Transforming Land Use Patterns to Improve Soil Fertility in the Horqin Sandy Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Sampling and Measurement
2.4. AHP-Fuzzy Comprehensive Evaluation
2.5. Statistical Analysis
3. Results
3.1. Changes in Soil Physicochemical Properties
3.2. Changes in SOC, TN, and TP Contents
3.3. Changes in Soil Ecological Stoichiometric Characteristics
3.4. Correlations Between Soil C, N, and P Contents, Ecological Stoichiometry, and Soil Physical and Chemical Properties
3.5. Comprehensive Evaluation of Soil Nutrients
4. Discussion
4.1. Effects of Converting Cropland to Grassland on Soil Physicochemical Properties
4.2. Effects of Converting Cropland to Grassland on Soil SOC, TN, and TP Contents
4.3. Effects of Converting Cropland to Grassland on Ecological Stoichiometric Characteristics
4.4. Correlations Among Soil C, N, and P Contents, Ecological Stoichiometry, and Soil Physicochemical Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BD | Bulk Density |
EC | Electrical Conductivity |
TN | Total Nitrogen |
TP | Total Phosphorus |
AN | Available Nitrogen |
AP | Available Phosphorus |
AK | Available Potassium |
SOC | Soil Organic Carbon |
References
- Xu, H.; Qu, Q.; Li, P.; Guo, Z.; Wulan, E.; Xue, S. Stocks and stoichiometry of soil organic carbon, total nitrogen, and total phosphorus after vegetation restoration in the loess hilly region, China. Forests 2019, 10, 27. [Google Scholar] [CrossRef]
- Piaszczyk, W.; Błońska, E.; Lasota, J.; Lukac, M. A comparison of C:N:P stoichiometry in soil and deadwood at an advanced decomposition stage. Catena 2019, 179, 1–5. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Yuan, X.; Yu, J.; Luan, Z.; Guo, Z.; Yu, Y.; Liu, C.; Duan, C. Biotic and abiotic drivers of soil carbon, nitrogen, and phosphorus and metal dynamic changes during spontaneous restoration of Pb–Zn mining wastelands. J. Hazard. Mater. 2025, 490, 137818. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Opoku-Kwanowaa, Y.; Li, J.; Wu, J. Application of organic wastes to primary saline-alkali soil in Northeast China: Effects on soil available nutrients and salt ions. Commun. Soil Sci. Plant Anal. 2020, 51, 1238–1252. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling, and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef]
- Hayatu, N.G.; Liu, Y.R.; Han, T.F.; Daba, N.A.; Zhang, L.; Shen, Z.; Li, J.W.; Muazu, H.; Lamlom, S.F.; Zhang, H.M. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system. J. Integr. Agric. 2023, 22, 2848–2864. [Google Scholar] [CrossRef]
- Borer, E.T.; Seabloom, E.W.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Lind, E.M.; Adler, P.B.; Alberti, J.; Anderson, T.M.; Bakker, J.D.; et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 2014, 508, 517–520. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.J.; Wu, L.; Ren, Y.; Zhang, J.D.; Xu, M.G. Advance in indicator screening and methodologies of soil quality evaluation. Sci. Agric. Sin. 2021, 54, 3043–3056. [Google Scholar]
- Cook, K. Soil microbiology, ecology, and biochemistry, fourth edition. Soil Sci. Soc. Am. J. 2015, 79, 1821. [Google Scholar] [CrossRef]
- Peng, Z.; Wu, Y.; Guo, L.; Yang, L.; Wang, B.; Wang, X.; Liu, W.; Su, Y.; Wu, J.; Liu, L. Foliar nutrient resorption stoichiometry and microbial phosphatase catalytic efficiency together alleviate the relative phosphorus limitation in forest ecosystems. New Phytol. 2023, 238, 1033–1044. [Google Scholar] [CrossRef]
- Hai, X.Y.; Dong, L.B.; Wang, X.Z.; Deng, L.; Li, J.W.; Liu, Y.L.; Li, M.Y.; Pan, Y.J.; Lv, W.W.; Shangguan, Z.P. Effects of carbon, nitrogen, and phosphorus ecological stoichiometry characteristics on plant diversity since returning farmland to grassland on the Loess Plateau. Acta Ecol. Sin. 2020, 40, 8570–8581. [Google Scholar]
- Lin, Z.; Deng, J.; Gao, K.; Zhang, Z. Oat nutrition, traits, and yield as affected by the interaction of nitrogen rates and plant density in sandy soil. Agronomy 2025, 15, 150. [Google Scholar] [CrossRef]
- Gao, J.L.; Luo, F.M.; Gao, Y.; Dang, X.H.; Meng, Z.J.; Chen, X.N.; Duan, N. Ecological soil C, N, and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of Northern China. Acta Ecol. Sin. 2019, 39, 5594–5602. [Google Scholar]
- Malhi, S.S.; Brandt, S.; Gill, K.S. Cultivation and grassland type effects on light fraction and total organic C and N in a dark brown chernozemic soil. Can. J. Soil Sci. 2003, 83, 145–153. [Google Scholar] [CrossRef]
- Yu, T.; Lin, F.; Liu, X.; Wang, X. Recovery role in soil structural, carbon and nitrogen properties of the conversion of vegetable land to alfalfa land in northwest China. J. Soil Sci. Plant Nutr. 2020, 20, 1366–1377. [Google Scholar] [CrossRef]
- Su, Y.Z.; Liu, W.J.; Yang, R.; Chang, X.X. Changes in soil aggregate, carbon, and nitrogen storages following the conversion of cropland to alfalfa forage land in the marginal oasis of northwest China. Environ. Manag. 2009, 43, 1061–1070. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Zhang, X.Y.; Gan, Z.T. Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China. J. Arid Land 2015, 7, 806–813. [Google Scholar] [CrossRef]
- He, Y.C.; Hu, Z.H.; Xiang, Y.Z.; Zhang, J.X.; Qian, Y.Q.; Wang, Y.X.; Xu, F.W. Effects of grassland restoration from cropland on soil carbon sequestration and the controlling factors across China. Pratacult. Sci. 2024, 41, 262–270. [Google Scholar]
- Gai, X.P.; Liu, H.B.; Liu, J.; Zhai, L.M.; Wang, H.Y.; Yang, B.; Ren, T.Z.; Wu, S.X.; Lei, Q.L. Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain. Sci. Total Environ. 2019, 650, 2251–2259. [Google Scholar] [CrossRef]
- Wang, G.Y.; Hu, Y.X.; Liu, Y.X.; Ahmad, S.; Zhou, X.B. Effects of supplement irrigation and nitrogen application levels on soil carbon–nitrogen content and yield of one-year double cropping maize in subtropical region. Water 2021, 13, 1180. [Google Scholar] [CrossRef]
- Zhang, T.H.; Cong, A.Q.; Lian, J.; Xu, Y.Z.; Wang, N. Thinking from Horqin Grassland to Horqin Sandy Land. Chin. J. Appl. Ecol. 2024, 35, 25–30. [Google Scholar]
- Qiu, L.P.; Wei, X.R.; Zhang, X.C.; Cheng, J.M.; Gale, W.; Guo, C.; Long, T. Soil organic carbon losses due to land use change in a semiarid grassland. Plant Soil 2012, 355, 299–309. [Google Scholar] [CrossRef]
- Di Lascio, A.; Madeira, F.; Costantini, M.L.; Rossi, L.; Pons, X. Movement of three aphidophagous ladybird species between alfalfa and maize revealed by carbon and nitrogen stable isotope analysis. BioControl 2016, 61, 35–46. [Google Scholar] [CrossRef]
- Dong, W.H.; Zhang, S.; Rao, X.; Liu, C.A. Newly-reclaimed alfalfa forage land improved soil properties comparison to farmland in wheat-maize cropping systems at the margins of oases. Ecol. Eng. 2016, 94, 57–64. [Google Scholar] [CrossRef]
- Research Group on Soil Taxonomy, Nanjing Institute of Soil Science, Chinese Academy of Sciences; Collaborative Research Group on Soil Taxonomy in China. Keys to Chinese Soil Taxonomy, 3rd ed.; University of Science and Technology of China Press: Hefei, China, 2001; pp. 182–184. [Google Scholar]
- Li, T.J.; Zhao, Y.; Zhang, K.L.; Zheng, Y.S.; Wang, Y. Soil Geography, 3rd ed.; Higher Education Press: Beijing, China, 2004; pp. 282–285. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2011; pp. 30–120. [Google Scholar]
- Pylak, M.; Oszust, K.; Frąc, M. Optimization of growing medium and preservation methods for plant beneficial bacteria, and formulating a microbial biopreparation for raspberry naturalization. Agronomy 2021, 11, 2521. [Google Scholar] [CrossRef]
- Wang, H.J.; Bi, F.F.; Dong, Z.F. Evaluation of ecological compensation policy for Xin’ an River Basin based on AHP-Fuzzy comprehensive method. Acta Ecol. Sin. 2020, 40, 7493–7506. [Google Scholar]
- Zhang, Z.; Yan, H.; Wang, X.; Gao, L.; Li, J. Comprehensive evaluation of fault sealing based on improved fuzzy comprehensive evaluation method. Earth Sci. 2024, 49, 1144–1153. [Google Scholar]
- Nyamadzawo, G.; Chikowo, R.; Nyamugafata, P.; Nyamangara, J.; Giller, K.E. Soil organic carbon dynamics of improved fallow–maize rotation systems under conventional and no-tillage in Central Zimbabwe. Nutr. Cycl. Agroecosyst. 2008, 81, 85–93. [Google Scholar] [CrossRef]
- Frene, J.P.; Pandey, B.K.; Castrillo, G. Under pressure: Elucidating soil compaction and its effect on soil functions. Plant Soil 2024, 502, 267–278. [Google Scholar] [CrossRef]
- Gu, J.C.; Wang, W.M.; Wang, Z.; Li, L.H.; Jiang, G.J.; Wang, J.P.; Cheng, Z.B. Effects of maize and soybean intercropping on soil phosphorus bioavailability and microbial community structure in rhizosphere. Chin. J. Appl. Ecol. 2023, 34, 3030–3038. [Google Scholar]
- Hudek, C.; Stanchi, S.; D’Amico, M.; Freppaz, M. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine. Int. Soil Water Conserv. Res. 2017, 5, 36–42. [Google Scholar] [CrossRef]
- Olagoke, F.K.; Bettermann, A.; Nguyen, P.T.B.; Redmile-Gordon, M.; Babin, D.; Smalla, K.; Nesme, J.; Sørensen, S.J.; Kalbitz, K.; Vogel, C. Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils. Biol. Fertil. Soils 2022, 58, 435–457. [Google Scholar] [CrossRef]
- Redmile-Gordon, M.; Gregory, A.S.; White, R.P.; Watts, C.W. Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use. Geoderma 2020, 363, 114143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Wang, W.; Hu, M.Y.; Ling, G.; Hu, X.T.; Peng, X.B. Influence of bulk density and water content on soil electrical conductivity. Arid Land Agric. Res. 2022, 40, 162–169. [Google Scholar]
- Zhang, X.L.; Feng, M.D.; He, B.H.; Ceng, C.; Shang, Y.J.; Li, T.Y. Soil infiltration characteristics and suitable models under different land use types in Karst Trough-valley region. Res. Soil Water Conserv. 2024, 31, 34–41. [Google Scholar]
- Wei, Y.Z.; Li, J.H.; Sun, X.T.; Liu, J.L.; Xiao, H.C.; Li, H.T.; Fu, C.H.; Song, X.; Zhang, Q.; Qin, L.G. Analysis of soil physical and chemical properties and ion variation rule of saline-alkali degraded grassland in Songnen. Acta Agrestia Sin. 2024, 32, 1702–1709. [Google Scholar]
- Wang, Y.Q.; Shao, M.A.; Shao, H.B. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 2010, 381, 9–17. [Google Scholar] [CrossRef]
- Su, Y.Z. Soil carbon and nitrogen sequestration following the conversion of cropland to alfalfa forage land in north west China. Soil Tillage Res. 2007, 92, 181–189. [Google Scholar] [CrossRef]
- Su, Y.Z.; Liu, W.J.; Yang, R.; Fan, G.P. Carbon sequestration effect following retirement of degraded croplands into alfalfa forage land in the middle of Hexi corridor region, northwest China. Acta Ecol. Sin. 2009, 29, 6385–6391. [Google Scholar]
- Hu, W.; Zhang, Y.H.; Li, P.; Zhang, P.; Li, M.Y.; You, J.T.; Tian, S.Q. Effects of different levels of nitrogen fertilization on soil respiration rates and soil biochemical properties in an alfalfa grassland. Environ. Sci. 2019, 40, 2858–2868. [Google Scholar]
- Chen, Y.; He, B.H.; Lian, C.X.; Liu, Z.P. Root system distribution characteristics of three herbs and their effects on soil composition and nutrients in the ‘Purple Soil’ region. Acta Pratacult. Sin. 2015, 24, 99–107. [Google Scholar]
- Xie, N.H.; An, T.T.; Liang, X.L.; Schaeffer, S.; Sun, L.J.; Fu, S.F.; Wang, J.K. Interaction between maize residues and initial soil carbon status on soil labile organic carbon pools. Appl. Soil Ecol. 2024, 202, 105482. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.H.; Xia, L.L.; Akiyama, H.; Chen, X.L.; Chen, J.; Fang, Y.Y.; Vancov, T.; Li, Y.F.; Yao, Y.Z.; et al. Accounting for differences between crops and regions reduces estimates of nitrate leaching from nitrogen-fertilized soils. Commun. Earth Environ. 2025, 6, 29. [Google Scholar] [CrossRef]
- Lv, A.; Wen, W.W.; Fan, N.N.; Su, L.T.; Zhou, P.; An, Y. Dehydrin MsDHN1 improves aluminum tolerance of alfalfa (Medicago sativa L.) by affecting oxalate exudation from root tips. Plant J. 2021, 108, 441–458. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.B.; Zhao, B.Z.; Huang, P. Soil fertility and its response to drying-wetting alternation as affected by nitrogen fertilization rate. Acta Pedol. Sin. 2013, 50, 675–683. [Google Scholar]
- Phillips, R.P.; Finzi, A.C.; Bernhardt, E.S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 2011, 14, 187–194. [Google Scholar] [CrossRef]
- Mensah, F.; Schoenau, J.J.; Malhi, S.S. Soil carbon changes in cultivated and excavated land converted to grasses in east-central Saskatchewan. Biogeochemistry 2003, 63, 85–92. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, M.H.; Zhang, Y.J.; Wang, J.; Shen, H.; Lin, Y.B.; Tang, X.L.; Hui, D.F.; Lambers, H.; Sardans, J.; et al. Soil phosphorus availability affects diazotroph communities during vegetation succession in lowland subtropical forests. Appl. Soil Ecol. 2021, 166, 104009. [Google Scholar] [CrossRef]
- Hu, B.; Xie, M.; Li, H.; Zhao, W.; Hu, J.; Jiang, Y.; Ji, W.; Li, S.; Hong, Y.; Yang, M.; et al. Stoichiometry of soil carbon, nitrogen, and phosphorus in farmland soils in southern China: Spatial pattern and related dominates. Catena 2022, 217, 106468. [Google Scholar] [CrossRef]
- Wang, D.L.; Zhang, Z.Q.; Liu, Y.; Zhao, X.L.; Lian, Z.; Yu, B.H.; Wang, D. Soil ecological stoichiometric characteristics of Medicago sativa land of mining area waste dumps. Pratacult. Sci. 2022, 39, 1323–1332. [Google Scholar]
- Wang, M.M.; Chen, H.S.; Zhang, W.; Wang, K.L. Soil nutrients and stoichiometric ratios as affected by Land use and lithology at county scale in a Karst area, southwest China. Sci. Total Environ. 2018, 619/620, 1299–1307. [Google Scholar] [CrossRef]
- Yu, T.F.; Hao, F.; Gao, K.; Xiong, M.; An, H.B. Productivity, soil fertility and enzyme activity of mixed forage grasslands improved by alfalfa and nitrogen addition in Horqin Sandy Land, China. Sci. Rep. 2025, 15, 10748. [Google Scholar] [CrossRef]
Quantized Value | Factor i Over Factor j |
---|---|
1 | Equally important |
3 | Slightly important |
5 | Strongly important |
7 | Strongly important |
9 | Extremely important |
2, 4, 6, 8 | The intermediate value of two adjacent judgments |
reciprocal | If i factor is compared with j factor, the judgment value aij = 1/aji is obtained |
Ecological Stoichiometry | Treatment | Soil Layer | ||
---|---|---|---|---|
0–20 cm | 20–40 cm | 40–60 cm | ||
C/N | FL | 14.3 ± 0.3 a | 14.1 ± 0.4 a | 14.5 ± 0.1 a |
CF | 13.0 ± 0.2 ab | 10.2 ± 0.3 d | 10.3 ± 0.1 b | |
N0 | 11.4 ± 0.1 b | 10.5 ± 0.2 cd | 10.4 ± 0.4 b | |
N1 | 13.6 ± 0.6 a | 11.5 ± 0.6 cd | 9.8 ± 0.3 b | |
N2 | 13.7 ± 0.3 a | 13.5 ± 0.2 ab | 9.4 ± 0.2 b | |
N3 | 12.8 ± 0.1 ab | 12.0 ± 0.1 bc | 10.0 ± 0.5 b | |
N4 | 11.6 ± 0.7 b | 11.9 ± 0.3 c | 9.8 ± 0.1 b | |
C/P | FL | 26.7 ± 0.8 a | 21.9 ± 1 bc | 27.3 ± 0.8 b |
CF | 21.0 ± 0.9 b | 9.8 ± 0.7 d | 19.2 ± 0.2 c | |
N0 | 31.8 ± 1.2 a | 26.1 ± 1.3 ab | 28.2 ± 1.5 b | |
N1 | 21.1 ± 0.6 b | 31.6 ± 1.5 a | 33.4 ± 0.7 a | |
N2 | 19.9 ± 0.7 b | 26.2 ± 1.7 ab | 27.9 ± 0.6 b | |
N3 | 12.1 ± 0.7 c | 21.7 ± 1 bc | 20.3 ± 1.3 c | |
N4 | 16.7 ± 2 bc | 17.9 ± 0.4 c | 23.8 ± 1.2 bc | |
N/P | FL | 1.87 ± 0.03 b | 1.56 ± 0.08 c | 1.89 ± 0.07 c |
CF | 1.63 ± 0.12 bc | 0.96 ± 0.03 d | 1.87 ± 0.02 c | |
N0 | 2.79 ± 0.1 a | 2.48 ± 0.08 a | 2.71 ± 0.17 abc | |
N1 | 1.56 ± 0.02 bc | 2.73 ± 0.02 a | 3.45 ± 0.36 a | |
N2 | 1.45 ± 0.08 c | 1.94 ± 0.11 b | 2.98 ± 0.13 ab | |
N3 | 0.95 ± 0.06 d | 1.81 ± 0.04 bc | 2.05 ± 0.16 c | |
N4 | 1.44 ± 0.1 c | 1.51 ± 0.04 c | 2.43 ± 0.14 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, F.; Li, C.; Yu, T.; An, H.; Xiong, M.; Gao, K.; Yu, J. Transforming Land Use Patterns to Improve Soil Fertility in the Horqin Sandy Land. Agronomy 2025, 15, 1486. https://doi.org/10.3390/agronomy15061486
Hao F, Li C, Yu T, An H, Xiong M, Gao K, Yu J. Transforming Land Use Patterns to Improve Soil Fertility in the Horqin Sandy Land. Agronomy. 2025; 15(6):1486. https://doi.org/10.3390/agronomy15061486
Chicago/Turabian StyleHao, Feng, Chao Li, Tiefeng Yu, Haibo An, Mei Xiong, Kai Gao, and Jiabing Yu. 2025. "Transforming Land Use Patterns to Improve Soil Fertility in the Horqin Sandy Land" Agronomy 15, no. 6: 1486. https://doi.org/10.3390/agronomy15061486
APA StyleHao, F., Li, C., Yu, T., An, H., Xiong, M., Gao, K., & Yu, J. (2025). Transforming Land Use Patterns to Improve Soil Fertility in the Horqin Sandy Land. Agronomy, 15(6), 1486. https://doi.org/10.3390/agronomy15061486