High Planting Density Combined with Delayed Topping Improves Short Fruiting Branch Cotton Yield by Enhancing Biomass Accumulation, Canopy Light Interception and Delaying Leaf Senescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Morphological Traits, Yield and Yield Characters
2.3. Biomass Determination
2.4. Photosynthetic and Leaf Senescence-Related Characteristics
2.5. Light Interception
2.6. Data Analysis
3. Results
3.1. Yield and Yield Components
3.2. Agronomic Traits
3.3. Biomass Accumulation
3.4. Photosynthetic Parameters
3.5. Soluble Protein and Total Nitrogen
3.6. Solar Radiation Capture
4. Discussion
4.1. Increasing PPD Combined with Later Topping Improves Seed Cotton and Lint Yields Through the Enhancement of the Biological Yield
4.2. Increasing PPD Combined with Later Topping Delays Leaf Senescence as Indicated by Higher Photosynthetic Parameters, Soluble Protein and Total Nitrogen Contents from the Peak Boll-Setting Onwards
4.3. Increasing PPD Combined with Later Topping Enhances Solar Radiation Capture and Photosynthetic Efficiency at the Cotton Late Growth Stage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, H.; Kong, X.; Li, W.; Tang, W.; Zhang, D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crop Res. 2010, 119, 106–113. [Google Scholar] [CrossRef]
- Khan, A.; Najeeb, U.; Wang, L.; Tan, D.K.Y.; Yang, G.; Munsif, F.; Ali, S.; Hafeez, A. Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crop Res. 2017, 209, 129–135. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Dai, J.; Dong, H.; Kong, X. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production. Field Crop Res. 2019, 230, 121–131. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, L.; Zhao, X.; Liu, S.; van der Werf, W.; Zhang, S.; Spiertz, H.; Li, Z. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crop Res. 2014, 155, 67–76. [Google Scholar] [CrossRef]
- Wilson, D.J.; York, A.C.; Edmisten, K.L. Narrow-row cotton response to mepiquat chloride. J. Cotton Sci. 2007, 11, 177–185. [Google Scholar]
- Zhang, Y.; Chen, Y.; Sun, S.; Zhang, P.; Zhang, Z.; Wang, X.; Tang, X.; Yang, M.; Xiang, D.; Wang, S.; et al. Chemical topping and planting density interactively affect cotton growth and partitioning index. Agronomy 2024, 14, 3011. [Google Scholar] [CrossRef]
- Nichols, S.P.; Snipes, C.E.; Jones, M.A. Evaluation of row spacing and mepiquat chloride in cotton. J. Cotton Sci. 2003, 7, 148–155. [Google Scholar]
- Reddy, V.R.; Trent, A.; Acock, B. Mepiquat Chloride and Irrigation versus Cotton Growth and Development. Agron. J. 1992, 84, 930–933. [Google Scholar] [CrossRef]
- Zhao, W.; Du, M.; Xu, D.; Lu, H.; Tian, X.; Li, Z. Interactions of Single Mepiquat Chloride Application at Different Growth Stages with Climate, Cultivar, and Plant Population for Cotton Yield. Crop Sci. 2017, 57, 1713–1724. [Google Scholar] [CrossRef]
- Du, X.M. Standardization of the Classification of Fruiting Branch Types in Cotton. China Cotton 1996, 23, 19. [Google Scholar]
- Li, Z.S.; Wei, H.L.; Pang, C.Y.; Wang, H.T.; Ma, Q.F.; Su, J.J.; Chen, Q.J.; Qu, Y.Y.; Fan, S.L.; Yu, S.X. The endogenous hormone differences of different fruiting branch internode length traits and the influence of spraying exogenous hormone in upland cotton. Cotton Sci. 2018, 30, 7. [Google Scholar]
- Dai, J.; Tian, L.; Zhang, Y.; Zhang, D.; Xu, S.; Cui, Z.; Li, Z.; Li, W.; Zhan, L.; Li, C.; et al. Plant topping effects on growth, yield, and earliness of field-grown cotton as mediated by plant density and ecological conditions. Field Crop Res. 2022, 275, 108337. [Google Scholar] [CrossRef]
- Yang, Y.; Ouyang, Z.; Yang, Y.; Liu, X. Simulation of the effect of pruning and topping on cotton growth using COTTON2K model. Field Crops Res. 2008, 106, 126–137. [Google Scholar] [CrossRef]
- Renou, A.; Téréta, I.; Togola, M. Manual topping decreases bollworm infestations in cotton cultivation in Mali. Crop Prot. 2011, 30, 1370–1375. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.W.; Chen, G.W.; Lv, Z.Z.; Li, Z.J. Study on the change of hormone and nutrient absorption of cotton after decapitation. Arid Zone Res. 2006, 23, 604–608. [Google Scholar]
- Wang, S.; Sun, H.; Zhu, L.; Zhang, K.; Zhang, Y.; Zhang, H.; Zhu, J.; Liu, X.; Bai, Z.; Li, A. Effects of spraying with ethephon and early topping on the growth, yield, and earliness of cotton under late-sowing and high-density cultivation modes. Agronomy 2023, 13, 1244. [Google Scholar] [CrossRef]
- Dai, J.; Dong, H. Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crop Res. 2014, 155, 99–110. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, C.; Du, M.; Tian, J.; Yang, M.; Zhang, Y.; Zhang, W. Optimizing chemical topping in cotton: Effects of planting density and variety sensitivity to mepiquat chloride. Field Crop Res. 2025, 327, 109914. [Google Scholar] [CrossRef]
- Murat, N.; Yang, Y. Comparative study on determination methods of chlorophyll content in wheat. Jiangsu Agric. Sci. 2021, 49, 4. [Google Scholar]
- Campion, E.M.; Loughran, S.T.; Walls, D. Protein quantitation and analysis of purity. Methods Mol Biol. 2011, 681, 229–258. [Google Scholar]
- Zhang, D.; Luo, Z.; Liu, S.; Li, W.; Tang, W.; Dong, H. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crop Res. 2016, 197, 1–9. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, X.; Dong, H. Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Field Crop Res. 2018, 216, 10–21. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, H. Mechanisms and regulation of senescence and maturity performance in cotton. Field Crop Res. 2016, 189, 1–9. [Google Scholar] [CrossRef]
- Hu, W.; Lv, X.; Yang, J.; Chen, B.; Zhao, W.; Meng, Y.; Wang, Y.; Zhou, Z.; Oosterhuis, D.M. Effects of potassium deficiency on antioxidant metabolism related to leaf senescence in cotton (Gossypium hirsutum L.). Field Crop Res. 2016, 191, 139–149. [Google Scholar] [CrossRef]
- Kong, X.; Wang, T.; Li, W.; Tang, W.; Zhang, D.; Dong, H. Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Acta Physiol. Plant 2016, 38, 61. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, Z.; Wu, J.; Wu, Z.; Wen, T.; Tang, F. Effects of mepiquat chloride and plant population density on leaf photosynthesis and carbohydrate metabolism in upland cotton. J. Cotton Res. 2023, 6, 250–265. [Google Scholar] [CrossRef]
- Pettigrew, W.T.; Mccarty, J.C.; Vaughn, K.C. Leaf senescence-like characteristics contribute to cotton’s premature photosynthetic decline. Photosynth. Res. 2000, 65, 187–195. [Google Scholar] [CrossRef]
- Qi, J.; Nie, J.; Zhang, Y.; Xu, S.; Li, Z.H.; Zhang, D.; Cui, Z.; Li, W.; Dai, J.; Tian, L. Plastic film mulching does not increase the seedcotton yield due to the accelerated late-season leaf senescence of short-season cotton compared with non-mulching. Field Crop Res. 2022, 287, 108660. [Google Scholar] [CrossRef]
- Li, L.; Tian, C.Y.; Chen, G.W.; Li, Z.J. Effect of hormone change in reciprocal fourth leaf on cotton yield and quality after topping. Arid Zone Res. 2014, 30, 111–117. [Google Scholar]
- Li, L.; Tian, C.Y.; Huang, Z.W.; Wang, P.; Chen, G.W.; Wang, Q.; Li, Z.J. Influence of decapitation on endogenous hormone of inverse fourth leaf and premature senility of cotton. Agric. Res. Arid Area 2010, 28, 162–168. [Google Scholar]
- Shi, F.; Shi, X.; Hao, X.; Tian, Y.; Li, N.; Zhang, H.; Liang, Q.; Zhang, H.; Li, Z.; Tian, L.; et al. Chemical topping enhances the cotton (Gossypium hirsutum L.) yield formation through improving leaf photosynthesis and assimilating the partitioning to reproductive organs. Ind. Crop. Prod. 2024, 222, 119903. [Google Scholar] [CrossRef]
- Dong, H.; Li, W.; Eneji, A.E.; Zhang, D. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crop Res. 2012, 126, 137–144. [Google Scholar] [CrossRef]
- Gwathmey, C.O.; Clement, J.D. Alteration of cotton source–sink relations with plant population density and mepiquat chloride. Field Crop Res. 2010, 116, 101–107. [Google Scholar] [CrossRef]
- Brodrick, R.; Bange, M.P.; Milroy, S.P.; Hammer, G.L. Physiological determinants of high yielding ultra-narrow row cotton: Canopy development and radiation use efficiency. Field Crop Res. 2013, 148, 86–94. [Google Scholar] [CrossRef]
- Gu, S.; Sun, S.; Wang, X.; Wang, S.; Yang, M.; Li, J.; Maimaiti, P.; van der Werf, W.; Evers, J.B.; Zhang, L. Optimizing radiation capture in machine-harvested cotton A functional-structural plant modelling approach to chemical vs. manual topping strategies. Field Crops Res. 2024, 317, 109553. [Google Scholar] [CrossRef]
- Wells, R. Response of leaf ontogeny and photosynthetic activity to reproductive growth in cotton. Plant Physiol. 1988, 87, 274–279. [Google Scholar] [CrossRef]
- Milroy, S.P.; Bange, M.P. Nitrogen and light responses of cotton photosynthesis and implications for crop growth. Crop Sci. 2003, 43, 904–913. [Google Scholar] [CrossRef]
- Sadras, V.O. Cotton responses to simulated insect damage: Radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs. Field Crop Res. 1996, 48, 199–208. [Google Scholar] [CrossRef]
Year | Treatment | Boll Density (per m−2) | Boll Weight (g) | Lint Percentage (%) | Seed Index (g) | Seed Cotton Yield (kg ha−1) | Lint Yield (kg ha−1) | Biomass Yield (kg ha−1) | Harvest Index |
---|---|---|---|---|---|---|---|---|---|
2023 | LDET | 147.2 ± 21.6 a | 4.89 ± 0.03 a | 39.6 ± 0.6 a | 9.8 ± 0.2 a | 4142.1 ± 168.2 b | 1638.7 ± 64.9 b | 12,067.3 ± 1400.1 b | 0.34 ± 0.01 a |
LDLT | 152.9 ± 9.0 a | 4.87 ± 0.05 a | 38.6 ± 0.8 a | 9.6 ± 0.1 a | 4249.4 ± 87.7 b | 1642.0 ± 66.05 b | 13,135.1 ± 325.0 b | 0.32 ± 0.01 ab | |
HDLT | 172.0 ± 29.2 a | 4.73 ± 0.06 a | 39.6 ± 0.7 a | 9.6 ± 0.3 a | 4696.8 ± 5.5 a | 1859.0 ± 35.5 a | 16,632.3 ± 662.5 a | 0.28 ± 0.05 b | |
HDET | 164.8 ± 35.7 a | 4.87 ± 0.31 a | 40.2 ± 1.3 a | 9.7 ± 0.5 a | 4147.6 ± 151.7 b | 1667.7 ± 29.2 b | 12,001.9 ± 558.3 b | 0.35 ± 0.01 a | |
LD mean | 150.0 ± 15.1 A | 4.88 ± 0.04 A | 39.1 ± 0.8 A | 9.7 ± 0.1 A | 4195.7 ± 133.6 B | 1640.3 ± 58.6 B | 12,601.2 ± 1081.0 B | 0.33 ± 0.01 A | |
HD mean | 168.4 ± 29.4 A | 4.80 ± 0.21 A | 39.9 ± 1.0 A | 9.7 ± 0.4 A | 4422.2 ± 315.8 A | 1763.3 ± 108.8 A | 14,317.1 ± 2594.7 A | 0.32 ± 0.05 A | |
ET mean | 156.0 ± 28.1 x | 4.88 ± 0.20 x | 39.9 ± 1.0 x | 9.7 ± 0.32 x | 4144.8 ± 143.3 y | 1653.2 ± 47.8 y | 12,034.6 ± 954.0 y | 0.35 ± 0.01 x | |
LT mean | 162.4 ± 22.0 x | 4.80 ± 0.09 x | 39.1 ± 0.9 x | 9.6 ± 0.2 x | 4473.1 ± 251.3 x | 1750.5 ± 128.0 x | 14,883.7 ± 1971.5 x | 0.30 ± 0.04 x | |
Source of variation (F) | |||||||||
PPD | 1.51 | 0.68 | 2.47 | 0.67 | 10.43 * | 16.98 ** | 12.55 ** | 10.84 | |
TT | 0.19 | 0.68 | 2.37 | 0.45 | 21.91 ** | 10.63 * | 34.59 ** | 13.22 | |
PPD × TT | 0.03 | 0.37 | 0.07 | 0.07 | 9.93 * | 9.91 * | 13.52 ** | 50.44 * | |
2024 | LDET | 98.8 ± 14.2 b | 2.87 ± 0.06 a | 36.0 ± 0.1 a | 12.0 ± 0.2 a | 2831.0 ± 433.3 c | 1023.0 ± 132.2 c | 9807.2 ± 659.2 b | 0.29 ± 0.06 b |
LDLT | 145.3 ± 14.7 a | 2.87 ± 0.23 a | 35.7 ± 0.1 a | 11.8 ± 0.1 a | 4176.5 ± 758.1 ab | 1486.7 ± 266.9 b | 8333.2 ± 39.9 b | 0.50 ± 0.10 a | |
HDLT | 159.9 ± 7.8 a | 3.23 ± 0.06 a | 36.0 ± 0.1 a | 11.6 ± 0.1 a | 5146.0 ± 306.3 a | 1836.8 ± 44.1 a | 16528.8 ± 1944.4 a | 0.31 ± 0.03 b | |
HDET | 146.2 ± 10.0 a | 2.80 ± 0.20 a | 37.7 ± 0.1 a | 11.9 ± 0.5 a | 4052.0 ± 508.5 bc | 1506.2 ± 125.9 b | 10222.4 ± 730.8 b | 0.40 ± 0.08 ab | |
LD mean | 122.0 ± 28.6 B | 2.87 ± 0.15 A | 35.8 ± 0.1 A | 11.9 ± 0.2 A | 3503.7 ± 921.0 B | 1254.9 ± 316.2 B | 9070.2 ± 909.0 B | 0.40 ± 0.01 A | |
HD mean | 153.0 ± 10.9 A | 3.02 ± 0.27 A | 36.8 ± 0.1 A | 11.7 ± 0.4 A | 4599.0 ± 707.1 A | 1671.5 ± 199.8 A | 13375.6 ± 3695.6 A | 0.36 ± 0.07 A | |
ET mean | 122.5 ± 28.2 y | 2.83 ± 0.14 x | 36.8 ± 0.1 x | 11.9 ± 0.3 x | 3441.5 ± 791.1 y | 1264.6 ± 288.7 y | 10014.8 ± 662.7 y | 0.35 ± 0.08 x | |
LT mean | 152.6 ± 13.2 x | 3.05 ± 0.25 x | 35.8 ± 0.1 x | 11.7 ± 0.2 x | 4661.3 ± 741.2 x | 1661.8 ± 257.0 x | 12431.0 ± 465.4 x | 0.41 ± 0.01 x | |
Source of variation (F) | |||||||||
PPD | 20.15 ** | 2.70 | 0.39 | 0.78 | 12.91 ** | 19.56 ** | 46.82 ** | 0.92 | |
TT | 18.91 ** | 5.63 | 0.39 | 2.67 | 16.02 ** | 17.78 ** | 14.75 * | 2.35 | |
PPD × TT | 5.64 * | 5.63 | 0.17 | 0.20 | 0.17 | 0.50 | 38.23 ** | 13.43 ** |
Year | Treatment | PH (cm) | FBN | TFBA (°) | SFBA (°) | NFBA (°) | TFBL (cm) | SFBL (cm) | NFBL (cm) |
---|---|---|---|---|---|---|---|---|---|
2023 | LDET | 81.3 ± 4.3 b | 10.8 ± 0.6 c | 53.2 ± 1.2 a | 52.9 ± 2.1 a | 53.6 ± 2.6 a | 7.6 ± 1.6 a | 11.3 ± 1.0 b | 16.4 ± 1.5 a |
LDLT | 117.8 ± 9.0 a | 14.5 ± 0.8 ab | 51.6 ± 1.2 a | 51.4 ± 1.3 a | 50.8 ± 0.7 a | 8.6 ± 2.5 a | 13.9 ± 1.4 a | 14.7 ± 0.9 a | |
HDLT | 114.9 ± 3.5 a | 14.9 ± 0.5 a | 53.0 ± 4.2 a | 52.5 ± 1.5 a | 53.8 ± 3.1 a | 8.1 ± 1.5 a | 8.8 ± 1.4 c | 9.0 ± 1.6 b | |
HDET | 79.7 ± 0.9 b | 10.7 ± 1.0 c | 49.6 ± 4.5 a | 52.7 ± 2.6 a | 52.0 ± 1.4 a | 8.0 ± 1.5 a | 8.8 ± 0.9 c | 10.2 ± 1.9 b | |
LD mean | 99.5 ± 21.0 A | 12.7 ± 2.1 A | 52.6 ± 1.6 A | 52.1 ± 1.8 A | 52.2 ± 2.3 A | 8.1 ± 1.9 A | 12.6 ± 1.8 A | 15.5 ± 1.4 A | |
HD mean | 97.3 ± 19.4 A | 12.8 ± 2.4 A | 51.3 ± 4.3 A | 52.6 ± 1.9 A | 52.9 ± 2.4 A | 8.1 ± 1.4 A | 8.8 ± 1.0 B | 9.6 ± 1.7 B | |
ET mean | 80.5 ± 2.9 y | 10.8 ± 0.7 y | 51.6 ± 3.7 x | 52.8 ± 2.1 x | 52.8 ± 2.1 x | 7.8 ± 1.4 x | 10.1 ± 1.6 x | 13.3 ± 3.7 x | |
LT mean | 116.4 ± 6.3 x | 14.7 ± 0.7 x | 52.3 ± 2.9 x | 51.9 ± 1.4 x | 52.3 ± 2.6 x | 8.3 ± 1.8 x | 11.4 ± 3.1 x | 11.8 ± 3.3 x | |
Source of variation (F) | |||||||||
PPD | 0.53 | 0.15 | 0.51 | 0.17 | 0.27 | 0.01 | 31.86 ** | 46.54 ** | |
TT | 138.91 ** | 81.12 ** | 0.13 | 0.57 | 0.14 | 0.25 | 3.66 | 2.92 | |
PPD × TT | 0.05 | 0.38 | 2.15 | 0.37 | 3.36 | 0.18 | 3.77 | 0.08 | |
2024 | LDET | 63.1 ± 1.1 b | 11.0 ± 1.5 b | 56.7 ± 3.4 a | 54.9 ± 2.5 a | 55.7 ± 4.0 a | 17.6 ± 2.0 a | 15.2 ± 2.3 a | 15.8 ± 5.7 a |
LDLT | 105.7 ± 5.7 a | 15.5 ± 0.8 a | 52.7 ± 3.0 a | 56.7 ± 2.3 a | 55.0 ± 3.4 a | 19.3 ± 4.6 a | 19.4 ± 3.0 a | 16.0 ± 1.4 a | |
HDLT | 104.2 ± 1.5 a | 15.6 ± 0.1 a | 50.6 ± 4.0 a | 53.7 ± 4.0 a | 50.8 ± 1.2 a | 16.3 ± 1.3 a | 15.9 ± 4.1 a | 11.6 ± 4.1 a | |
HDET | 63.0 ± 3.8 b | 11.4 ± 0.4 b | 53.5 ± 3.5 a | 53.2 ± 1.2 a | 52.7 ± 2.4 a | 16.4 ± 0.9 a | 15.8 ± 3.4 a | 11.3 ± 1.7 a | |
LD mean | 84.4 ± 23.6 A | 13.2 ± 2.7 A | 54.7 ± 3.6 A | 55.8 ± 2.4 A | 55.3 ± 3.3 A | 18.4 ± 3.3 A | 17. ± 3.3 A | 15.9 ± 3.7 A | |
HD mean | 83.6 ± 22.7 A | 13.5 ± 2.3 A | 52.1 ± 3.7 A | 53.4 ± 2.6 A | 51.7 ± 2.0 A | 16.3 ± 1.0 A | 15.8 ± 3.4 A | 11.4 ± 2.8 A | |
ET mean | 63.0 ± 2.5 y | 11.2 ± 1.0 y | 55.1 ± 3.5 x | 54.0 ± 2.0 x | 54.2 ± 3.4 x | 17.0 ± 1.6 x | 15.5 ± 2.6 x | 13.5 ± 4.5 x | |
LT mean | 104.9 ± 3.8 x | 15.6 ± 0.5 x | 51.7 ± 3.4 x | 55.2 ± 3.3 x | 52.9 ± 3.2 x | 17.8 ± 3.4 x | 17.6 ± 3.8 x | 13.8 ± 3.6 x | |
Source of variation (F) | |||||||||
PPD | 0.16 | 0.33 | 1.67 | 2.27 | 4.49 | 1.92 | 0.61 | 4.46 | |
TT | 419.97 ** | 77.85 ** | 2.92 | 0.57 | 0.58 | 0.26 | 1.35 | 0.01 | |
PPD × TT | 0.1 | 0.14 | 0.07 | 0.19 | 0.11 | 0.34 | 1.23 | 0.01 |
Year | Treatment | n | Regression Equation | R2 | t1 | t2 | T | Vmax | VT | tm | Mmax | Mobs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(d) | (d) | (d) | (g d−1) | (g d−1) | (d) | (g m−2) | (g m−2) | |||||
2023 | LDET | 5 | Y = 65.50/(1 + 15,134.01e−0.090t) | 0.9985 * | 92.1 | 121.3 | 29.2 | 1.48 | 1.30 | 106.7 | 65.52 | 64.08 |
LDLT | 5 | Y = 80.00/(1 + 52,698.42e−0.099t) | 0.9430 * | 97.1 | 123.8 | 26.8 | 1.97 | 1.73 | 110.4 | 80.00 | 69.54 | |
HDLT | 5 | Y = 107.00/(1 + 2853.55e−0.071t) | 0.9879 * | 93.1 | 130.0 | 36.9 | 1.91 | 1.68 | 111.5 | 107.29 | 101.44 | |
HDET | 5 | Y = 74.40/(1 + 67,291.91e−0.116t) | 0.9722 * | 84.8 | 107.6 | 22.8 | 2.15 | 1.89 | 96.2 | 74.45 | 81.67 | |
2024 | LDET | 5 | Y = 103.92/(1 + 936.16e−0.05t) | 0.9889 * | 110.6 | 163.3 | 52.7 | 1.30 | 1.14 | 136.9 | 103.92 | 83.84 |
LDLT | 5 | Y = 67.71/(1 + 12,927.64e−0.082t) | 0.9932 * | 99.6 | 131.7 | 32.2 | 1.39 | 1.22 | 115.6 | 67.71 | 66.41 | |
HDLT | 5 | Y = 141.68/(1 + 366,508.3e−0.097t) | 0.9784 * | 118.8 | 146.0 | 27.2 | 3.43 | 3.01 | 132.4 | 141.68 | 133.01 | |
HDET | 5 | Y = 127.37/(1 + 959.97e−0.049t) | 0.9980 * | 113.6 | 167.5 | 53.9 | 1.56 | 1.36 | 140.5 | 127.37 | 98.03 |
Year | Treatment | n | Regression Equation | R2 | t1 | t2 | T | Vmax | VT | tm | Mmax | Mobs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(d) | (d) | (d) | (g d−1) | (g d−1) | (d) | (g m−2) | (g m−2) | |||||
2023 | LDET | 5 | Y = 1156.32/(1 + 5127.78e−0.073t) | 0.9988 * | 99.2 | 135.4 | 36.2 | 21.05 | 18.46 | 117.3 | 1156.32 | 1144.22 |
LDLT | 5 | Y = 1582.64/(1 + 269.16e−0.04t) | 0.9585 * | 106.9 | 172.7 | 65.8 | 15.84 | 13.89 | 139.8 | 1582.64 | 1243.97 | |
HDLT | 5 | Y = 1754.42/(1 + 663.58e−0.05t) | 0.9958 * | 102.9 | 155.3 | 52.3 | 22.07 | 19.36 | 129.1 | 1754.42 | 1561.79 | |
HDET | 5 | Y = 1159.61/(1 + 2918.40e−0.071t) | 0.9956 * | 93.7 | 130.8 | 37.1 | 20.61 | 18.07 | 112.3 | 1159.61 | 1118.53 | |
2024 | LDET | 5 | Y = 1165.72/(1 + 1736.52e−0.053t) | 0.9922 * | 116.7 | 166.8 | 50.1 | 15.33 | 13.45 | 141.8 | 1165.72 | 896.89 |
LDLT | 5 | Y = 828.59/(1 + 5675.79e−0.069t) | 0.9926 * | 106.3 | 144.6 | 38.3 | 14.27 | 12.52 | 125.4 | 828.59 | 766.90 | |
HDLT | 5 | Y = 1612.76/(1 + 426,138.79e−0.097t) | 0.9874 * | 119.9 | 147.0 | 27.1 | 39.16 | 34.34 | 133.4 | 1612.75 | 1519.87 | |
HDET | 5 | Y = 1030.43/(1 + 3658.43e−0.064t) | 0.9978 * | 93.7 | 145.0 | 41.5 | 16.36 | 14.34 | 129.2 | 1030.43 | 924.21 |
Year | Treatment | n | Regression Equation | R2 | t1 | t2 | T | Vmax | VT | tm | Mmax | Mobs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(d) | (d) | (d) | (g d−1) | (g d−1) | (d) | (g·m−2) | (g·m−2) | |||||
2023 | LDET | 5 | Y = 1216.89/(1 + 5620.63e−0.07t) | 0.9989 * | 98.7 | 134.2 | 35.5 | 22.56 | 20.44 | 116.5 | 1216.89 | 1206.73 |
LDLT | 5 | Y = 1506.08/(1 + 362.22e−0.05t) | 0.9646 * | 102.2 | 161.0 | 58.8 | 16.86 | 15.27 | 131.6 | 1506.08 | 1313.51 | |
HDLT | 5 | Y = 1834.76/(1 + 727.31e−0.05t) | 0.9961 * | 101.7 | 152.5 | 50.8 | 23.78 | 21.55 | 127.1 | 1834.76 | 1663.23 | |
HDET | 5 | Y = 1233.85/(1 + 2788.55e−0.07t) | 0.9967 * | 92.7 | 129.7 | 36.9 | 22.01 | 19.94 | 111.2 | 1233.85 | 1200.19 | |
2024 | LDET | 5 | Y = 1273.05/(1 + 1610.53e−0.05t) | 0.9922 * | 128.2 | 166.8 | 38.5 | 16.61 | 15.05 | 141.5 | 1273.05 | 980.72 |
LDLT | 5 | Y = 895.66/(1 + 5637.45e−0.07t) | 0.9929 * | 114.6 | 143.6 | 29.0 | 15.52 | 14.06 | 124.6 | 895.66 | 833.32 | |
HDLT | 5 | Y = 1754.15/(1 + 4227.47e−0.10t) | 0.9868 * | 126.2 | 146.9 | 20.7 | 42.60 | 38.60 | 133.4 | 1754.15 | 1652.88 | |
HDET | 5 | Y = 1148.14/(1 + 3174.20e−0.06t) | 0.9984 * | 118.8 | 151.1 | 32.4 | 17.81 | 16.14 | 129.9 | 1148.14 | 1022.24 |
Treatment | 2023 | 2024 | ||
---|---|---|---|---|
PF (DAS 113) | BO (DAS 169) | PF (DAS 121) | BO (DAS 165) | |
LDET | 22.4 ± 1.3 a | 12.6 ± 1.0 c | 32.1 ± 2.6 a | 17.2 ± 1.9 bc |
LDLT | 22.0 ± 4.6 a | 18.5 ± 1.1 b | 26.9 ± 0.6 b | 20.6 ± 1.3 b |
HDLT | 22.5 ± 1.1 a | 21.6 ± 2.1 a | 26.3 ± 2.7 b | 24.6 ± 4.2 a |
HDET | 24.0 ± 1.1 a | 12.4 ± 2.7 c | 32.8 ± 3.1 a | 16.3 ± 2.9 c |
LD mean | 22.2 ± 2.9 A | 16.5 ± 3.1 A | 29.9 ± 3.3 A | 18.7 ± 2.4 A |
HD mean | 23.3 ± 1.3 A | 17.0 ± 5.4 A | 29.4 ± 4.3 A | 20.1 ± 5.5 A |
ET mean | 22.9 ± 1.4 x | 12.5 ± 2.0 y | 32.4 ± 2.8 x | 16.7 ± 2.4 y |
LT mean | 22.2 ± 3.4 x | 19.7 ± 2.2 x | 32.1 ± 2.6 x | 17.2 ± 1.9 x |
Source of variance (F) | ||||
PPD | 0.65 | 2.43 | 0.01 | 1.45 |
TT | 0.53 | 67.74 ** | 34.24 ** | 20.00 ** |
PPD × TT | 0.16 | 3.12 | 0.44 | 3.65 |
Treatment | 2023 | 2024 | ||||
---|---|---|---|---|---|---|
PF (DAS 113) | PB (DAS 149) | BO (DAS 169) | PF (DAS 121) | PB (DAS 148) | BO (DAS 165) | |
LDET | 40.8 ± 2.3 b | 51.3 ± 2.6 b | 45.6 ± 3.7 b | 42.7 ± 2.7 a | 53.6 ± 1.4 a | 46.0 ± 2.2 b |
LDLT | 32.5 ± 1.3 c | 48.5 ± 2.2 b | 50.6 ± 1.8 a | 37.9 ± 2.8 b | 44.5 ± 2.1 b | 47.1 ± 1.9 ab |
HDLT | 34.2 ± 2.0 c | 50.3 ± 1.8 b | 51.7 ± 2.0 a | 37.4 ± 2.3 b | 44.1 ± 2.3 b | 49.7 ± 3.6 a |
HDET | 45.7 ± 2.8 a | 55.6 ± 3.1 a | 44.1 ± 2.6 b | 41.7 ± 1.5 a | 53.2 ± 3.0 a | 44.6 ± 1.5 b |
LD mean | 36.6 ± 4.6 B | 49.9 ± 2.6 B | 48.1 ± 3.8 A | 40.2 ± 3.7 A | 49.0 ± 5.0 A | 46.8 ± 2.0 A |
HD mean | 40.0 ± 6.4 A | 53.0 ± 3.7 A | 47.9 ± 4.5 A | 39.3 ± 2.9 A | 48.6 ± 5.3 A | 47.7 ± 3.9 A |
ET mean | 43.2 ± 3.6 x | 53.5 ± 3.6 x | 44.9 ± 3.2 y | 42.2 ± 2.2 x | 53.4 ± 2.3 x | 45.1 ± 1.8 y |
LT mean | 33.4 ± 1.8 y | 49.4 ± 1.9 y | 51.2 ± 1.9 x | 37.6 ± 2.5 y | 44.3 ± 2.1 y | 48.6 ± 3.2 x |
Source of variance (F) | ||||||
PPD | 21.16 ** | 10.07 ** | 0.05 | 0.98 | 0.28 | 0.30 |
TT | 188.30 ** | 17.64 ** | 52.91 ** | 35.66 ** | 144.36 ** | 7.33 * |
PPD × TT | 5.31 * | 1.71 | 2.28 | 0.15 | 0.11 | 2.98 |
Treatment | 2023 | 2024 | ||||
---|---|---|---|---|---|---|
PF (DAS 113) | PB (DAS 149) | BO (DAS 169) | PF (DAS 121) | PB (DAS 148) | BO (DAS 165) | |
LDET | 1.12 ± 0.01 b | 1.17 ± 0.14 a | 1.04 ± 0.11 ab | 1.28 ± 0.19 ab | 1.44 ± 0.03 a | 0.92 ± 0.8 b |
LDLT | 0.85 ± 0.09 c | 1.32 ± 0.014 b | 0.92 ± 0.08 b | 1.01 ± 0.13 b | 1.50 ± 0.12 a | 1.37 ± 0.17 a |
HDLT | 0.78 ± 0.10 c | 1.43 ± 0.13 a | 1.14 ± 0.12 a | 1.17 ± 0.17 ab | 1.57 ± 0.07 a | 1.33 ± 0.06 a |
HDET | 1.33 ± 0.15 a | 1.44 ± 0.02 a | 0.98 ± 0.05 ab | 1.36 ± 0.15 a | 1.40 ± 0.14 a | 0.87 ± 0.08 b |
LD mean | 0.98 ± 0.16 A | 1.25 ± 0.12 B | 0.98 ± 0.11 A | 1.14 ± 0.21 A | 1.47 ± 0.09 A | 1.15 ± 0.27 A |
HD mean | 1.06 ± 0.32 A | 1.43 ± 0.08 A | 1.06 ± 0.12 A | 1.26 ± 0.18 A | 1.49 ± 0.14 A | 1.10 ± 0.26 A |
ET mean | 1.22 ± 0.15 x | 1.31 ± 0.17 x | 1.01 ± 0.09 x | 1.32 ± 0.16 x | 1.42 ± 0.09 x | 0.89 ± 0.08 y |
LT mean | 0.81 ± 0.09 y | 1.38 ± 0.10 x | 1.03 ± 0.15 x | 1.08 ± 0.16 y | 1.54 ± 0.10 x | 1.35 ± 0.11 x |
Source of variance (F) | ||||||
PPD | 1.62 | 10.85 * | 2.08 | 1.67 | 0.07 | 0.62 |
TT | 51.38 ** | 1.57 | 0.16 | 6.40 * | 4.04 | 57.05 ** |
PPD × TT | 5.63 * | 1.99 | 7.58 * | 0.24 | 0.81 | 0.01 |
Treatment | 2023 | 2024 | ||||
---|---|---|---|---|---|---|
PF (DAS 113) | PB (DAS 149) | BO (DAS 169) | PF (DAS 121) | PB (DAS 148) | BO (DAS 165) | |
LDET | 0.45 ± 0.01 b | 0.59 ± 0.01 b | 0.47 ± 0.01 a | 0.56 ± 0.07 a | 0.74 ± 0.06 a | 0.48 ± 0.04 b |
LDLT | 0.34 ± 0.03 c | 0.59 ± 0.05 b | 0.39 ± 0.02 b | 0.51 ± 0.04 a | 0.69 ± 0.069 a | 0.65 ± 0.08 a |
HDLT | 0.33 ± 0.03 c | 0.65 ± 0.03 a | 0.53 ± 0.01 a | 0.52 ± 0.08 a | 0.71 ± 0.01 a | 0.64 ± 0.03 a |
HDET | 0.51 ± 0.03 a | 0.65 ± 0.04 a | 0.46 ± 0.06 a | 0.58 ± 0.05 a | 0.69 ± 0.06 a | 0.52 ± 0.04 b |
LD mean | 0.40 ± 0.06 A | 0.59 ± 0.01 B | 0.43 ± 0.05 B | 0.53 ± 0.06 A | 0.71 ± 0.06 A | 0.57 ± 0.11 A |
HD mean | 0.42 ± 0.10 A | 0.65 ± 0.03 A | 0.50 ± 0.05 A | 0.55 ± 0.07 A | 0.71 ± 0.04 A | 0.58 ± 0.07 A |
ET mean | 0.48 ± 0.04 x | 0.62 ± 0.04 x | 0.47 ± 0.04 x | 0.57 ± 0.06 x | 0.72 ± 0.06 x | 0.50 ± 0.04 y |
LT mean | 0.34 ± 0.03 y | 0.62 ± 0.04 x | 0.46 ± 0.08 x | 0.51 ± 0.06 x | 0.70 ± 0.05 x | 0.65 ± 0.05 x |
Source of variance (F) | ||||||
PPD | 2.36 | 14.97 ** | 12.91 ** | 0.21 | 0.13 | 0.14 |
TT | 92.38 ** | 0.01 | 0.22 | 2.44 | 0.32 | 25.73 ** |
PPD × TT | 7.06 * | 0.01 | 14.24 ** | 0.01 | 1.41 | 0.84 |
Treatment | 2023 | 2024 | ||||
---|---|---|---|---|---|---|
PF (DAS 113) | PB (DAS 149) | BO (DAS 169) | PF (DAS 121) | PB (DAS 148) | BO (DAS 165) | |
LDET | 0.21 ± 0.01 b | 0.23 ± 0.02 a | 0.20 ± 0.01 b | 0.25 ± 0.04 a | 0.23 ± 0.01 b | 0.15 ± 0.01 b |
LDLT | 0.18 ± 0.01 c | 0.22 ± 0.01 a | 0.21 ± 0.01 ab | 0.20 ± 0.02 a | 0.25 ± 0.02 ab | 0.23 ± 0.02 a |
HDLT | 0.18 ± 0.01 c | 0.21 ± 0.01 a | 0.22 ± 0.01 a | 0.24 ± 0.04 a | 0.26 ± 0.01 a | 0.21 ± 0.01 a |
HDET | 0.24 ± 0.01 a | 0.22 ± 0.01 a | 0.23 ± 0.01 a | 0.27 ± 0.02 a | 0.22 ± 0.02 b | 0.15 ± 0.02 b |
LD mean | 0.19 ± 0.02 B | 0.22 ± 0.01 A | 0.20 ± 0.01 B | 0.23 ± 0.04 A | 0.24 ± 0.02 A | 0.19 ± 0.05 A |
HD mean | 0.21 ± 0.03 A | 0.21 ± 0.01 A | 0.22 ± 0.01 A | 0.25 ± 0.03 A | 0.24 ± 0.03 A | 0.18 ± 0.04 A |
ET mean | 0.23 ± 0.02 x | 0.22 ± 0.01 x | 0.21 ± 0.02 x | 0.26 ± 0.03 x | 0.22 ± 0.01 y | 0.15 ± 0.01 y |
LT mean | 0.18 ± 0.01 y | 0.21 ± 0.01 x | 0.21 ± 0.02 x | 0.22 ± 0.04 x | 0.26 ± 0.02 x | 0.22 ± 0.02 x |
Source of variance (F) | ||||||
PPD | 12.70 * | 1.45 | 11.23 * | 2.59 | 0.81 | 0.54 |
TT | 82.17 ** | 3.21 | 0.02 | 3.25 | 12.01 * | 56.83 ** |
PPD × TT | 8.72 * | 0.23 | 1.41 | 0.29 | 1.12 | 0.24 |
Treatment | 2023 | 2024 | ||||
---|---|---|---|---|---|---|
PF (DAS 113) | PB (DAS 149) | BO (DAS 169) | PF (DAS 121) | PB (DAS 148) | BO (DAS 165) | |
LDET | 9.01 ± 0.38 b | 6.58 ± 0.61 a | 6.22 ± 0.99 b | 12.93 ± 0.41 a | 11.07 ± 0.69 b | 10.79 ± 1.91 ab |
LDLT | 8.02 ± 1.52 b | 7.51 ± 0.44 a | 6.92 ± 0.75 b | 8.97 ± 0.29 c | 13.34 ± 0.39 a | 13.44 ± 1.51 a |
HDLT | 8.74 ± 0.62 b | 7.27 ± 0.97 a | 8.87 ± 0.71 a | 10.66 ± 1.55 b | 13.55 ± 0.66 a | 13.30 ± 1.48 a |
HDET | 11.31 ± 1.24 a | 5.15 ± 0.39 b | 6.86 ± 0.95 b | 13.71 ± 0.19 a | 11.38 ± 1.77 b | 8.32 ± 0.74 b |
LD mean | 8.52 ± 1.13 B | 7.04 ± 0.70 A | 6.57 ± 0.87 A | 10.95 ± 2.19 B | 12.20 ± 1.34 A | 12.12 ± 2.12 A |
HD mean | 10.03 ± 1.66 A | 6.21 ± 1.34 A | 7.87 ± 1.33 A | 12.18 ± 1.94 A | 12.47 ± 1.68 A | 10.81 ± 2.92 A |
ET mean | 10.16 ± 1.50 x | 5.87 ± 0.91 y | 6.54 ± 0.94 x | 13.32 ± 0.52 x | 11.23 ± 1.21 y | 9.56 ± 1.88 y |
LT mean | 8.38 ± 1.11 y | 7.39 ± 0.69 x | 7.89 ± 1.25 x | 9.81 ± 1.36 y | 13.44 ± 0.50 x | 13.37 ± 1.34 x |
Source of variance (F) | ||||||
PPD | 6.26 * | 4.99 | 6.85 | 6.80 * | 0.19 | 2.39 |
TT | 8.67 * | 16.84 ** | 7.42 | 55.03 ** | 14.06 ** | 20.16 ** |
PPD × TT | 1.7 | 2.55 | 1.74 | 0.91 | 0.01 | 1.87 |
Treatment | 2023 | 2024 | ||||
---|---|---|---|---|---|---|
PF (DAS 113) | PB (DAS 149) | BO (DAS 169) | PF (DAS 121) | PB (DAS 148) | BO (DAS 165) | |
LDET | 3.35 ± 0.18 ab | 2.82 ± 0.25 a | 2.46 ± 0.18 b | 3.77 ± 0.21 ab | 3.42 ± 0.27 a | 2.60 ± 0.10 b |
LDLT | 3.10 ± 0.20 b | 3.25 ± 0.17 a | 2.55 ± 0.21 b | 2.99 ± 0.13 c | 3.87 ± 0.12 a | 3.05 ± 0.06 a |
HDLT | 2.95 ± 0.31 b | 3.24 ± 0.24 a | 2.94 ± 0.19 a | 3.53 ± 0.37 b | 4.01 ± 0.56 a | 3.05 ± 0.05 a |
HDET | 3.72 ± 0.17 a | 2.89 ± 0.37 a | 2.58 ± 0.15 b | 4.07 ± 0.11 a | 3.73 ± 0.21 a | 2.67 ± 0.09 b |
LD mean | 3.23 ± 0.21 A | 3.04 ± 0.30 A | 2.50 ± 0.18 B | 3.38 ± 0.45 B | 3.64 ± 0.31 A | 2.83 ± 0.25 A |
HD mean | 3.34 ± 0.48 A | 3.07 ± 0.34 A | 2.76 ± 0.25 A | 3.80 ± 0.39 A | 3.87 ± 0.41 A | 2.86 ± 0.22 A |
ET mean | 3.54 ± 0.26 x | 2.86 ± 0.29 y | 2.52 ± 0.16 x | 3.92 ± 0.22 x | 3.58 ± 0.28 x | 2.64 ± 0.09 y |
LT mean | 3.03 ± 0.25 y | 3.25 ± 0.19 x | 2.75 ± 0.28 x | 3.26 ± 0.39 y | 3.94 ± 0.37 x | 3.05 ± 0.05 x |
Source of variance (F) | ||||||
PPD | 0.77 | 0.03 | 5.98 * | 9.88 * | 1.38 | 0.59 |
TT | 16.03 ** | 6.26 * | 4.41 | 24.72 ** | 3.57 | 90.98 ** |
PPD × TT | 4.36 | 0.06 | 1.65 | 0.75 | 0.2 | 0.59 |
Treatment | 2023 | 2024 | ||||
---|---|---|---|---|---|---|
PF (DAS 113) | PB (DAS 149) | BO (DAS 169) | PF (DAS 121) | PB (DAS 148) | BO (DAS 165) | |
LDET | 96.95 ± 0.72 a | 97.73 ± 0.62 b | 90.29 ± 0.62 b | 76.05 ± 1.19 c | 95.58 ± 0.61 b | 90.65 ± 1.21 a |
LDLT | 95.72 ± 2.82 a | 96.27 ± 0.28 c | 90.87 ± 1.03 b | 69.85 ± 1.26 d | 94.38 ± 1.20 c | 93.76 ± 0.82 a |
HDLT | 97.33 ± 2.10 a | 98.89 ± 0.24 a | 96.24 ± 0.57 a | 83.05 ± 1.41 b | 94.17 ± 1.35 c | 93.17 ± 4.76 a |
HDET | 97.61 ± 2.50 a | 97.86 ± 0.29 b | 81.01 ± 4.16 c | 86.06 ± 1.43 a | 97.07 ± 0.88 a | 83.54 ± 3.51 b |
LD mean | 96.34 ± 2.07 A | 97.00 ± 0.89 B | 90.58 ± 0.87 A | 72.95 ± 3.45 B | 94.94 ± 1.13 A | 91.93 ± 1.89 A |
HD mean | 97.47 ± 2.25 A | 98.37 ± 0.60 A | 88.62 ± 8.44 B | 84.56 ± 2.07 A | 95.91 ± 2.03 A | 88.89 ± 6.43 B |
ET mean | 97.35 ± 1.97 x | 97.80 ± 0.47 x | 85.65 ± 5.61 y | 81.06 ± 5.37 x | 96.52 ± 1.10 x | 87.49 ± 4.37 y |
LT mean | 96.69 ± 2.46 x | 97.58 ± 1.39 x | 93.55 ± 2.91 x | 76.45 ± 7.01 y | 93.63 ± 1.80 y | 94.27 ± 0.74 x |
Source of variance (F) | ||||||
PPD | 2.14 | 95.00 ** | 5.11 * | 459.18 ** | 0.06 | 21.99 ** |
TT | 1.07 | 0.26 | 76.99 ** | 72.29 ** | 26.39 ** | 114.29 ** |
PPD × TT | 0.79 | 59.21 ** | 67.77 ** | 8.75 * | 7.97 * | 36.16 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Wang, T.; Luo, X.; Wu, J.; Deng, Y.; Kong, Q.; Yang, X.; Xiao, S.; Tang, F. High Planting Density Combined with Delayed Topping Improves Short Fruiting Branch Cotton Yield by Enhancing Biomass Accumulation, Canopy Light Interception and Delaying Leaf Senescence. Agronomy 2025, 15, 1495. https://doi.org/10.3390/agronomy15061495
Huang Y, Wang T, Luo X, Wu J, Deng Y, Kong Q, Yang X, Xiao S, Tang F. High Planting Density Combined with Delayed Topping Improves Short Fruiting Branch Cotton Yield by Enhancing Biomass Accumulation, Canopy Light Interception and Delaying Leaf Senescence. Agronomy. 2025; 15(6):1495. https://doi.org/10.3390/agronomy15061495
Chicago/Turabian StyleHuang, Yin, Tao Wang, Xiaoxia Luo, Jianfei Wu, Yanfeng Deng, Qingquan Kong, Xiu Yang, Shuiping Xiao, and Feiyu Tang. 2025. "High Planting Density Combined with Delayed Topping Improves Short Fruiting Branch Cotton Yield by Enhancing Biomass Accumulation, Canopy Light Interception and Delaying Leaf Senescence" Agronomy 15, no. 6: 1495. https://doi.org/10.3390/agronomy15061495
APA StyleHuang, Y., Wang, T., Luo, X., Wu, J., Deng, Y., Kong, Q., Yang, X., Xiao, S., & Tang, F. (2025). High Planting Density Combined with Delayed Topping Improves Short Fruiting Branch Cotton Yield by Enhancing Biomass Accumulation, Canopy Light Interception and Delaying Leaf Senescence. Agronomy, 15(6), 1495. https://doi.org/10.3390/agronomy15061495