovin, A.; Pozhidaev, I.; Baskakov, I.; Orobinsky, V.; Khimchenko, A. Theoretical prerequisites for determining of the size and volume of ozone distribution in a grain heap and optimization of ozonization time. Sci. Cent. Russ. 2024, 2, 26–32. [Google Scholar] [CrossRef]
- Bernate, I.; Sabovics, M. Effect of Ozone on Enterobacteriaceae Counts in Wheat Grain, Alfalfa, Radish, Broccoli Seeds and Sprouts. Rural Sustain. Res. 2024, 51, 29–37. [Google Scholar] [CrossRef]
- Dong, X.; Agarwal, M.; Xiao, Y.; Ren, Y.; Maker, G.; Yu, X. Ozone Efficiency on Two Coleopteran Insect Pests and Its Effect on Quality and Germination of Barley. Insects 2022, 13, 318. [Google Scholar] [CrossRef]
- Sitoe, E.d.P.E.; Pacheco, F.C.; Chilala, F.D. Advances in ozone technology for preservation of grains and end products: Application techniques, control of microbial contaminants, mitigation of mycotoxins, impact on quality, and regulatory approvals. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70173. [Google Scholar] [CrossRef] [PubMed]
- Kyrpa, M.; Bazilieva, J.; Lupit’ko, O. Non-conventional methods of storage of grain for manufacture of organic produce. Visnyk Agrar. Nauk. 2018, 96, 73–78. [Google Scholar] [CrossRef]
- Dubousset, L.; Etienne, P.; Avice, J.C. Is the remobilization of S and N reserves for seed filling of winter oilseed rape modulated by sulphate restrictions occurring at different growth stages? J. Exp. Bot. 2010, 61, 4313–4324. [Google Scholar] [CrossRef]
- D’Hooghe, P.; Dubousset, L.; Gallardo, K.; Kopriva, S.; Avice, J.; Trouverie, J. Evidence for Proteomic and Metabolic Adaptations Associated with Alterations of Seed Yield and Quality in Sulfur-limited Brassica napus L. Mol. Cell. Proteom. 2014, 13, 1165–1183. [Google Scholar] [CrossRef]
- Patterson, S.J.; Acharya, S.N.; Bertschi, A.B.; Thomas, J.E. Application of wood ash to acidic boralf soils and its effect on oilseed quality of canola. Agron. J. 2004, 96, 1344–1348. [Google Scholar] [CrossRef]
- Salisbury, P.A.; Potter, T.D.; Gurung, A.M.; Mailer, R.J.; Williams, W.M.; Tei, F. Potential impact of weedy Brassicaceae species on oil and meal quality of oilseed rape (canola) in Australia. Weed Res. 2018, 58, 200–209. [Google Scholar] [CrossRef]
- Si, T.; Wang, X.; Zhou, Y.; Zhang, K.; Xie, W.; Yuan, H.; Wang, Y.; Sun, Y. Seed yield and quality responses of oilseed crops to simulated nitrogen deposition: A meta-analysis of field studies. Glob. Change Biol. Bioenergy 2022, 14, 959–971. [Google Scholar] [CrossRef]
- Poisson, E.; Trouverie, J.; Brunel-Muguet, S.; Akmouche, Y.; Pontet, C.; Pinochet, X.; Avice, J. Seed Yield Components and Seed Quality of Oilseed Rape Are Impacted by Sulfur Fertilization and Its Interactions With Nitrogen Fertilization. Front. Plant Sci. 2019, 10, 458. [Google Scholar] [CrossRef] [PubMed]
Technology | Seed Type | Technology Parameters (Intensity, Power, etc.) | Time of Exposure | The Effects | Reference |
---|---|---|---|---|---|
He-Ne laser | Celosia argentea plant seeds | 650 nm, 50 mW | 0, 5, 10, 15 min | The most effective exposure times—10 and 5 min The number of branches, root length, vase life, free fatty acid profile, total phenolic, flavonoid, and tannin compounds, and antioxidant activity of methanol extracts of C. argentea improved. | [56] |
He-Ne laser | Wheat seeds (Triticum aestivum L.) | 632.8 nm (power density—5.43 mW) | 3 min | Laser application combined with drought stress significantly improved relative water content, protein, and photosynthetic pigment concentrations. | [57] |
He-Ne laser | Wheat (Triticum aestivum L. cv. S-24) | 632.8 nm; at 100, 300, and 500 mJ energy from the embryonic area side | - | Radiation at 500 mJ increased germination energy, germination percentage, germination index, α-amylase, and protease activity. Radiation at 300 mJ shortened the mean emergence time and 50% germination time. | [58] |
He–Ne laser Argon laser irradiation | Wheat seeds (Triticum aestivum L.) | 633 nm (10, 20, 40, 60 mW) 514.5 nm (10, 20, 40, 60 mW) | 0.5, 1, 2, 4, 6 h | Significantly stimulates the growth and germination of seeds, positively affecting their physiological and biochemical properties. Increased the amount of plant pigments (chlorophyll a, chlorophyll b, and carotenoids). | [59] |
Semiconductor laser | Rice seeds (Pyongyang-53; Dongsung-1) | 650 nm; 5 mW, duty ratio of 50% | 0.05–0.28 s | The yield of Pyongyang-53 and Dongsung-1 increased by 7.7% and 21%, respectively. Pre-sowing treatment can significantly improve germination, seedling growth, and rice yield. | [60] |
Magnetic field (MF) | Melon seeds (Cucumis melo L.) | 100 mT, 200 mT | 5–20 min | Germination (+14.6%), root, and shoot length (+36.4% and +22.8%), viability indices (+40.6% and +28.8%), biomass, leaf area (+9.6%), α-amylase (+12.9%), protease (+50.0%), catalase (+80.0%), and chlorophylls a/b (+92.5%/+36.5%) increased, while the average germination time was shortened by 6.7%. | [61] |
Magnetic field (MF) | Bitter gourd (Momordica charantia L.; cv Faisalabad Long) | 25, 50, 75 mT | 15, 30, 45 min | The treatment increased germination (up to +54.5%), viability index (+24.9% and +47.2%), and growth parameters: leaf area (+64.6%), root, and shoot biomass (+23–76%), chlorophyll (+35.4%), fruit length (+18.1%), mass (+14.9%), and yield (+29.2%). | [62] |
Magnetic field (treated water) | Turnip seeds (Brassica rapa L.) | 211 mT | 30, 45, 60 min | Germination increased to 28.3%, germination rate—11.5%, viability—57.6% and 32.3%. Longer seedlings, higher biomass, more chlorophyll, protein (+28.9%), α-amylase (+11.4%) and protease (+14.8%). | [63] |
Magnetically (treated water) | Common bean (Phaseolus vulgaris L.) | 100–150 mT | 30 min | Germination increased by 25%, while stem length, viability index, leaf area, and seed weight increased by 35, 100, 109 and 16%, respectively. Chlorophyll a, b, and carbohydrate content increased by 13, 21, and 26%. | [64] |
Magnetic field (Magnetized + magnetized water) | Tomato | 273 nm, water magnetization capacity—4–6 m3/h | - | Magnetic seed and water treatment improved tomato growth, increased proline and chlorophyll content, and reduced the effects of water deficit, especially at 40–60% field capacity. | [65] |
Magnetic field | Corn seeds (Ramda variety) | 125, 250 mT | 1 min, 10 min, 20 min, 1 h, 24 h, continuous exposure | The treatment shortened the average germination time and accelerated germination (10–90%), with the greatest effect achieved at a field of 125–250 mT. | [66] |
Weak sinusoidal and extremely low-frequency (ELF) magnetic field | Cress seedlings (Lepidium sativum L.) | 50 Hz, 100 μT | 12 h | The treatment reduced the effects of heat stress, and the oscillating magnetic field acted as a protective measure under certain conditions without causing a direct change in growth. | [67] |
Electromagnetic radiation (EMR) + plasma | Seeds of wheat (variety UP 2565) | 100 mT, 25.6 V 200 mT, 44.3 V 13.56 MHz, 50 W, 0.7 mbar | 1 h 6 min | All stimulation methods improved wheat germination and growth. After 6 and 12 h, water absorption increased by 42.2% and 23.9%, respectively, and the highest germination was achieved with 200 mT EMR. Plasma-treated seeds germinated the earliest and fastest. | [68] |
UV-C light Chlorine | Soybean and amaranth sprouts | - 100, 200 ppm | 2.5, 5, 10, 15, 20, 30 min 15 min | The 15 min treatment increased the content of phenols and flavonoids in the sprouts—in soybeans, apigenin derivatives up to +237%, in amaranth, p-coumaroylquinic acid +17.7%, without causing color changes. | [69] |
UV-C irradiation | Winter wheat seeds (Triticum aestivum) | 253.7 nm, 20 W, intensity—60 W/cm2 | 0, 15, 30, 60 min | A 15 min treatment promoted germination of infected wheat seeds and reduced the levels of fumonisins and beauvericin, but longer irradiation increased the levels of enyathins. | [70] |
Gas plasma-activated water (GPAW) | Arabidopsis thaliana (L.) Heynh | Air and He/O2 mixture (98% He, 2% O2) + high voltage plasma (8.5 kV and 29.3 kHz) | 100 ms pulses, 30% duty cycle | GPAW promoted dormancy breaking through the interaction of reactive compounds with hormone metabolism and cell wall remodeling, weakened the endosperm, and improved seed quality. | [71] |
RF plasma | Spring wheat (Triticum aestivum L.), narrow-leaf lupine (Lupinus angustifolius) and corn (Zea mays L.) | 5.28 MHz, air atmosphere at a pressure—40–80 Pa | 2–10 min | The highest biological efficiency was achieved at a specific discharge power of 0.35 W/cm3 and 5–7 min exposure, when active plasma particles changed the morphology of the seed coat. | [72] |
RF plasma | Moringa oleifera seeds | 100 W, 2 torr air gas pressure | 0, 1, 5, 10, 15 min | The greatest effect was achieved after treating seeds for 1 min—germination, root, and shoot length (4.3–26.4%), and biomass (4.9–6.9%) increased. | [73] |
Radiofrequency cold plasma | Corn (Zea mays subsp. Mays), wheat (Triticum aestivum), barley (Hordeum vulgare), and psyllium (Plantago ovata) | 13.5 MHz, 50 W | 15, 30, 60, 90 min | The treatment increased the rate and amount of water uptake by the seeds, and modeling confirmed a mechanism consistent with the microscopy and staining results. | [74] |
Atmospheric dielectric barrier discharge (DBD plasma) + gaseous ozone + NO2 | Wheat seeds (Xiaoyan 22) | 13.0 kV 1.17 mg/L 0.11 mg/L | 4 min | The treatment increased wheat germination potential (+27%) and growth, reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), enhanced the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX), and promoted abscisic acid (ABA) synthesis and expression of the genes LEA1, SnRK2, P5CS. | [75] |
Atmospheric pressure plasma Plasma-activated water | Wheat seeds (Triticum aestivum) | 50 Hz, 0–45 kV | 1, 2, 3, 4, 5 min 5, 10, 15 min | The treatments improved germination rate and productivity—3 min direct plasma provided the highest germination rate, while 15 min PAW provided the best results. Longer treatments reduced wettability and contact angle. | [76] |
Atmospheric pressure gliding arc discharge plasma (H2O/air plasma; H2O/O2 plasma; H2O/O2/air plasma) | Wheat seeds (Triticum aestivum) | 5 kV. RNS–N2 transitions (294–380 nm, 391–405 nm) and OH radicals (309.02 nm); OH (309.02 nm) and O radicals (777.42 and 844.34 nm). A mixture of O2 (75%), air (20%); H2O (5%), was used to form ROS and RNS. | 3, 6, 9, 12, 15 min | Six minutes of H2O/O2 plasma treatment ensured 95–100% germination and ~20% higher yield, while 3–9 min improved growth activity, biomass, chlorophyll, spike length, and protein content. | [77] |
Atmospheric pressure non-thermal plasma (APNTP) | Khandagiri paddy seeds | 15 kV, 19 kV | 0.5, 1, 2, 3, 4, 5, 7, 10 min | Complete seed disinfection was achieved within 10 min, and after 1–5 min, the CFU significantly decreased. The treatment improved wettability, water uptake, viability, and growth rates. | [78] |
Atmospheric plasma | Mulungu seeds (Erythrina velutina) | 10 kV, 750 Hz, 150 W, helium gas flow—0.03 L/s | 60 s | Treatment with ~5% accelerated germination, improved hydrophilicity, and water absorption, especially in the hilum area, thereby promoting seed germination. | [79] |
Atmospheric pressure plasma Low-pressure plasma | Brassicaceous seeds | 10 kV, 10 kHz, the argon gas flow rate—3 L/min 5.5 kV, 10 kHz, the argon gas flow rate—0.5 L/min, pressure in the chamber—80 torr | 2, 5, 10, 20, 40 min | Ten minutes of atmospheric plasma reduced R. solani survival to 3% but slowed germination. Low-pressure plasma reduced survival to 1.7% without a significant effect on germination and was more suitable for seed disinfection due to lower temperatures. | [80] |
Atmospheric plasma | Pityrocarpa moniliformis seeds | 10 kV, 400 kHz | 1.5, 2, 3, 4, 5 min | Treatment (4–5 min) increased seed wettability, cumulative germination (+30%), and viability (38% vs. 12%). Treatment helped overcome seed coat dormancy and improved germination. | [81] |
Atmospheric pressure air plasma | Andrographis paniculata | 3400, 4250, 5100, 5950 V | 10, 20 s | Treatment (5950 V, 10 s) increased seed permeability, accelerated germination, seedling emergence, and enhanced antioxidant protection (↑ catalase activity, ↓ MDA). 4250 V/10 s and 5950 V/20 s improved germination, while 3400 V/20 s and 5100 V/10 s reduced permeability and delayed germination. | [82] |
Atmospheric gliding arc discharge plasma | Astragalus membranaceus seeds | 40 kV, 270 W | 30–270 s | A 90 s treatment destroyed >98% of F. oxysporum spores, and 270 s—completely. Treatments of 30–90 s—stimulated germination. | [83] |
Atmospheric plasma jet | Honeydew melon seed (Cucumis melo L.) | 1.0, 1.1, 1.2, 1.3, 1.4 kV | 10, 20, 30, 40, 50 s | Plasma (1.4 kV, 10 s) increased seed germination rate by 20.6–89.6% and improved hydrophilicity. | [84] |
Dielectric barrier discharge (DBD) at atmospheric pressure | Radish seeds (Raphanus sativus) | 50 Hz, 11.32 kV (rms). Argon gas with a flow rate—2 L/m | 1 to 5 min | DBD plasma treatment (2–3 min) improved germination, viability index, carotenoid content, and seedling biomass, and increased hydrophilicity and water uptake, but the overall production rate decreased. | [85] |
Dielectric barrier discharge plasma (DBD plasma) | Wheat seed (Xiaoyan 22) | 0.0, 9.0, 11.0, 13.0, 15.0, 17.0 kV. Air flow rate—1.5 L/min | 4 min | Treatment (11.0 kV) increased germination potential (+31.4%), germination index (+13.9%), and viability index (+54.6%), and improved shoot and root growth, water absorption, protein systematization, and α-amylase activity. | [86] |
Low-temperature plasma (LTP)—Diffuse Coplanar Surface Barrier Discharge (DCSBD) | Corn seeds (Zea mays L.) | 14 kHz, ~10 kV | 60, 120 s | LTP treatment (60 s) increased root length and biomass, while 120 s inhibited growth. Catalase (CAT) and peroxidase (G-POX) activities decreased, superoxide dismutase (SOD) slightly increased, and dehydrogenase (DHO) increased in embryos but decreased in roots. | [87] |
Low-pressure plasma | Corn seeds (Zea mays L.), narrow-leaved lupine (Lupinus angustifolius L.) and winter wheat (Triticum aestivum L.) | 5.28 MHz, pressure—200 Pa | 2, 4, 5, 7 min | The treatment reduced fungal diseases (e.g., lupine root rot from 47.8% to 6.9%) and enhanced plant resistance. Yields increased: wheat by 2.3%, corn by 1.7%, lupine by 26.8%, and the content of non-enzymatic antioxidants in corn roots increased. | [88] |
Low-pressure plasma (LPRF) Dielectric barrier discharge (DBD) plasma Jet of argon plasma | Sunflower seeds (Helianthus annuus L.) | 75, 100, 125, 150 W, 1.65 Pa pressure, 3.56 MHz frequency 90 W 0.41, 0.51 W, 0.61 W, and 0.72 W power, 4 L/min argon flow. | 2 min 30, 60, 90, 120 s 15 s | As plasma power increased, wettability, water absorption, and germination rate improved, and biological changes were associated with surface alterations. | [89] |
Non-thermal plasma | Wheat seeds (Triticum aestivum) | 50 Hz, the air flow rate was 1 L/min | 5, 15, 30 min | On the fourth day of germination, germination rate was not significantly affected, but root length, seedling mass, and R/S ratio were increased (from 0.88 ± 0.016 to 1.2 ± 0.005). | [90] |
Plasma and radio-wave | Legumes and grain-crops seeds (Lupinus angustifolius—blue lupine, Galega virginiana—catgut, Melilotus albus—honey clover and soy) | 5.28 MHz, pressures—0.3–0.7 Torr, specific RF power ~ 0.6 W/cm3 | 5, 10, 15, 20 min | For 10–15 min, both treatments increased seed germination by 10–20% and legume yields by 14–24%, and reduced fungal infections by 3–15% (except anthracnose). Durations >15 min inhibited germination. | [91] |
Cold atmospheric-pressure plasma (CAP) Low-energy electron beam (LEEB) | Lentil seeds | 0%—16.15 kHz, 535.5 W; 50%—14.55 kHz, 693.5 W; 75%—13.84 kHz, 776 W; 100%—13.335 kHz, 858.5 W 4–30 kGy, 180 kV | 0–10 min 100 ms | Both technologies inactivated microorganisms, but cold plasma was more effective (5 log vs. 3 log), promoting germination and increasing wettability without tissue damage, while electron beam (≥8 kGy) caused root anomalies. | [92] |
Atmospheric cold plasma (ACP) | Wheat and barley grains | 80 kV | 5, 20 min | A 20 min ACP treatment reduced the barley microbiota to 2.4 log10 CFU/g for bacteria and 2.1 log10 CFU/g for fungi, but impaired germination. Shorter (≤5 min) treatment was safe for germination. | [93] |
Cold plasma (low pressure) | Bambara seeds (Vigna subterranean) Chilli (Semerah) Papaya (Eksotika) | 13.56 MHz, ultimate pressure of 1.5 × 10−3 Torr. 10 W, pressure increased to 35 Pa. 80 W, pressure increased to 40 Pa. 80 W, pressure increased to 40 Pa | 10 s 60 s 40 s | After treatment, the contact angle of Bambara seeds decreased from 114° to 44°, water absorption and electrical conductivity increased for all seeds, with the best changes remaining for the first 30 days. | [94] |
Cold plasma | Wheat and oat | 500 W, air flow rate—200 mL/min | 0–2400 s | The treatment eroded the wheat seed coat, temporarily retarded germination, but promoted stem growth. In oats, germination was not affected, but it promoted root formation. Changes in phenolic compounds indicate metabolic changes due to plasma exposure. | [95] |
Cold plasma | Soybean seeds (Glycine max L. Merr cv. Zhongdou 40) | 13.56 MHz, 0, 60, 80, 100, and 120 W, pressure—150 Pa | 15 s | Treatment (80 W) increased soybean germination (14.7%), viability (63.3%), water absorption (14%), and reduced contact angle (−26.2%). Shoot and root growth and reserve utilization were improved, especially the development of the underground part was promoted. | [96] |
Cold plasma (CAP) | Cotton seeds | 38 kVpp for air and 11 kVpp for argon plasma. 1 L/min flow. | 0.3 min (air plasma) 27 min (air plasma) 81 min (argon plasma) | A 27 min air treatment increased the water absorption, germination, cold and stress resistance of cotton seeds, and the effect persisted for 4 months, indicating long-term stability and industrial potential. | [97] |
Cold plasma | Rapeseed seeds (Brassica napus L. cv. ‘Zhongshuang 11’) | 100 W | 15 s | The treatment reduced malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and catalase (CAT) activities and soluble sugars, improved root activity, photosynthesis, nitrogen uptake and yield, and enhanced drought tolerance. | [98] |
Cold plasma | Basil seeds | Plasmajet | 30 s | The treatment increased plant biomass, height and size, and leaf index, but did not significantly affect other morphological characteristics. | [99] |
Cold plasma | Wheat grains | 50 Hz, 0, 13, 15, 17 kV | 0, 5, 10, 15 min | Treatment (15–17 kV, 5 min) increased wheat germination from 83% to 88.8%, accelerated germination, and shortened the average germination time. Treatment for too long or at 17 kV reduced the efficiency. | [100] |
Microwave atmospheric plasma (MAP) jet Dielectric barrier discharge (DBD) plasma Low-pressure RF plasma Plasma activated water (PAW) | Corn seeds. | 500 W 35 kHz, 15 kV 13.56 MHz, 800 W, 100 mTorr 800 W, 15 LPM He + 3 LPM | 3 s 10 s 2 min 10 min | RF plasma increased yield but did not reach control levels. PAW slightly improved yield in unstable environments. MAP reduced yield at all sites (e.g., from 238.8 ± 8.7 to 221.3 ± 3.9 bu/acre). | [101] |
Oxygen Plasma | Wheat seeds (Alixan, Genius, Nexera 88, Sofru, Bologna, Izalco, Amicus, and 88.5 R) | 5 kW, 13.56 MHz | 120 s | In the two-year study, the effects of plasma and other treatments were cultivar-specific, with no clear advantage identified, and germination was reduced in the 88.5R cultivar. | [102] |
Glow (direct) or afterglow (indirect) low-pressure radio-frequency oxygen plasma | Winter wheat seeds (Triticum aestivum L. cv. “Ingenio”) | 13.56 MHz, 200 W, 50 Pa | 30, 90 s | Long-term low-pressure oxygen plasma treatment increased the hydrophilicity and water absorption of wheat seed surfaces, but slowed germination and reduced α-amylase activity. | [103] |
Nanosecond-pulsed plasma | Melon seeds (Huangdanzi) | 20, 22, 24 kV | 3, 5, 7, 9 min | Plasma treatment (20 kV, 9 min) of A. citrulli-infected melon seeds improved seedling growth, the number of first true leaves increased 2.3-fold, and the disease index decreased by 60.5%. | [104] |
Seed Treatment Method | Efficiency (Improving Germination, Killing Pathogens) | Environmental Impact | Environmental Impact | Notes |
---|---|---|---|---|
Chemical | +++ (very high) | * (high) | Residue accumulation: effects on soil and health | Provides high protection, but poses risks to ecosystems and human health due to chemical residues |
Physical (UV, plasma, etc.) | ++–+++ (high–very high) | ** (low–medium) | Precise control of parameters is required; energy consumption | A sustainable and effective alternative, rapidly developing |
Biological | ++ (high, depends on the conditions) | *** (very low) | Stability of microorganisms; variability of effectiveness | A very sustainable technology, but its effectiveness depends on environmental conditions and the stability of microorganisms. |
Technology | Operating Principle | Advantages | Disadvantages | Application Areas |
---|---|---|---|---|
Ozonation | O3 oxidation | No residues, effective, sustainable | Can damage sensitive seeds | Organic farming |
Plasma | Electricity | Surface activation | Expensive equipment | High value-added seeds |
UV radiation | DNA damage | Fast, no chemical residues | Limited penetration | Control of surface pathogens |
Biological treatment | Inoculation of beneficial microorganisms | Improves microbiota, promotes growth | Effectiveness depends on the environment | Sustainable systems, organic farms |
Chemical treatment | Fungicides, insecticides | Effective, standardized | Contaminants, resistance risk | Industrial seed production |
Seed Species | Result | Ozone Dose | Time of Exposure | Forma | Reference |
---|---|---|---|---|---|
Corn grains | Ozonation (0.9874 mg/L, 138.6 min) reduced the prevalence of storage fungi—Aspergillus spp. by 78.5% and Penicillium spp. by 98.0%, confirming the fungicidal effect after 50 h of exposure. | 2.14 mg/L, 5.8 L/min | 0, 10, 20, 30, 50 h | Gaseous | [177] |
Corn grain | Increased corn yield by 13.4% (9.3 c/ha), reduced immature cobs (−6.5%) and small fractions (−7.3%), increased cob number (+6.9%) and 1000-grain weight (+12.8%). Plants were 28.4% heavier, and grains were more uniform. | - | - | Gaseous | [178] |
Corn seeds | Ozonation (12.5 g/m3, 5 min) ensured 100% germination within 2 days, improved seedling growth and germination under 100 mM salt stress, and reduced microflora to 5.31 log bacteria and 6.15 log yeast/mold. | 12.5 g/m3 | 1–5 min | Gaseous | [188] |
Corn seeds | Higher air flow (0.5–1.05 m3/min·t) accelerated ozone saturation and effectively inhibited A. flavus and S. zeamais. Low-temperature drying preserved grain color, but seed dressing is not recommended under such conditions. | 2.30 mg/L | Air flows—0.50; 0.82; 1.05 m3/min·h | Gaseous | [189] |
Corn seeds | The best seedling development indicators (germination rate, mass, length) were achieved at 0–30 mg/L ozone and 60–90 min soaking. Ozonation did not control Fusarium, while the fungicide provided 100% control. | 0, 10, 20, 30 mg/L | 0, 30, 60, 90, 120 min | Aqueous | [190] |
Wheat seeds (cv IPR Catuara TM) | Fungal reduction 92.86% (1.87 → 0.13 CFU/g), did not affect germination and viability. | 2000 mg/h. Air speed—0.5 ± 0.1 m/s. | 45 min | Gaseous | [183] |
Wheat (Triticum aestivum) | Ozonation during storage can improve seed germination, but too long or frequent exposure can have negative effects, so it is important to optimize the duration and frequency. | - | 30, 60, 90, 120 min, cyclically, every 7, 14, 21 days | Gaseous | [191] |
Spring wheat seeds | At the same ozone concentration, morphological indicators and disinfection changed similarly, but germination ability remained unchanged, and germination stimulation was not associated with disinfection efficiency. | 1.5, 2.0, 3.5, 4.0, 25.0 g/m3, 1 L/min flow | 0, 1, 2, 3, 4 h | Different ozone gases (moist air and dry oxygen) | [192] |
Winter wheat | Ozonation increased the germination of winter wheat (“Ermak” +19.5%, “Victoria Odesskaya” +22%), the best results were achieved with a dose of 14.7 g·s/m3 and 14 days of storage. Optimal conditions: 14.0–17.0 g·s/m3 and 14 days before germination. | 2.1, 8.4, 9.9, 10.5, 12.6, 14.7, 16.8, 18.9, 19.8 g·s/m3 | 0, 7, 14 days | Gaseous | [193] |
Wheat, broccoli, alfalfa, and radish seeds | Reduced total phenolic content (TPC) in wheat (−39.4%) and sprouts (up to −47.7%), except for alfalfa, where TPC increased (+27.7%). Changes in sugar content depended on the species and duration of exposure. | 50 ppm, 1 L/min | 1–5 h | Gaseous | [194] |
Wheat Barley Oat Corn seeds | Pre-sowing ozonation at an average concentration (≤5 mg/m3) should last ~38 min, and the optimal dose is ~95 min mg/m3 (for wheat 110–200, for barley 84–114, for oats 40–60, for corn 32–74 min mg/m3). | 4.15–4.40 mg/m3 2.57–2.84 mg/m3 1.45–1.56 mg/m3 1.85–1.88 mg/m3 | 23–41 min 32–52 min 40–60 min 17–45 min | Gaseous | [187] |
Barley seeds | Ozonation increased the diversity and amount of volatile organic compounds (VOCs), decreased alcohols and hydrocarbons, but increased aldehydes and acetic acid. Low doses of acetic acid promoted barley germination, while high doses inhibited it, revealing its role in germination regulation. | - | 0, 10, 20, 40, 120, 240, 480, 960, 1440 min | Gaseous | [195] |
Dii cultivar beetroot seed | Ozonation (0.1–120 mg/L, several minutes–hours) inhibited infections and increased germination and yield. For corn, 5–10 mg/L (up to 30 min) is most effective, for wheat—0.1–5 mg/L, as higher concentrations can inhibit germination. | 0.5, 1, 3.5 mg/L 1 mg/L | 10 min 5, 10, 20, 30 min | Gaseous | [196] |
Soybean Seeds | Ozone reduced the prevalence of six fungi (including Phomopsis, Fusarium, Alternaria) without affecting germination, viability, conductivity, or enzymatic activity, and was safe for seed quality. | 15, 25 g/m3 | 0, 20, 40, 60, 120 min | Gaseous | [197] |
Soybean (Glycine max L.) | Germination improved after 4 months of ozonation, but decreased after 6 months due to oxidation. Ozone slowed the growth of moisture and free fatty acids, and vacuum packaging provided the best protection. | 150 g/h | Pre-ozonate for 3 h. Then stored for 6 months, exposed to ozone for 3 h daily. | Gaseous | [198] |
Pepper Seed | Trisodium phosphate completely eliminated the infectivity of pepper mild mottle virus (PMMoV) in pepper seeds, while ozonation was ineffective—the virus remained infectious except at a low concentration (0.01 mg/mL) after 14 h of ozonation. Neither method affected germination, but ozone is not suitable for standard PMMoV control. | 20 ppm | 14 h After treatment, the seeds were stored at 4 °C and 25% humidity. | Gaseous | [199] |
Sunflower crops (Helianthus annuus L.) | 60 min ozonation significantly reduced the prevalence of Alternaria, Fusarium, Aspergillus, and Penicillium without affecting seed germination, viability, and other physiological indicators. | 1741 ppmv, 0.24 g/h | 20, 60, 120 min | Gaseous | [200] |
Sea Buckthorn (Hippophae rhamnoides L.) | Ozonation (100 ppm, 30 min) reduced water loss, bacteria (−3 log KFV/g), and yeast/mold (−1 log KFV/g), improving the quality and shelf life of the raw material. | 10, 100 ppm | Treatment duration—10, 15, and 30 min at a gas flow rate of 4 m3/h at room temperature—20 °C. | Gaseous | [181] |
Tomato seeds (S. lycopersicum ‘SC2121’), cucumber (C. sativus ‘Nefes’) seeds, tulip, daffodil, and hyacinth bulbs, wheat (‘Cumhuri-yet-75’ and ‘Gönen-98’) | Ozone and ozonated water effectively inactivated seed-borne pathogens (Fusarium, Clavibacter, Pseudomonas) without reducing germination. Better results were achieved by soaking the seeds, making the method promising for healthy propagating material. | 100 L/h | - | Gaseous Aqueous | [6] |
Spergula arvensis seeds | A 90 ppb ozone increased seed germination after storage and scarification, shortened the dormancy period, and improved survival in soil due to maternal effects, which may increase weed resistance and reduce crop productivity. | 0, 90, 120 ppb | 4 years | Gaseous | [201] |
Grass seeds (Lolium multiflorum) | Plants produced 23% more seeds, but the endophyte reduced their viability, which was improved by ozone (0, 90, 120 ppb). Endophyte viability was significantly reduced only after 25 days of accelerated aging. | 0, 90, 120 ppb | Ozone was applied for 5 days every 2 h. | Gaseous | [202] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulikienė, S.; Benesevičius, D.; Benesevičienė, K.; Ūksas, T. Review—Seed Treatment: Importance, Application, Impact, and Opportunities for Increasing Sustainability. Agronomy 2025, 15, 1689. https://doi.org/10.3390/agronomy15071689
Paulikienė S, Benesevičius D, Benesevičienė K, Ūksas T. Review—Seed Treatment: Importance, Application, Impact, and Opportunities for Increasing Sustainability. Agronomy. 2025; 15(7):1689. https://doi.org/10.3390/agronomy15071689
Chicago/Turabian StylePaulikienė, Simona, Domas Benesevičius, Kristina Benesevičienė, and Tomas Ūksas. 2025. "Review—Seed Treatment: Importance, Application, Impact, and Opportunities for Increasing Sustainability" Agronomy 15, no. 7: 1689. https://doi.org/10.3390/agronomy15071689
APA StylePaulikienė, S., Benesevičius, D., Benesevičienė, K., & Ūksas, T. (2025). Review—Seed Treatment: Importance, Application, Impact, and Opportunities for Increasing Sustainability. Agronomy, 15(7), 1689. https://doi.org/10.3390/agronomy15071689