The Effect of Late Frost Damage on the Growth and Development of Flower Organs in Different Types of Peach Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Test Methods
2.3. Determination of Peach Blossom Supercooling Point
2.4. Physiological Index Testing
2.5. Data Processing
3. Results
3.1. Changes in Supercooling and Freezing Points of Flower Organs
3.2. Changes in Floral Organs After Freezing
3.3. Changes in Flower Organs’ Hormone Content
3.4. Changes in MDA Content in Floral Organs
3.5. The Contents of Antioxidant Enzymes (POD, SOD, CAT) in Floral Organs Were Changed
3.6. Changes in the Content of Osmoregulatory Substances (Pro, Soluble Sugars) in Floral Organs
3.7. Correlation Analysis of Resistance of Peach Varieties to Late Frost Damage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Li, Y.; Fang, Q. Analysis of Cyperaceae Flora in Gansu Province. Pratacultural Sci. 2025, 42, 882–893. [Google Scholar]
- Hao, X.; Danielle, E.; Mehdi, S. Horticultural Practices in Early Spring to Mitigate the Adverse Effect of Low Temperature on Fruit Set in ‘Lapins’ Sweet Cherry. Plants 2023, 12, 468. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Hu, Y.; Lu, Y.; Lu, Y.Z.; Wang, J.Z.; Pan, Q.M.; Li, P.P. A review of methods and techniques for detecting frost on plant surfaces. Agriculture 2021, 11, 1142. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Wang, S.; Wang, J.; Yao, Y. Characteristics of agro-meteorological disasters and their risk in Gansu Province against the background of climate change. Nat. Hazards 2017, 89, 899–921. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Yang, Y.; Li, H.; Wei, J.; Zhu, Y.; Tian, L. Comparative Study of Critical Temperature Suffering Frost of Floral Organs and Young Fruit of the Main Fruit Trees in Ningxia Province. N. Hortic. 2015, 7, 9–13. [Google Scholar]
- Wu, J.; He, Q.; Zhang, C.; Wang, G. ‘Xiaohe 1’: A New Walnut Cultivar with High Fruit Setting Rate of Secondary Bud Germination after the Harm of Late Frost. HortScience 2020, 55, 2047–2051. [Google Scholar] [CrossRef]
- Ding, W.; Wei, Y.; Xian, Y.; Wu, Y. Influences and adaptation strategies of agriculture impacted by climate caused disasters in arid-region, Gansu province. J. Arid Land Resour. Environ. 2012, 26, 35–40. [Google Scholar]
- Yang, S. Low Temperature Freezing and Late Frost Damage on Fruit Trees and Measures for Disaster Prevention and Mitigation in Tianshui Area of Gansu Province. Chin. Fruit Veg. 2018, 38, 79–81. [Google Scholar]
- Jiang, L.; Li, J.D.; Zhao, Y.S.; Ma, P.; Hao, S.M.; Zhang, J.; Xu, F. Investigation and analysis of spring late frost disaster in Zhongningtao, Ningxia in 2022. Mod. Hortic. 2019, 46, 1–3. [Google Scholar]
- Wang, C.B.; Wang, F.L.; Wan, X.; Zhao, X.M.; Niu, R.X. Supercooling point of peach ovary and young fruit under low temperature stress and its physiological response. Gansu Agric. Sci. Technol. 2020, 9, 18–22. [Google Scholar]
- Uzal, O. Effects of proline treatments on plant growth, lipid peroxidation and antioxidant enzyme activities of tomato (Solanum lycopersicum L.) seedlings under chilling stress. Gesunde Pflanz. 2022, 74, 729–736. [Google Scholar] [CrossRef]
- Zhao, X.M.; Niu, R.X.; Zhang, F.; Zhang, X.B.; Wang, C.B.; Wang, F.L. Identification of Cold Resistance of Eight Peach Cultivars in Lanzhou Area. Gansu Agric. Sci. Technol. 2019, 12, 43–46. [Google Scholar]
- Liang, X.J.; Zhang, X.Y.; Yang, Y.; Ma, M.Y.; Zhang, Z.W. Study on the threshold of late frost damage of ‘Cabernet Sauvignon’ grape at different developmental stages in Ningxia. Acta Bot. Boreali-Occident. Sin. 2024, 44, 460–469. [Google Scholar]
- Xu, Y.P.; Wan, X.; Jia, J.Y.; Yao, X.H.; Wang, C.B.; Xu, Y.K.; Han, L.Y. Experimental study on frost index of Beijing No.7 peach trees in full blooms. J. Arid Land Resour. Environ. 2019, 33, 195–200. [Google Scholar]
- Li, Y.; Zhang, L.; Guo, W.; Jiang, L.L.; Xu, R.; Li, N. Analysis and simulation of temperature gradient difference in vineyards in spring. Non-Wood For. Res. 2024, 42, 207–217. [Google Scholar]
- Chen, F.; Qiu, N.; Yang, Y.; Wang, J.; Dou, Q.Q.; Li, M.Y. Characteristics and Defense Measures of Late Frost and Freezing in Longdong Orchards in Spring. Chin. Agric. Sci. Bull. 2024, 40, 88–97. [Google Scholar]
- Williamson, K.S.; Hensley, K.; Floyd, R.A. Fluorometric and colorimetric assessment of thiobarbituric acid-reactive lipid aldehydes in biological matrices. In Methods in Biological Oxidative Stress; Springer: Berlin/Heidelberg, Germany, 2003; pp. 57–65. [Google Scholar]
- Schweet, R.S. The quantitative determination of proline and pipecolic acid with ninhydrin. J. Biol. Chem. 1954, 208, 603–613. [Google Scholar] [CrossRef]
- Kulka, R.G. Colorimetric estimation of ketopentoses and ketohexoses. Biochem. J. 1956, 63, 542. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, Y.; Dang, H.; Zhang, Q. Multiomics analyses reveal the mechanisms of the responses of subalpine treeline trees to phenology and winter low-temperature stress. Physiol. Plant. 2024, 176, e14218. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Gornostai, T.Y.; Zilfikarov, I. Effect of low temperature cultivation on the phytochemical profile and bioactivity of Arctic plants: A case of Dracocephalum palmatum. Int. J. Mol. Sci. 2017, 18, 2579. [Google Scholar] [CrossRef]
- Kaya, O.; Kose, C. Cell death point in flower organs of some apricot (Prunus armeniaca L.) cultivars at subzero temperatures. Sci. Hortic. 2019, 249, 299–305. [Google Scholar] [CrossRef]
- Susila, H.; Jurić, S.; Liu, L.; Gawarecka, K.; Chung, K.; Jin, S.H.; Kim, S.; Nasim, Z.; Youn, G.; Suh, M.; et al. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 2021, 373, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Huang, J.; Yang, L.; Chen, Y.; Fang, Y.; Jin, H.; Sun, H.; Huang, R. A practical remote sensing monitoring framework for late frost damage in wine grapes using multi-source satellite data. Remote Sens. 2021, 13, 3231. [Google Scholar] [CrossRef]
- Cebulj, A.; Mikulič-Petkovšek, M.; Veberič, R.; Jakopic, J. Effect of spring frost damage on apple fruit (Malus domestica Borkh.) inner quality at harvest. Agriculture 2021, 12, 14. [Google Scholar] [CrossRef]
- Londo, J.P.; Kovaleski, A.P. Deconstructing cold hardiness: Variation in supercooling ability and chilling requirements in the wild grapevine Vitis riparia. Aust. J. Grape Wine Res. 2019, 25, 276–285. [Google Scholar] [CrossRef]
- Wang, E.H.; Xu, Y.H.; Zhand, Z.B.; Xu, D.; Xi, G.; Zhang, L. Effects of constant low temperature on cold resistance of different strains Polygonatum odoratum. China J. Chin. Mater. Medica 2015, 40, 68–72. [Google Scholar]
- Gilbert, N.; Benjamin, K.; Dominik, K.; Kristina, M.; Ramona, M. Deep supercooling enabled by surface impregnation with lipophilic substances explains the survival of overwintering buds at extreme freezing. Plant Cell Environ. 2019, 42, 2065–2074. [Google Scholar]
- Zaragotas, D.; Liolios, N.T.; Anastassopoulos, E. Supercooling, ice nucleation and crystal growth: A systematic study in plant samples. Cryobiology 2016, 72, 239–243. [Google Scholar] [CrossRef]
- Niu, R.; Cheng, Y.; Wang, F.; Zhang, Y.; Wang, C. Transcriptome Analysis Provides Insights into the Safe Overwintering of Local Peach Flower Buds. Curr. Issues Mol. Biol. 2024, 46, 13903–13921. [Google Scholar] [CrossRef]
- Penso, G.A.; Citadin, I.; Scariotto, S.; Carlos, E.; Junior, A.W.; Bruckner, C.H.; Rodrigo, G. Development of peach flower buds under low winter chilling conditions. Agronomy 2020, 10, 428. [Google Scholar] [CrossRef]
- Gao, H. Research on Chilling Injury and Mechanism of Chilling Injury Physiology of Nectarines; Northwest A&F University: Xianyang, China, 2007. (In Chinese) [Google Scholar]
- Meng, S.; Xiang, H.; Yang, X.; Ye, Y.; Han, L.; Xu, T.; Liu, Y.; Wang, F.; Tan, C.; Qi, M.; et al. Effects of low temperature on pedicel abscission and auxin synthesis key genes of tomato. Int. J. Mol. Sci. 2023, 24, 9186. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, Y.; Bai, R.; Zou, L.R.; Sun, G.M.; Sun, Q.; Liu, T.; Shen, H.L. Study on Changes of Hormone and Polyamine Contents in Grapevine Shoots Induced by Low Temperature. Chin. Foreign Grape Wine. 2024, 6, 50–56. [Google Scholar]
- Ma, C.; Yuan, S.; Xie, B.; Li, Q.; Wang, Q.J.; Shao, M.G. IAA plays an important role in alkaline stress tolerance by modulating root development and ROS detoxifying systems in rice plants. Int. J. Mol. Sci. 2022, 23, 14817. [Google Scholar] [CrossRef] [PubMed]
- Kemi, U.; Leinonen, P.H.; Savolainen, O.; Kuittinen, H. Inflorescence shoot elongation, but not flower primordia formation, is photoperiodically regulated in Arabidopsis lyrata. Ann. Bot. 2019, 124, 91–102. [Google Scholar] [CrossRef]
- Singh, A.; Roychoudhury, A. Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant Cell Rep. 2023, 42, 961–974. [Google Scholar] [CrossRef]
- Wan, C.; Mi, L.; Chen, B.; Li, J.; Huo, H.; Xu, J.; Chen, X. Effects of nitrogen during nursery stage on flower bud differentiation and early harvest after transplanting in strawberry. Braz. J. Bot. 2018, 41, 1–10. [Google Scholar] [CrossRef]
- Danieli, R.; Assouline, S.; Salam, B.B.; Vrobel, O.; TeperBamnolker, P.; Belausov, E.; Granot, D.; Tarkowski, P.; Eshel, D. Chilling induces sugar and ABA accumulation that antagonistically signals for symplastic connection of dormant potato buds. Plant Cell Environ. 2023, 46, 2097–2111. [Google Scholar] [CrossRef]
- Ma, L.; Liu, G.; Liu, X. Amounts of malondialdehyde do not accurately represent the real oxidative level of all vegetable oils: A kinetic study of malondialdehyde formation. Int. J. Food Sci. Technol. 2019, 54, 412–423. [Google Scholar] [CrossRef]
- Yang, C.X.; Li, X.L.; Gao, D.S.; Shi, Z.A. Effects of chilling stress on membrane lipid peroxidation and activities of protective enzymes in nectarine flower organs. J. Fruit Sci. 2005, 1, 69–71. [Google Scholar]
- Wang, W.; Xia, M.X.; Chen, J.; Yuan, R.; Deng, F.N.; Shen, F.F. Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress. Biochemistry 2016, 81, 465–480. [Google Scholar] [CrossRef]
- Abbasi, N.A.; Kushad, M.M.; Endress, A.G. Activities of free-radical scavenging enzymes during apple fruit maturity, ripening, and senescence. HortScience 1997, 32, 458D. [Google Scholar] [CrossRef]
- Yu, D.; Liu, X.; Bi, Q.; Zhao, Y.; Ju, J.; Yu, H.; Wang, L.B. Response of Pistils in Two Contrasting Apricot (Prunus armeniaca L.) Cultivars to Low Temperature Stress and Recovery. J. Northeast For. Univ. 2021, 49, 1–5. [Google Scholar]
- Grieve, P.W.; Povey, M.J. Evidence for the osmotic dehydration theory of freeze damage. J. Sci. Food Agric. 1981, 32, 96–98. [Google Scholar] [CrossRef]
- Takeuchi, K.; Ochiai, K.; Kobayashi, M.; Kuroda, K.; Ifuku, K. Light-chilling stress causes hyper-accumulation of iron in shoot, exacerbating leaf oxidative damage in cucumber. Plant Cell Physiol. 2024, 65, 1873–1887. [Google Scholar] [CrossRef]
- Ettore, D.; Negar, R.; Peter, P.; Jozica, G.; Alessio, C.; Jan, M.; Giorgio, M. Frost and drought: Effects of extreme weather events on stem carbon dynamics in a Mediterranean beech forest. Plant Cell Environ. 2020, 43, 2365–2379. [Google Scholar]
- Mccoy, R.M.; Meyer, G.W.; Rhodes, D.; Murray, G.C.; Sors, T.G.; Widhalm, J.R. Exploratory study on the foliar incorporation and stability of isotopically labeled amino acids applied to turfgrass. Agronomy 2020, 10, 358. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Jin, X.; Wang, M.; Zhang, Y.; Wang, X. Nutrient allocation patterns in different aboveground organs at different reproductive stages of four introduced Calligonum species in a common garden in northwestern China. Front. Plant Sci. 2024, 15, 1504216. [Google Scholar] [CrossRef]
- Yan, B.; Hou, J.; Cui, J.; He, C.; Li, W.; Chen, X.; Li, M.; Wang, W. The effects of endogenous hormones on the flowering and fruiting of Glycyrrhiza uralensis. Plants 2019, 8, 519. [Google Scholar] [CrossRef]
- Verslues, P.E. ABA and cytokinins: Challenge and opportunity for plant stress research. Plant Mol. Biol. 2016, 91, 629–640. [Google Scholar] [CrossRef]
- Lu, L.; Yang, W.; Dong, Z.; Tang, L.; Liu, Y.; Xie, S.; Yang, Y. Integrated Transcriptomic and Metabolomics Analyses Reveal Molecular Responses to Cold Stress in Coconut (Cocos nucifera L.) Seedlings. Int. J. Mol. Sci. 2023, 24, 14563. [Google Scholar] [CrossRef]
- Lv, J.; Dong, T.; Zhang, Y.; Ku, Y.; Zheng, T.; Jia, H.; Fang, J. Metabolomic profiling of brassinolide and abscisic acid in response to high-temperature stress. Plant Cell Rep. 2022, 41, 935–946. [Google Scholar] [CrossRef]
Tissues and Organs | Supercooling Point/°C | Freezing Point/°C |
---|---|---|
Y1 | −4.6~−3.7 | −6.3~−3.7 |
L15 | −7.2~−4.8 | −8.5~−4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, R.; Huang, J.; Zhang, Y.; Wang, C. The Effect of Late Frost Damage on the Growth and Development of Flower Organs in Different Types of Peach Varieties. Agronomy 2025, 15, 1395. https://doi.org/10.3390/agronomy15061395
Niu R, Huang J, Zhang Y, Wang C. The Effect of Late Frost Damage on the Growth and Development of Flower Organs in Different Types of Peach Varieties. Agronomy. 2025; 15(6):1395. https://doi.org/10.3390/agronomy15061395
Chicago/Turabian StyleNiu, Ruxuan, Juanjuan Huang, Yiwen Zhang, and Chenbing Wang. 2025. "The Effect of Late Frost Damage on the Growth and Development of Flower Organs in Different Types of Peach Varieties" Agronomy 15, no. 6: 1395. https://doi.org/10.3390/agronomy15061395
APA StyleNiu, R., Huang, J., Zhang, Y., & Wang, C. (2025). The Effect of Late Frost Damage on the Growth and Development of Flower Organs in Different Types of Peach Varieties. Agronomy, 15(6), 1395. https://doi.org/10.3390/agronomy15061395