Effects of Continuous Straw Return on Soil Nutrients and Microbial Community Structure of Paddy Fields in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Field Experiment Design
2.3. Effects of Continuous Straw Return on the Soil Nutrient Content
2.4. Yield
2.5. Effects of Continuous Straw Return on Fugal Disease Incidence
2.6. Microbial Community Assessment Using Illumina
2.7. Data Analysis
3. Results
3.1. Effects of Long-Term Straw Return on Soil Nutrient Characteristics
3.2. Disease Index Evaluation of Phytopathogenic Fungi in Paddy Field Experiments
3.3. Variation in Grain Yield
3.4. Soil Microbial Community Composition Under Continuous Straw Return
4. Discussion
4.1. Effects of Long-Term Straw Return on Soil Fertility Quality and Rice Yield
4.2. Long-Term Straw Return Drives Soil Microbial Community Changes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.H. The characteristic and influence factors of extinction depth of shallow groundwater on the high-latitude region: A case study on the Sanjiang Plain, northeast China. Environ. Sci. Pollut. Res. 2018, 25, 6695–6706. [Google Scholar] [CrossRef] [PubMed]
- Xiu, L.Q.; Zhang, W.M.; Sun, Y.Y.; Wu, D.; Meng, J.; Chen, W.F. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years. Catena 2019, 173, 481–493. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhou, W.; Shen, J.B.; Li, S.T.; He, P.; Liang, G.Q. Soil quality assessment of Albic soils with different productivities for eastern China. Soil Tillage Res. 2014, 140, 74–81. [Google Scholar] [CrossRef]
- Luo, N.; Meng, Q.F.; Feng, P.Y.; Qu, Z.R.; Yu, Y.H.; Liu, D.L.; Müller, C.; Wang, P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat. Commun. 2023, 14, 2637. [Google Scholar] [CrossRef]
- Liu, T.; He, G.J.; Lau, A.K.H. Statistical evidence on the impact of agricultural straw burning on urban air quality in China. Sci. Total Environ. 2020, 711, 134633. [Google Scholar] [CrossRef]
- Singh, G.; Gupta, M.K.; Chaurasiya, S.; Sharma, V.S.; Pimenov, D.Y. Rice straw burning: A review on its global prevalence and the sustainable alternatives for its effective mitigation. Environ. Sci. Pollut. Res. Int. 2021, 28, 32125–32155. [Google Scholar] [CrossRef]
- Shi, T.T.; Liu, Y.Q.; Zhang, L.B.; Hao, L.; Gao, Z.L. Burning in agricultural landscapes: An emerging natural and human issue in China. Landsc. Ecol. 2014, 29, 1785–1798. [Google Scholar] [CrossRef]
- Yan, S.S.; Jiang, H.W.; Li, J.W.; Yan, C.; Ma, C.M.; Zhang, Z.X.; Gong, Z.P. Effect of short-term organic matter returns on soil organic carbon fractions, phosphorus fractions and microbial community in cold region of China. Agronomy 2023, 13, 2805. [Google Scholar] [CrossRef]
- Zhang, L.G.; Chen, X.; Xu, Y.J.; Jin, M.C.; Ye, X.X.; Gao, H.J.; Chu, W.Y.; Mao, J.D.; Thompson, M.L. Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation. Sci. Rep. 2020, 10, 11318. [Google Scholar] [CrossRef]
- German, D.P.; Weintraub, M.N.; Grandy, A.S.; Lauber, C.L.; Rinkes, Z.L.; Allison, S.D. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 2011, 43, 1387–1397. [Google Scholar] [CrossRef]
- Liu, H.Y.; Liu, J.J.; Zhang, Z.J.; Liu, W.C.; Zhang, Q.; Wang, X.; Ren, C.J.; Yang, G.H.; Han, X.H. The impact of combining Robinia pseudoacacia Leaves and corn straw on soil carbon content and corn yield in Loess Plateau. Agronomy 2024, 14, 689. [Google Scholar] [CrossRef]
- Wang, K.K.; Ren, T.; Yan, J.Y.; Zhu, D.D.; Liao, S.P.; Zhang, Y.Y.; Lu, Z.F.; Cong, R.H.; Li, X.K.; Lu, J.W. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agric. Ecosyst. Environ. 2022, 335, 107991. [Google Scholar] [CrossRef]
- Guo, J.H.; Jiang, P.P.; Zhang, J.; Dong, S.Y.; Tian, W.Z.; Li, J.H.; Li, F.; Lv, J.J.; Yao, Y.Q.; Hou, Y.Q.; et al. Straw Return substituting potassium fertilizer increases crop yield, efficiency, and quality in Maize-Wheat rotation system. Agronomy 2024, 14, 1266. [Google Scholar] [CrossRef]
- Xu, L.; Chen, H.; Zhou, Y.; Zhang, J.W.; Nadeem, M.Y.; Miao, C.R.; You, J.H.; Li, W.W.; Jiang, Y.; Ding, Y.F.; et al. Long-term straw returning improved soil nitrogen sequestration by accelerating the accumulation of amino acid nitrogen. Agric. Ecosyst. Environ. 2024, 362, 108846. [Google Scholar] [CrossRef]
- Fan, W.; Wu, J.G. Short-term effects of returning granulated straw on soil microbial community and organic carbon fractions in dryland farming. J. Microbiol. 2020, 58, 657–667. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, Y.P.; Di, C.Q.; Bi, H.W.; Pan, K. Application of rice straw inhibits clubroot disease by regulating the microbial community in soil. Microorganisms 2024, 12, 717. [Google Scholar] [CrossRef]
- Zhang, S.L.; Li, M.; Cui, X.Y.; Pan, Y.M. Effect of different straw retention techniques on soil microbial community structure in wheat-maize rotation system. Front. Microbiol. 2023, 13, 1069458. [Google Scholar] [CrossRef]
- Zhao, S.S.; Lin, C.Y.; Cheng, M.; Zhang, K.; Wang, Z.R.; Zhao, T.; Yang, Q. New insight into the production improvement and resource generation of chaetoglobosin A in Chaetomium globosum. Microb. Biotechnol. 2022, 15, 2562–2577. [Google Scholar] [CrossRef]
- Wang, E.Z.; Lin, X.L.; Tian, L.; Wang, X.G.; Ji, L.; Jin, F.; Tian, C.J. Effects of short-term rice straw return on the soil microbial community. Agriculture 2021, 11, 561. [Google Scholar] [CrossRef]
- Wu, Z.J.; Ding, Q.; Yu, D.; Yin, Y.; Yu, Z. Study of organic materials and subsoiling improvement Albic layer of Albic soil. Chin. J. Soil Sci. 1995, 26, 250–252. [Google Scholar]
- Douglas, L.A.; Riazi, A.; Smith, C.J. A semi-micro method for determining total nitrogen in soils and plant material containing nitrite and nitrate. Soil Sci. Soc. Am. J. 1980, 44, 431–433. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Methods of Soil Analysis, Part 2. Chemical and Microbial Properties; Agronomy Monograph 9; Agronomy Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Zhou, Q.Y.; He, P.Y.; Tang, J.G.; Huang, K.F.; Huang, X.Y. Increasing planting density can improve the yield of Tartary buckwheat. Front. Plant Sci. 2023, 14, 1313181. [Google Scholar] [CrossRef] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Noveriza, R.; Rahajoeningsih, S.; Harni, R.; Miftakhurohmah. Molecular identification of white root fungal pathogens and in vitro effect of nanopesticide. IOP Conf. Ser. Earth Environ. Sci. 2020, 418, 012085. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Tanja, M.; Steven, L.S.; Notes, A. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar]
- Wang, Q.; Garrlty, G.M.; Tiedje, J.M.; Cole, J.M. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Yang, H.S.; Feng, J.X.; Weih, M.; Meng, Y.; Li, Y.F.; Zhai, S.L.; Zhang, W.Y. Yield reduction of direct-seeded rice under returned straw can be mitigated by appropriate water management improving soil phosphorus availability. Crop Pasture Sci. 2020, 71, 134–146. [Google Scholar] [CrossRef]
- Xu, G.W.; Tan, G.L.; Wang, Z.Q.; Liu, L.J.; Yang, J.C. Effects of wheat-residue application and site-specific nitrogen management on grain yield and quality and nitrogen use efficiency in direct-seeding rice. Sci. Agric. Sin. 2009, 42, 2736–2746, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.L.; Wu, P.N.; Mei, F.J.; Ling, Y.; Qiao, Y.; Liu, C.; Leghari, S.J.; Guan, X.; Wang, T. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. J. Environ. Manag. 2021, 288, 112391. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, C.L.; Zhang, W.L.; Yang, Q.J.; Li, D.; Liu, Z.Y.; Xia, J.F. Evaluation of straw spatial distribution after straw incorporation into soil for different tillage tools. Soil Tillage Res. 2020, 196, 104440. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.Y.; Yang, L.L.; Li, Y.H.; Xia, B.; Li, H.L.; Deng, X.H. Analysis of Tobacco straw return to the field to improve the chemical, physical, and biological soil properties and Rice yield. Agronomy 2024, 14, 1025. [Google Scholar] [CrossRef]
- Zhao, H.L.; Shar, A.G.; Li, S.; Chen, Y.L.; Shi, J.L.; Zhang, X.Y.; Tian, X.H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Duval, M.E.; Galantini, J.A.; Capurro, J.E.; Martinez, J.M. Winter cover crops in soybean monoculture: Effects on soil organic carbon and its fractions. Soil Tillage Res. 2016, 161, 95–105. [Google Scholar] [CrossRef]
- Tian, P.; Lian, H.L.; Wang, Z.Y.; Jiang, Y.; Li, C.F.; Sui, P.X.; Qi, H. Effects of deep and shallow tillage with straw incorporation on soil organic carbon, total nitrogen and enzyme activities in Northeast China. Sustainability 2020, 12, 8679. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere 2023, 33, 385–406. [Google Scholar] [CrossRef]
- Mamnabi, S.; Nasrollahzadeh, S.; Ghassemi-Golezani, K.; Raei, Y. Improving yield-related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions. Saudi J. Biol. Sci. 2020, 27, 797–804. [Google Scholar] [CrossRef]
- Tariq, A.; Pan, K.W.; Olatunji, O.A.; Graciano, C.; Li, Z.L.; Sun, F.; Sun, X.M.; Song, D.G.; Chen, W.K.; Zhang, A.P.; et al. Phosphorous application improves drought tolerance of Phoebe zhennan. Front. Plant Sci. 2017, 8, 663–676. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, D.; Li, Y.N.; Liu, S.X. Metagenomics of the effect of long-term straw return on the phosphorus cycle in meadow black soil. Agronomy 2023, 13, 3003. [Google Scholar] [CrossRef]
- Su, Y.; Lv, J.L.; Yu, M.; Ma, Z.H.; Xi, H.; Kou, C.L.; He, Z.C.; Shen, A.L. Long-term decomposed straw return positively affects the soil microbial community. J. Appl. Microbiol. 2020, 128, 138–150. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Shi, J.L.; Tian, X.H.; Li, Y.S.; Li, Y.B.; Zhao, H.L. Impact of straw return on soil carbon indices, enzyme activity, and grain production. Soil Sci. Soc. Am. J. 2017, 81, 1475–1485. [Google Scholar] [CrossRef]
- Ahn, J.H.; Song, J.; Kim, B.Y.; Kim, M.S.; Joa, J.H.; Weon, H.Y. Characterization of the bacterial and archaeal communities in Rice field soils subjected to Long-Term fertilization practices. J. Microbiol. 2012, 50, 754–765. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.J.; You, J.H.; Zhu, C.; Wang, B.L.; Qu, D. Diversity, dynamic and abundance of Geobacteraceae species in paddy soil following slurry incubation. Eur. J. Soil Biol. 2013, 56, 11–18. [Google Scholar] [CrossRef]
- Wolinska, A.; Kuzniar, A.; Zielenkiewicz, U.; Izak, D.; Szafranek-Nakonieczna, A.; Banach, A. Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. Appl. Soil Ecol. 2017, 119, 128–137. [Google Scholar] [CrossRef]
- Lydell, C.; Dowell, L.; Sikaroodi, M.; Gillevet, P.; Emerson, D. A population survey of members of the phylum Bacteroidetes isolated from salt marsh sediments along the East Coast of the United States. Microb. Ecol. 2004, 48, 263–273. [Google Scholar] [CrossRef]
- Wegner, C.E.; Liesack, W. Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil. Environ. Microbiol. 2016, 18, 2825–2842. [Google Scholar] [CrossRef]
- Hui, M.L.; Tan, L.T.; Letchumanan, V.; He, Y.W.; Fang, C.M.; Chan, K.G.; Law, J.W.F.; Lee, L.H. The extremophilic actinobacteria: From microbes to medicine. Antibiotics 2021, 10, 682. [Google Scholar] [CrossRef]
- Qiao, Y.Q.; Cao, C.F.; Zhao, Z.; Du, S.Z.; Zhang, Y.H.; Liu, Y.H.; Zhang, S.H. Effects of straw returning and N fertilizer application on yield, quality and occurrence of Fusarium head blight of Wheat. J. Triticeae Crops 2013, 33, 727–731. [Google Scholar]
- Liu, S.; Han, Y.; Zhu, X. Effects of cotton stalk charcoal modulation on the structure and function of inter-root soil fungal communities in alkaline cadmium-contaminated rice. Environ. Sci. 2020, 41, 3846–3854. [Google Scholar]
- Batista, T.M.; Hilário, H.O.; deBrito, G.A.M.; Moreira, R.G.; Furtado, C.; Menezes, G.C.A.; Rosa, C.A.; Rosa, L.H.; Franco, G.R. Whole-genome sequencing of the endemic antarctic fungus Antarctomyces pellizariae reveals an ice-binding protein, a scarce set of secondary metabolites gene clusters and provides insights on Thelebolales phylogeny. Genomics 2020, 112, 2915–2921. [Google Scholar] [CrossRef]
Period | Depth (cm) | Treatment | Alkali-Hydrolysed Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) | Total Organic Carbon (%) |
---|---|---|---|---|---|---|
Sowing stage | 0–10 | CK | 87.82 ± 4.30 | 44.13 ± 0.74 | 220.79 ± 9.85 | 3.16 ± 0.04 |
SR | 104.73 ± 4.61 | 51.07 ± 0.86 | 280.21 ± 4.82 | 3.71 ± 0.08 | ||
10–20 | CK | 86.32 ± 6.17 | 44.18 ± 0.66 | 219.24 ± 5.93 | 3.14 ± 0.06 | |
SR | 101.39 ± 4.10 | 50.81 ± 1.02 | 276.74 ± 7.98 | 3.68 ± 0.06 | ||
Maturity stage | 10–20 | CK | 83.89 ± 5.53 | 37.59 ± 0.56 | 143.75 ± 5.30 | 3.15 ± 0.06 |
SR | 112.55 ± 1.98 | 45.96 ± 0.36 | 188.39 ± 6.96 | 3.80 ± 0.08 | ||
0–10 | CK | 81.91 ± 4.78 | 37.53 ± 0.65 | 158.58 ± 4.37 | 3.14 ± 0.04 | |
SR | 111.83 ± 3.66 | 44.79 ± 0.72 | 206.56 ± 6.47 | 3.76 ± 0.07 |
1 | 0–10 cm | 10–20 cm | |||
---|---|---|---|---|---|
Kingdom | Order | CK | SR | CK | SR |
Bacteria | Burkholderiales | 0.0933 ± 0.0411 | 0.0963 ± 0.0221 | 0.0904 ± 0.0257 | 0.1153 ± 0.0280 |
Bacteroidales | 0.0800 ± 0.0066 | 0.0738 ± 0.0093 | 0.0768 ± 0.0148 | 0.1098 ± 0.0334 | |
Micrococcales | 0.0619 ± 0.0116 | 0.0438 ± 0.0171 | 0.1356 ± 0.0654 | 0.0462 ± 0.0193 | |
Rhizobiales | 0.0524 ± 0.0055 | 0.0644 ± 0.0143 | 0.0496 ± 0.0034 | 0.0494 ± 0.0063 | |
Anaerolineales | 0.0612 ± 0.0236 | 0.0429 ± 0.0177 | 0.0412 ± 0.0198 | 0.0345 ± 0.0119 | |
Fungi | Filobasidiales | 0.3890 ± 0.1808 | 0.3274 ± 0.1038 | 0.5215 ± 0.0939 | 0.3201 ± 0.0317 |
Thelebolales | 0.0935 ± 0.0522 | 0.1117 ± 0.0312 | 0.0852 ± 0.0160 | 0.1345 ± 0.0374 | |
Pleosporales | 0.0514 ± 0.0719 | 0.0413 ± 0.0457 | 0.0119 ± 0.0058 | 0.0844 ± 0.0834 | |
Mortierellales | 0.0595 ± 0.0319 | 0.1034 ± 0.0322 | 0.0569 ± 0.0094 | 0.0712 ± 0.0622 |
0–10 cm | 10–20 cm | ||||
---|---|---|---|---|---|
Kingdom | Order | CK | SR | CK | SR |
Bacteria | Bacteroidales | 0.0840 ± 0.0280 | 0.0735 ± 0.0170 | 0.1161 ± 0.0099 | 0.1489 ± 0.0245 |
Burkholderiales | 0.1187 ± 0.0050 | 0.0953 ± 0.0138 | 0.1111 ± 0.0213 | 0.0859 ± 0.0094 | |
Anaerolineales | 0.1224 ± 0.0286 | 0.1055 ± 0.0278 | 0.0872 ± 0.0530 | 0.0817 ± 0.0301 | |
Rhizobiales | 0.0408 ± 0.0033 | 0.0542 ± 0.0148 | 0.0470 ± 0.0181 | 0.0495 ± 0.0207 | |
Micrococcales | 0.0505 ± 0.0233 | 0.0360 ± 0.0238 | 0.0369 ± 0.0191 | 0.0224 ± 0.0092 | |
Fungi | Filobasidiales | 0.2881 ± 0.2278 | 0.2665 ± 0.0366 | 0.4108 ± 0.0641 | 0.3831 ± 0.0968 |
Mortierellales | 0.3456 ± 0.4793 | 0.2383 ± 0.0518 | 0.1035 ± 0.0462 | 0.0697 ± 0.0465 | |
Thelebolales | 0.1385 ± 0.1710 | 0.1061 ± 0.0188 | 0.1018 ± 0.0697 | 0.1809 ± 0.1254 | |
Pleosporales | 0.0030 ± 0.0014 | 0.0071 ± 0.0056 | 0.0703 ± 0.1119 | 0.0053 ± 0.0050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Wang, Q.; Zou, J. Effects of Continuous Straw Return on Soil Nutrients and Microbial Community Structure of Paddy Fields in Northeast China. Agronomy 2025, 15, 1404. https://doi.org/10.3390/agronomy15061404
Ma J, Wang Q, Zou J. Effects of Continuous Straw Return on Soil Nutrients and Microbial Community Structure of Paddy Fields in Northeast China. Agronomy. 2025; 15(6):1404. https://doi.org/10.3390/agronomy15061404
Chicago/Turabian StyleMa, Juntao, Qiuju Wang, and Jiahe Zou. 2025. "Effects of Continuous Straw Return on Soil Nutrients and Microbial Community Structure of Paddy Fields in Northeast China" Agronomy 15, no. 6: 1404. https://doi.org/10.3390/agronomy15061404
APA StyleMa, J., Wang, Q., & Zou, J. (2025). Effects of Continuous Straw Return on Soil Nutrients and Microbial Community Structure of Paddy Fields in Northeast China. Agronomy, 15(6), 1404. https://doi.org/10.3390/agronomy15061404