AI Roles in 4R Crop Pest Management—A Review
Abstract
1. Introduction
2. 4R Pest Management and AI Roles
2.1. Rationale for the 4R Framework in Pest Management
2.2. AI Roles in Pest Management
2.3. 4R Pest Management
2.3.1. Right Pest Identification
2.3.2. Right Control Method
2.3.3. Right Time Management
2.3.4. Right Action Taken
3. Challenges in AI Utilization for Pest Management
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Prospects 2022, Summary of Results. Department of Economic and Social Affairs; Population Division: New York, UK, USA, 2022; Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 24 March 2025).
- FAO. Plant Production and Protection. Food and Agriculture Organization of the United Nations. 2025. Available online: https://www.fao.org/plant-production-protection/about/en (accessed on 24 March 2025).
- Wen, G.; Ma, B.L.; Luce MSt Liu, K.; Mooleki, P.S.; Crittenden, S.; Gulden, R.; Semach, G.; Tiege, P.; Lokuruge, P. Optimizing nitrogen fertilization for hybrid canola (Brassica napus L.) production across Canada. Field Crops Res. 2023, 302, 109048. [Google Scholar] [CrossRef]
- Wen, G.; Ma, B.L. Chapter Six—Optimizing crop nitrogen use efficiency: Integrating root performance and machine learning into nutrient management. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 2024; pp. 311–363. [Google Scholar] [CrossRef]
- Junaid, M.; Gokce, A. Global agricultural losses and their causes. Bull. Biol. Allied Sci. Res. 2024, 2024, 66. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Wen, G.; Khelifi, M.; Cambouris, A.N.; Ziadi, N. Responses of the Colorado potato beetle (Coleoptera: Chrysomelidae) to the chemical composition of potato plant Foliage. Potato Res. 2019, 62, 157–173. [Google Scholar] [CrossRef]
- Rajabpour, A.; Yarahmadi, F. Biodiversity and pest outbreaks. In Decision System in Agricultural Pest Management; Rajabpour, A., Yarahmadi, F., Eds.; Springer Nature: Singapore, 2024; pp. 227–246. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef]
- Khelifi, M.; Laguë, C.; Lacasse, B. Pneumatic control of insects in plant protection. In Physical Control Methods in Plant Protection; Vincent, C., Panneton, B., Fleurat-Lessard, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 261–269. [Google Scholar] [CrossRef]
- Dionne, A.; Khelifi, M. A novel Trichogramma ostriniae release system to control Ostrinia nubilalis in sweet corn. Appl. Eng. Agric. 2024, 40, 577–588. [Google Scholar] [CrossRef]
- Wani, S.H.; Choudhary, M.; Barmukh, R.; Bagaria, P.K.; Samantara, K.; Razzaq, A.; Jaba, J.; Ba, M.N.; Varshney, R.K. Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. Theor. Appl. Genet. 2022, 135, 3875–3895. [Google Scholar] [CrossRef]
- Wen, G.; Cambouris, A.N.; Ziadi, N.; Bertrand, A.; Khelifi, M. Nitrogen rate and source effects on foliar sugar, glycoalkaloid, and amino acid composition of potato Russet Burbank. Can. J. Plant Sci. 2021, 101, 61–72. [Google Scholar] [CrossRef]
- López, E.R.; Roth, L.C.; Ferro, D.N.; Hosmer, D.; Mafra-Neto, A. Behavioral ecology of Myiopharus doryphorae (riley) and M. aberrans (townsend), tachinid parasitoids of the Colorado potato beetle. J. Insect Behav. 1997, 10, 49–78. [Google Scholar] [CrossRef]
- DeepSeek-AI; Liu, A.; Feng, B.; Xue, B.; Wang, B.; Wu, B.; Lu, C.; Zhao, C.; Deng, C.; Zhang, C.; et al. DeepSeek-V3 technical report. arXiv 2025. [Google Scholar] [CrossRef]
- Krettek, C. ChatGPT. Die Unfallchirurgie 2023, 126, 252–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X. Plant diseases and pests detection based on deep learning: A review. Plant Methods 2021, 17, 22. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Z.; Zhang, H. A Time-frequency domain mixed attention-based approach for classifying wood-boring insect feeding vibration signals using a deep learning model. Insects 2024, 15, 282. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.; Ma, B.L.; Vanasse, A.; Caldwell, C.D.; Earl, H.J.; Smith, D.L. Machine learning-based canola yield prediction for site-specific nitrogen recommendations. Nutr. Cycl. Agroecosyst. 2021, 121, 241–256. [Google Scholar] [CrossRef]
- Wen, G.; Ma, B.L.; Vanasse, A.; Caldwell, C.D.; Smith, D.L. Optimizing machine learning-based site-specific nitrogen application recommendations for canola production. Field Crops Res. 2022, 288, 108707. [Google Scholar] [CrossRef]
- Fixen, P.E. A brief account of the genesis of 4R nutrient stewardship. Agron. J. 2020, 112, 4511–4518. [Google Scholar] [CrossRef]
- Kindlmann, P.; Yasuda, H.; Kajita, Y.; Sato, S.; Dixon, A.F.G. Predator efficiency reconsidered for a ladybird-aphid system. Front. Ecol. Evol. 2015, 3, 27. [Google Scholar] [CrossRef]
- Banks, J.E.; Laubmeier, A. Modeling the effects of trap crop attraction strength, patch dispersion, and biological control on pest suppression. Arthropod-Plant Interact 2024, 18, 1151–1159. [Google Scholar] [CrossRef]
- Zvereva, E.L.; Lanta, V.; Kozlov, M.V. Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: A meta-analysis of experimental studies. Oecologia 2010, 163, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative strategies for controlling wireworms in field crops: A review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Yang, W.; Qiu, X. A novel crop pest detection model based on YOLOv5. Agriculture 2024, 14, 275. [Google Scholar] [CrossRef]
- Hu, Y.; Deng, X.; Lan, Y.; Chen, X.; Long, Y.; Liu, C. Detection of rice pests based on self-attention mechanism and multi-scale feature fusion. Insects 2023, 14, 280. [Google Scholar] [CrossRef]
- Amrani, A.; Sohel, F.; Diepeveen, D.; Murray, D.; Jones, M.G.K. Insect detection from imagery using YOLOv3-based adaptive feature fusion convolution network. Crop Pasture Sci. 2022, 74, 615–627. [Google Scholar] [CrossRef]
- Albattah, W.; Masood, M.; Javed, A.; Nawaz, M.; Albahli, S. Custom CornerNet: A drone-based improved deep learning technique for large-scale multiclass pest localization and classification. Complex Intell. Syst. 2023, 9, 1299–1316. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhao, M. A lightweight crop pest detection algorithm based on improved Yolov5s. Agronomy 2023, 13, 1779. [Google Scholar] [CrossRef]
- Chen, C.J.; Huang, Y.Y.; Li, Y.S.; Chen, Y.C.; Chang, C.Y.; Huang, Y.M. Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access 2021, 9, 21986–21997. [Google Scholar] [CrossRef]
- Wen, S.; Zhang, Q.; Yin, X.; Lan, Y.; Zhang, J.; Ge, Y. Design of plant protection UAV variable spray system based on neural networks. Sensors 2019, 19, 1112. [Google Scholar] [CrossRef]
- Tetila, E.C.; Machado, B.B.; Astolfi, G.; Belete, N.A.S.; Amorim, W.P.; Roel, A.R.; Pistori, H. Detection and classification of soybean pests using deep learning with UAV images. Comput. Electron. Agric. 2020, 179, 105836. [Google Scholar] [CrossRef]
- Roosjen, P.P.; Kellenberger, B.; Kooistra, L.; Green, D.R.; Fahrentrapp, J. Deep learning for automated detection of Drosophila suzukii: Potential for UAV-based monitoring. Pest Manag. Sci. 2020, 76, 2994–3002. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, X.; Li, X.; Ju, M.; Yang, F. A method for classifying wood-boring insects for pest control based on deep learning using boring vibration signals with environment noise. Forests 2024, 15, 1875. [Google Scholar] [CrossRef]
- Ullah, F.; Saqib, S.; Xiong, Y.C. Integrating artificial intelligence in biodiversity conservation: Bridging classical and modern approaches. Biodivers. Conserv. 2025, 34, 45–65. [Google Scholar] [CrossRef]
- Dainelli, R.; Bruno, A.; Martinelli, M.; Moroni, D.; Rocchi, L.; Morelli, S.; Ferrari, E.; Silvestri, M.; Agostinelli, S.; La Cava, P.; et al. GranoScan: An AI-powered mobile app for in-field identification of biotic threats of wheat. Front. Plant Sci. 2024, 15, 1298791. [Google Scholar] [CrossRef]
- Jiang, L.; Wen, G.; Lu, J.; Yang, H.; Jin, Y.; Nie, X.; Wang, Z.; Chen, M.; Du, Y.; Wang, Y. Machine learning in soil nutrient dynamics of alpine grasslands. Sci. Total Environ. 2024, 946, 174295. [Google Scholar] [CrossRef]
- Mankin, R.W.; Hagstrum, D.W.; Smith, M.T.; Roda, A.L.; Kairo, M.T.K. Perspective and promise: A century of insect acoustic detection and monitoring. Am. Entomol. 2011, 57, 30–44. [Google Scholar] [CrossRef]
- Reddyboina, A.; Kumar, T.P.; Varshitha, S.; Reddy, M.N. Smart agriculture by leveraging AI and IoT for intelligent insect identification and control. In Proceedings of the 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), Bangalore, India, 28–29 June 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Perveen, F.K.; Khan, A. Masters of camouflage and mimicry: Unusual world of lepidoptera. In Biodiversity and Ecology of Lepidoptera—Insights and Advances; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Ernst, U.R.; Van Hiel, M.B.; Depuydt, G.; Boerjan, B.; De Loof, A.; Schoofs, L. Epigenetics and locust life phase transitions. J. Exp. Biol. 2015, 218, 88–99. [Google Scholar] [CrossRef]
- Stadler, B.; Dixon, A.F.G. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 345–372. [Google Scholar] [CrossRef]
- Zalom, F.G. Chapter 8—Pesticide use practices in integrated pest management. In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Krieger, R., Ed.; Academic Press: New York, NY, USA, 2010; pp. 303–313. [Google Scholar] [CrossRef]
- Castellano, S.; Mugnozza, G.S.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic nets in agriculture: A general review of types and applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Summers, C.G.; Mitchell, J.P.; Stapleton, J.J. Mulches reduce aphid-borne viruses and whiteflies in cantaloupe. Calif. Agric. 2005, 59, 90–94. [Google Scholar] [CrossRef]
- Almady, S.; Khelifi, M. Effects of a prototype pneumatic machine to control the Colorado potato beetle on potato plant growth and tuber yield. Trans. ASABE 2021, 64, 2035–2044. [Google Scholar] [CrossRef]
- Mali, H.; Shah, C.; Raghunandan, B.H.; Prajapati, A.S.; Patel, D.H.; Trivedi, U.; Subramanian, R.B. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. J. Environ. Sci. 2023, 127, 234–250. [Google Scholar] [CrossRef]
- Naveen, N.C.; Chaubey, R.; Kumar, D.; Rebijith, K.B.; Rajagopal, R.; Subrahmanyam, B.; Subramanian, S. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Sci. Rep. 2017, 7, 40634. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Mdeni, N.L.; Adeniji, A.O.; Okoh, A.I.; Okoh, O.O. Analytical evaluation of carbamate and organophosphate pesticides in human and environmental matrices: A review. Molecules 2022, 27, 618. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Björkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Jensen, D.F.; Jonsson, M.; et al. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021, 94, 665–676. [Google Scholar] [CrossRef]
- Hassan, A.; Li, Z.; Zhou, X.; Mo, J.; Huang, Q. Termite management by entomopathogenic fungi: Recent advances and future prospects. Curr. Res. Biotechnol. 2024, 7, 100183. [Google Scholar] [CrossRef]
- Marković, D.; Vujičić, D.; Tanasković, S.; Đorđević, B.; Ranđić, S.; Stamenković, Z. Prediction of pest insect appearance using sensors and machine learning. Sensors 2021, 21, 4846. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, W.S.; Liburd, O.E.; Aygun, I.; Zhou, X.; Pourreza, A.; Schueller, J.K.; Ampatzidis, Y. Detecting two-spotted spider mites and predatory mites in strawberry using deep learning. Smart Agric. Technol. 2023, 4, 100229. [Google Scholar] [CrossRef]
- Markle, J.C.; Niederholzer, F.J.; Zalom, F.G. Evaluation of spray application methods for navel orangeworm control in almonds. Pest Manag. Sci. 2016, 72, 2339–2346. [Google Scholar] [CrossRef]
- Torrent, X.; Garcerá, C.; Moltó, E.; Chueca, P.; Abad, R.; Grafulla, C.; Román, C.; Planas, S. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part I. Effects on wind tunnel and field spray drift. Crop Prot. 2017, 96, 130–143. [Google Scholar] [CrossRef]
- Filho, F.H.L.; Heldens, W.B.; Kong, Z.; de Lange, E.S. Drones: Innovative technology for use in precision pest management. J. Econ. Entomol. 2020, 113, 1–25. [Google Scholar] [CrossRef]
- Wang, J.; Lan, Y.; Zhang, H.; Zhang, Y.; Wen, S.; Yao, W.; Deng, J. Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. Int. J. Agric. Biol. Eng. 2018, 11, 5–12. [Google Scholar] [CrossRef]
- Fang, C.; Xu, Y.; Ji, Y. Part-time farming, diseases and pest control delay and its external influence on pesticide use in China’s rice production. Front. Environ. Sci. 2022, 10, 896385. [Google Scholar] [CrossRef]
- Matova, P.M.; Kamutando, C.N.; Magorokosho, C.; Kutywayo, D.; Gutsa, F.; Labuschagne, M. Fall-armyworm invasion, control practices and resistance breeding in Sub-Saharan Africa. Crop Sci. 2020, 60, 2951–2970. [Google Scholar] [CrossRef]
- Batz, P.; Will, T.; Thiel, S.; Ziesche, T.M.; Joachim, C. From identification to forecasting: The potential of image recognition and artificial intelligence for aphid pest monitoring. Front. Plant Sci. 2023, 14, 1150748. [Google Scholar] [CrossRef]
- Shafique, R.; Khan, S.H.; Ryu, J.; Lee, S.W. Weather-driven predictive models for Jassid and Thrips Infestation in cotton crop. Sustainability 2025, 17, 2803. [Google Scholar] [CrossRef]
- European Commission. Optimising Crop Protection with A Smart Pest Monitoring Solution. 2018. Available online: https://cordis.europa.eu/article/id/247282-optimising-crop-protection-with-a-smart-pest-monitoring-solution (accessed on 24 March 2025).
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Chauhan, A.; Soni, S.K. Implementation of drone technology for farm monitoring & pesticide spraying: A review. Inf. Process. Agric. 2023, 10, 192–203. [Google Scholar] [CrossRef]
- Ampatzidis, Y. Applications of artificial intelligence for precision agriculture: AE529, 12/2018. EDIS 2018, 2018, 1–5. [Google Scholar] [CrossRef]
- Wu, M.; Liu, S.; Li, Z.; Ou, M.; Dai, S.; Dong, X.; Wang, X.; Jiang, L.; Jia, W. A review of intelligent orchard sprayer technologies: Perception, control, and system integration. Horticulturae 2025, 11, 668. [Google Scholar] [CrossRef]
- Saini, N.; Singh, H.; Gouda, M.R. Use of drones in precision pest management. Int. J. Res. Agron. 2024, 7, 854–858. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, L.; Zhai, X.; Li, W. Artificial intelligence in agricultural pest and disease management: Current applications and future prospects. Adv. Resour. Res. 2025, 5, 971–986. [Google Scholar] [CrossRef]
AI Technique | Tasks | Dataset | Crops | Pests | Outcome | References |
---|---|---|---|---|---|---|
YOLOv5s-pest (YOLOv5 + HSPPF, NCBAM, Recursive Gated Conv, and Soft-NMS) | Pest detection | IP16 (14 classes from IP102) | Rice, wheat, beet, alfalfa, corn, citrus, mango, and vine | 16 pest types (e.g., alfalfa plant bug, and aphids) | Mean average precision of 92.5% | [28] |
YOLOv5 with self-attention mechanism and multi-scale feature fusion | Pest detection | IP102 dataset (>75,000 images with 102 categories) | Rice | 7 pest types (e.g., rice leaf roller, and pink rice borer) | Mean average precision of 79.8% | [29] |
Custom CornerNet with DenseNet-100 | Pest localization and classification | IP102 dataset | Rice, corn, wheat, beet, alfalfa, citrus, vitis, and mango | 102 pest categories (insects in various life stages: egg, larva, pupa, and adult) | Achieved 68.74% classification accuracy and 57.23% mAP; outperformed other object detection models like YOLOv3, SSD, and Faster R-CNN in speed and accuracy | [31] |
Improved YOLOv5s (ECMB-YOLOv5) - Backbone: MobileNetV3 - Attention: ECA - Neck: BiFPN - Loss: SIoU | Pest detection | IP102 dataset + photographs with a cellphone (total 2570 images) | Rice and wheat | 7 pest types (e.g., rice leaf roller, and Mole cricket) | Mean average precision of > 95% | [32] |
YOLOvs and Tiny-YOLOv3 neural network models | Pest location + pesticide spraying | Drone images | longan crops (orchard) | Tessaratoma papillosa (Drury) | Mean average precision of 93% and 89% with frames per second of 2.96 and 8.71 for YOLOv3 and Tiny-YOLO, respectively | [33] |
BP Neural Network (ANN) | Predict droplet deposition and control UAV spray flow rate | Wind tunnel and field data; experimental data on UAV flight; environment, and structure; tillering stage rice simulation | Rice | General rice pests and diseases (not specified individually) | Droplet deposition prediction error < 20%; system achieved stable performance (R2= 0.997); variable spray met prescription values accurately in field tests | [34] |
ResNet-50, Inception-v3, VGG-16, VGG-19, and Xception with SLIC superpixel segmentation and fine-tuning strategies | Classification of segmented pest images | INSection 5K13C: 5000 images of soybean pests in real field conditions | Soybean | 12 pest categories (e.g., Spodoptera spp., Anticarsia gemmatalis, Nezara viridula adult/nymph, and Gastropoda) + 1 no-pest class | ResNet-50 with fine-tuning achieved highest accuracy of 93.82%. All DL models outperformed classical ML methods. | [35] |
Deep CNN based on ResNet-18, modified to perform object detection with class probability maps | Detection, classification and sex differentiation of Drosophila suzukii | 4753 labeled images from static traps and UAV-based images (249 traps total: 101 with SWD and 148 with bycatch) | Soft-skinned fruits (e.g., strawberries, raspberries, and cherries—SWD host crops) | Drosophila suzukii (spotted wing drosophila), male and female | AUC (static images): 0.603 (male), 0.506 (female), 0.669 (combined); AUC (UAV images): 0.284 (male), 0.086 (female), and 0.266 (combined); Demonstrated feasibility of UAV-based detection despite reduced image quality compared to static setup | [36] |
Deep learning (BorerNet model with attention mechanism) using MFCC features | Classification and identification of wood-boring pests based on boring vibration signals under noisy environments | Custom dataset of vibration signals collected via self-developed piezoelectric sensors in field and soundproof settings; includes EAB, SCM, environmental noise, and simulated mixed signals | Ash trees (Fraxinus chinensis) | Emerald ash borer (Agrilus planipennis) and small carpenter moth (Streltzoviella insularis) | BorerNet achieved 96.67% accuracy and 0.95 F1-score, outperforming ResNet50, DenseNet, Inception V3, and VGG. Demonstrated strong robustness in noisy conditions and potential for real-world deployment | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Jin, Y.; Jiang, L.; Lu, J.; Wen, G. AI Roles in 4R Crop Pest Management—A Review. Agronomy 2025, 15, 1629. https://doi.org/10.3390/agronomy15071629
Yang H, Jin Y, Jiang L, Lu J, Wen G. AI Roles in 4R Crop Pest Management—A Review. Agronomy. 2025; 15(7):1629. https://doi.org/10.3390/agronomy15071629
Chicago/Turabian StyleYang, Hengyuan, Yuexia Jin, Lili Jiang, Jia Lu, and Guoqi Wen. 2025. "AI Roles in 4R Crop Pest Management—A Review" Agronomy 15, no. 7: 1629. https://doi.org/10.3390/agronomy15071629
APA StyleYang, H., Jin, Y., Jiang, L., Lu, J., & Wen, G. (2025). AI Roles in 4R Crop Pest Management—A Review. Agronomy, 15(7), 1629. https://doi.org/10.3390/agronomy15071629