Exogenous Carbon Type Determines the Structure and Stability of Soil Organic Carbon in Dryland Farmlands Under a Continental Semi-Arid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Experimental Design
2.3. Measurement and Calculation of Indicators
2.4. Statistical Analysis
3. Results
3.1. Soil Organic Carbon
3.2. Soil Nutrients
3.3. Soil Enzyme Activities
3.4. Chemical Structural Characteristics and Stability of Soil Organic Carbon
3.5. Interrelationships Among Soil Enzyme Activities, Soil Nutrient Contents, and the Functional Group Structure of Soil Organic Carbon
3.6. Key Factors Influencing the Effects of Different Exogenous Carbon Sources on Soil Organic Carbon
4. Discussion
4.1. Effects of Different Exogenous Carbon Sources on Soil Organic Carbon and Nutrient Contents
4.2. Effects of Different Exogenous Carbon Sources on Soil Enzyme Activities
4.3. Effects of Different Exogenous Carbons on the Chemical Structure and Stability of Soil Organic Carbon
4.4. Driving Factors of Different Exogenous Carbons on Soil Organic Carbon
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Zhang, F.S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Yadav, D.S. Long-term effects of fertilizers on the soil fertility and productivity of a rice-wheat system. J. Agron. Crop Sci. 2001, 186, 47–54. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, W.; Li, T.; Cheng, X.; Liu, Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources. Renew. Sustain. Energy Rev. 2018, 81, 2695–2702. [Google Scholar] [CrossRef]
- Caruso, T.; De Vries, F.T.; Bardgett, R.D.; Lehmann, J. Soil organic carbon dynamics matching ecological equilibrium theory. Ecol. Evol. 2018, 8, 11169–11178. [Google Scholar] [CrossRef]
- Niu, Z.; An, F.; Su, Y.; Liu, T.; Yang, R.; Du, Z.; Chen, S. Effect of long-term fertilization on aggregate size distribution and nutrient accumulation in aeolian sandy soil. Plants 2022, 11, 909. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 2014, 68, A4–A9. [Google Scholar] [CrossRef]
- Sarma, B.; Farooq, M.; Gogoi, N.; Borkotoki, B.; Kataki, R.; Garg, A. Soil organic carbon dynamics in wheat-Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. J. Clean. Prod. 2018, 201, 471–480. [Google Scholar] [CrossRef]
- Salehi, A.; Fallah, S.; Sourki, A.A. Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass, and growth of Nigella sativa L. Int. Agrophys. 2017, 31, 103–116. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Mustafa, A.; Xu, M.; Shah, S.A.A.; Abrar, M.M.; Nan, S.; Wang, B.; Núñez-Delgado, A. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef]
- Oechaiyaphum, K.; Ullah, H.; Shrestha, R.P.; Datta, A. Impact of long-term agricultural management practices on soil organic carbon and soil fertility of paddy fields in Northeastern Thailand. Geoderma Reg. 2020, 22, e00307. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Trumbore, S.E. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Li, N.; Sheng, M.; You, M.Y.; Han, X.Z. Advancement in Research on Application of 13C NMR Techniques to Exploration of Chemical Structure of Soil Organic Matter. Acta Pedol. Sin. 2019, 56, 796–812. [Google Scholar]
- Yu, H.Y.; Ding, W.X.; Luo, J.F.; Donnison, A.; Zhang, J.B. Long-term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam. Soil Use Manag. 2012, 28, 347–360. [Google Scholar] [CrossRef]
- Ye, G.; Lin, Y.; Kuzyakov, Y.; Liu, D.; Luo, J.; Lindsey, S.; Ding, W. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment. Soil Biol. Biochem. 2019, 134, 15–24. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 1–18. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhang, L.; Liang, L.N.; Song, N.N.; Liu, D.S.; Wang, J.C. Effects of straw returning on the stability of soil organic carbon in wheat-maize rotation systems. J. Agro-Environ. Sci. 2020, 39, 1774–1782. [Google Scholar]
- Zhao, C.Z.; Qiu, Y.; Xie, Z.K.; Zhang, Y.B. Long-term effects of gravel-sand mulch thickness on soil microbes and enzyme activities in semi-arid Loess Plateau, Northwest China. Sci. Cold Arid. Reg. 2021, 13, 510–521. [Google Scholar]
- Kracmarova, M.; Kratochvilova, H.; Uhlik, O.; Strejcek, M.; Szakova, J.; Cerny, J.; Stiborova, H. Response of soil microbes and soil enzymatic activity to 20 years of fertilization. Agronomy 2020, 10, 1542. [Google Scholar] [CrossRef]
- Kennedy, A.C. Bacterial diversity in agroecosystems. In Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes; Elsevier: Amsterdam, The Netherlands, 1999; pp. 65–76. [Google Scholar]
- Alkorta, I.; Aizpurua, A.; Riga, P.; Albizu, I.; Amézaga, I.; Garbisu, C. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 2003, 18, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Liu, Y.; Zhu, J.; Shi, L.; Fu, Q.; Chen, J.; Huang, Q. Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol. Soil Tillage Res. 2020, 201, 104594. [Google Scholar] [CrossRef]
- Mohamed, I.; Bassouny, M.A.; Abbas, M.H.; Ming, Z.; Cougui, C.; Fahad, S.; Ali, M. Rice straw application with different water regimes stimulate enzymes activity and improve aggregates and their organic carbon contents in a paddy soil. Chemosphere 2021, 274, 129971. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Wolf, B.; Kiese, R.; Chen, D.; Butterbach-Bahl, K. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Change Biol. 2018, 24, 5919–5932. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, N.; Zhao, J.; Shaaban, M.; Hu, R. Crop straw incorporation mediates the impacts of soil aggregate size on greenhouse gas emissions. Geoderma 2021, 401, 115342. [Google Scholar] [CrossRef]
- He, J.; Dong, J.X.; Cong, P.; Song, W.J.; Ma, X.G.; Guan, E.S.; Wang, D.H. Rapid improvement effects of carbon forms in corn straw on soil organic carbon and comprehensive soil fertility in tobacco-growing soils. Acta Agric. Boreali-Sin. 2022, 37, 132–141. [Google Scholar]
- Liu, L.; Li, Z.H.; Zhao, X.J.; Cui, T.T. Effects of maize straw returning on soil microbial biomass carbon and enzyme activities under the mode of planting and returning. J. Soil Water Conserv. 2017, 31, 259–263. [Google Scholar]
- Sun, H.Y.; Du, D.F.; Ma, Q.; Guo, W. Effects of urea and humic acid on nutrient absorption and soil nutrient, enzymatic activity in maize under straw returning. Soil Fertil. Sci. China 2021, 58, 102–109. [Google Scholar]
- Yu, Q.; Hu, X.; Ma, J.; Ye, J.; Sun, W.; Wang, Q.; Lin, H. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil Tillage Res. 2020, 196, 104483. [Google Scholar] [CrossRef]
- Shao, X.H.; Zheng, J.W. Soil organic carbon, black carbon, and enzyme activity under long-term fertilization. J. Integr. Agric. 2014, 13, 517–524. [Google Scholar] [CrossRef]
- Wu, C.W.; Xia, J.X.; Duan, Z.R. A review and prospect of methods for determining soil organic matter. Soil 2015, 47, 453–460. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Grandy, A.S.; Sinsabaugh, R.L.; Neff, J.C.; Stursova, M.; Zak, D.R. Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions. Biogeochemistry 2008, 91, 37–49. [Google Scholar] [CrossRef]
- DeForest, J.L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 2009, 41, 1180–1186. [Google Scholar] [CrossRef]
- Margenot, A.J.; Calderón, F.J.; Bowles, T.M.; Parikh, S.J.; Jackson, L.E. Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields. Soil Sci. Soc. Am. J. 2015, 79, 772–782. [Google Scholar] [CrossRef]
- Hodgkins, S.B.; Richardson, C.J.; Dommain, R.; Wang, H.; Glaser, P.H.; Verbeke, B.; Chanton, J.P. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 2018, 9, 3640. [Google Scholar] [CrossRef]
- Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Smidt, E.; Lechner, P.; Schwanninger, M.; Haberhauer, G.; Gerzabek, M.H. Characterization of waste organic matter by FT-IR spectroscopy: Application in waste science. Appl. Spectrosc. 2002, 56, 1170–1175. [Google Scholar] [CrossRef]
- Haberhauer, G.; Rafferty, B.; Strebl, F.; Gerzabek, M.H. Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma 1998, 83, 331–342. [Google Scholar] [CrossRef]
- Hou, Y.H.; Chen, Y.; Chen, X.; He, K.Y.; Zhu, B. Changes in soil organic matter stability with depth in two alpine ecosystems on the Tibetan Plateau. Geoderma 2019, 351, 153–162. [Google Scholar] [CrossRef]
- Ostertag, R.; Marín-Spiotta, E.; Silver, W.L.; Schulten, J. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 2008, 11, 701–714. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Change Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Guo, Y.J.; Qiu, H.Z.; Zhang, Y.J.; Zhang, J.B.; Wang, Y.L.; Zhang, C.H.; Kwadwo, A.D. Effects of four fertilization regimes on soil organic carbon fractions and carbon pool management index of potato farmland. Chin. J. Soil Sci. 2021, 52, 912–919. [Google Scholar]
- Li, C.F.; Yue, L.X.; Kou, Z.K.; Zhang, Z.S.; Wang, J.P.; Cao, C.G. Short-term effects of conservation management practices on soil labile organic carbon fractions under a rape–rice rotation in central China. Soil Tillage Res. 2012, 119, 31–37. [Google Scholar] [CrossRef]
- Wang, M.; Pendall, E.; Fang, C.; Li, B.; Nie, M. A global perspective on agroecosystem nitrogen cycles after returning crop residue. Agric. Ecosyst. Environ. 2018, 266, 49–54. [Google Scholar] [CrossRef]
- Zhang, X.; Sui, S.J.; Liu, H.Y.; An, J.W. Effect of different application rate of nitrogen fertilizer under straw return on maize yield and inorganic nitrogen accumulation. J. Agric. Resour. Environ. 2014, 31, 279–284. [Google Scholar]
- Geisseler, D.; Horwath, W.R.; Scow, K.M. Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity. Pedobiologia 2011, 54, 71–78. [Google Scholar] [CrossRef]
- Ahemad, M.; Khan, M.S. Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ecotoxicology 2011, 20, 661–669. [Google Scholar] [CrossRef]
- Burns, R.G. Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biol. Biochem. 1982, 14, 423–427. [Google Scholar] [CrossRef]
- Geisseler, D.; Horwath, W.R.; Joergensen, R.G.; Ludwig, B. Pathways of nitrogen utilization by soil microorganisms—A review. Soil Biol. Biochem. 2010, 42, 2058–2067. [Google Scholar] [CrossRef]
- Marcote, I.; Hernández, T.; García, C.; Polo, A. Influence of one or two successive annual applications of organic fertilisers on the enzyme activity of a soil under barley cultivation. Bioresour. Technol. 2001, 79, 147–154. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Qiao, Y.; Miao, S.; Zhong, X.; Zhao, H.; Pan, S. The greatest potential benefit of biochar return on bacterial community structure among three maize-straw products after eight-year field experiment in Mollisols. Appl. Soil Ecol. 2020, 147, 103432. [Google Scholar] [CrossRef]
- Lu, W.T.; Jia, Z.K.; Zhang, P.; Wang, W.; Hou, X.Q.; Yang, B.P.; Li, Y.P. Effects of Straw Returning on Soil Labile Organic Carbon and Enzyme Activity in Semi-arid Areas of South-ern Ningxia, China. J. Agro-Environ. Sci. 2011, 30, 522–528. [Google Scholar]
- Yang, J.J.; Li, A.Y.; Yang, Y.F.; Li, G.H.; Zhang, F. Soil organice carbon stability under natural and anthropogenic-induced perturbations. Earth-Sci. Rev. 2020, 205, 103199. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 1997, 80, 243–270. [Google Scholar] [CrossRef]
- Mahieu, N.; Powlson, D.S.; Randall, E.W. Statistical analy-sis of published carbon-13 CPMAS NMR spectra of soil organic matter. Soil Sci. Soc. Am. J. 1999, 63, 307–319. [Google Scholar] [CrossRef]
- Hao, J.Y.; Chen, Y.Q.; Dai, H.C.; Li, C.; Xu, J.; Liu, J.; Sui, P. Characterization of soil organic carbon fractions under different organic materials amendment in sandy soil. J. Agric. Biotechnol. 2022, 30, 2201–2211. [Google Scholar]
- Nie, X.; Jiao, P.; Yang, L.; Li, Z. Responses of microbial respiration rate and active bacterial communities to antecedent soil moisture on the Loess Plateau. Geoderma 2025, 458, 117348. [Google Scholar] [CrossRef]
- Baldock, J.A.; Masiello, C.A.; Gelinas, Y.; Hedges, J.I. Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar. Chem. 2004, 92, 39–64. [Google Scholar] [CrossRef]
- Nevins, C.J.; Nakatsu, C.; Armstrong, S. Characterization of microbial community response to cover crop residue decomposition. Soil Biol. Biochem. 2018, 127, 39–49. [Google Scholar] [CrossRef]
Soil Depth (cm) | TN (g kg−1) | AP (mg kg−1) | AK (mg kg−1) | SOM (g kg−1) |
---|---|---|---|---|
0–20 | 0.9 ± 0.1 | 30.1 ± 1.5 | 81.1 ± 3.4 | 14.1 ± 0.8 |
Treatment | Chemical Fertilizer (kg ha−1) | Fermented Cattle Manure kg ha−1 | Corn Straw kg ha−1 | ||
---|---|---|---|---|---|
N | P2O5 | K2O | |||
N | 0 | 0 | 0 | 0 | 0 |
CK | 240 | 150 | 120 | 0 | 0 |
C | 120 | 75 | 60 | 0 | 9686 |
M | 120 | 75 | 60 | 12,000 | 0 |
C/M | 120 | 75 | 60 | 6000 | 4843 |
Fertilizer Name | Nutrient Content (%) | |||
---|---|---|---|---|
N | P2O5 | K2O | C | |
Urea | 46 | / | / | / |
Ammonium phosphate dibasic | 15 | 48 | / | / |
Potassium sulfate | / | / | 52 | / |
Fermented cattle manure | 0.78 | 0.97 | 1.01 | 36.86 |
Corn straw | 0.51 | 0.34 | 1.20 | 45.67 |
Chemical Structure of Soil Organic Carbon | Absorption Peak Positions (cm−1) |
---|---|
O-alkyl-C | 1030 |
Alkyl-C | 1430 |
Aromatic-C | 1600~1680 |
Ketone-C | 1700~1800 |
Carboxyl-C | 2500~2710 |
Phenolic alcohol | 3600~3700 |
Treatment | BG nmol/h/g | NAG umol/d/g | CBH μg /min /g | AKP mg/d/g |
---|---|---|---|---|
T0 | 3.82 ± 0.15c | 13.90 ± 0.60c | 38.68 ± 0.74a | 467.71 ± 27.77c |
CK | 3.97 ± 0.21c | 15.04 ± 0.19c | 38.46 ± 0.20a | 662.68 ± 13.61a |
T1 | 5.37 ± 0.11a | 9.17 ± 1.01d | 34.39 ± 0.06b | 650.10 ± 12.65a |
T2 | 4.92 ± 0.14b | 16.86 ± 0.41b | 26.28 ± 2.42c | 573.58 ± 17.94b |
T3 | 4.01 ± 0.22c | 19.68 ± 0.83a | 34.67 ± 1.25b | 603.98 ± 11.88ab |
Treatment | O-alkyl-C 1030 cm−1 (%) | Alkyl-C 1430 cm−1 (%) | Aromatic-C 1630 cm−1 (%) | Ketone-C 1798 cm−1 (%) | Carboxyl-C 2516 cm−1 (%) | Phenolic Alcohol 3620 cm−1 (%) |
---|---|---|---|---|---|---|
T0 | 72.28 ± 1.88a | 26.74 ± 0.86c | 0.44 ± 0.14b | 0.13 ± 0.01c | 0.26 ± 0.03b | 0.16 ± 0.01d |
CK | 70.50 ± 1.23ab | 28.17 ± 0.84bc | 0.34 ± 0.12b | 0.21 ± 0.02b | 0.43 ± 0.07a | 0.29 ± 0.04c |
T1 | 68.29 ± 1.92b | 30.33 ± 1.36a | 0.41 ± 0.08b | 0.28 ± 0.03a | 0.28 ± 0.04b | 0.41 ± 0.04b |
T2 | 69.90 ± 1.77ab | 28.99 ± 1.09ab | 0.00 ± 0.00c | 0.18 ± 0.03b | 0.22 ± 0.04b | 0.71 ± 0.09a |
T3 | 68.73 ± 1.57b | 29.74 ± 0.73ab | 0.94 ± 0.25a | 0.19 ± 0.00b | 0.24 ± 0.06b | 0.16 ± 0.03d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, H.; Lei, J.; He, J.; Lei, X.; Jin, J.; Zhou, L.; Wang, J. Exogenous Carbon Type Determines the Structure and Stability of Soil Organic Carbon in Dryland Farmlands Under a Continental Semi-Arid Climate. Agronomy 2025, 15, 1425. https://doi.org/10.3390/agronomy15061425
Qi H, Lei J, He J, Lei X, Jin J, Zhou L, Wang J. Exogenous Carbon Type Determines the Structure and Stability of Soil Organic Carbon in Dryland Farmlands Under a Continental Semi-Arid Climate. Agronomy. 2025; 15(6):1425. https://doi.org/10.3390/agronomy15061425
Chicago/Turabian StyleQi, Huanjun, Jinyin Lei, Jinqin He, Xiaoting Lei, Jianxin Jin, Lina Zhou, and Jian Wang. 2025. "Exogenous Carbon Type Determines the Structure and Stability of Soil Organic Carbon in Dryland Farmlands Under a Continental Semi-Arid Climate" Agronomy 15, no. 6: 1425. https://doi.org/10.3390/agronomy15061425
APA StyleQi, H., Lei, J., He, J., Lei, X., Jin, J., Zhou, L., & Wang, J. (2025). Exogenous Carbon Type Determines the Structure and Stability of Soil Organic Carbon in Dryland Farmlands Under a Continental Semi-Arid Climate. Agronomy, 15(6), 1425. https://doi.org/10.3390/agronomy15061425