From Field to Fermentation: Optimizing Peanut Vine Nutrients Through Advanced Harvest and Silage Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Co-Ensiling of Corn Meal and Wheat Bran with Peanut Vine
2.3. Analysis of Chemical Compositions and Fermentation Characteristics for Silage
2.4. Characterization of the Microbial Community
2.4.1. Preparation of Microbial Samples
2.4.2. DNA Extraction, Sequencing, and Bio-Information Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and BDP of Peanut Leaves, Stalks, and Plants at Different Advanced Harvest Times
3.2. Effect of Substrates and Exogenous Inoculant on Organoleptic Properties of Silages
3.3. Effect of Substrates and Exogenous Inoculant on Chemical Composition of Co-Silages
3.4. Effect of Substrates and Exogenous Inoculant on Fermentation Characteristics of Co-Silage
3.5. Effect of Substrates and Exogenous Inoculant on Microbial Community Diversity of Co-Silages
3.5.1. Alpha Diversity Indices of Microbial Community
3.5.2. Abundance of Bacteriome and Mycobiome Community
3.6. Correlation Between Bacteriome, Mycobiome Community, and Silage Chemical Composition and Fermentation Indicators
3.7. Co-Occurrence Network of Bacteriome and Mycobiome
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, Q.; Zhang, X.; Dai, G.; Tong, B.; Wang, H.; Oenema, O.; Zanten, H.; Gerber, P.J.; Hou, Y. Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China. Nat. Food 2023, 4, 677–685. [Google Scholar] [CrossRef] [PubMed]
- (FAO), Food and Agriculture Organization of the United Nations. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 19 September 2024).
- Bi, Y.Y. Study on Straw Resource Evaluation and Utilization in China; Chinese Academy of Agricultural Sciences: Beijing, China, 2010. [Google Scholar]
- Zhang, S.J.; Zhu, C.H.; Guo, J.; Tang, Q.P.; Li, H.F.; Zou, J.M. Metabolizable energy and fiber digestibility of uncommon feedstuffs for geese. Poult. Sci. 2013, 92, 1812–1817. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Hu, Z.C.; Chen, Y.Q.; Wu, H.C.; Wang, Y.W.; Wu, F.; Gu, F.W. Integration of agricultural machinery and agronomy for mechanised peanut production using the vine for animal feed. Biosyst. Eng. 2022, 219, 135–152. [Google Scholar] [CrossRef]
- Zhang, L.; Shang, Y.; Li, J.; Fu, T.; Lian, H.; Gao, T.; Shi, Y.; Li, M. Comparison of feeding diets including dried or ensiled peanut vines as forage sources on the growth performance, ruminal fermentation, and bacterial community in young Holstein bulls. Anim. Sci. J. 2021, 93, e13675. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, H.; Hu, Z.; Chen, Y.; Cao, M.; Yu, Z.; Mao, E. Characteristics of Agricultural Dust Emissions from Harvesting Operations: Case Study of a Whole-Feed Peanut Combine. Agriculture 2021, 11, 1068. [Google Scholar] [CrossRef]
- Ren, H.; Feng, Y.; Liu, T.; Li, J.; Wang, Z.; Fu, S.; Zheng, Y.; Peng, Z. Effects of different simulated seasonal temperatures on the fermentation characteristics and microbial community diversities of the maize straw and cabbage waste co-ensiling system. Sci. Total Environ. 2020, 708, 135113. [Google Scholar] [CrossRef]
- Qin, M.Z.; Shen, Y.X. Effect of Application of a Bacteria Inoculant and Wheat Bran on Fermentation Quality of Peanut Vine Ensiled Alone or with Corn Stover. J. Integr. Agric. 2013, 12, 556–560. [Google Scholar] [CrossRef]
- He, L.; Wang, Y.; Guo, X.; Chen, X.; Zhang, Q. Evaluating the Effectiveness of Screened Lactic Acid Bacteria in Improving Crop Residues Silage: Fermentation Parameter, Nitrogen Fraction, and Bacterial Community. Front. Microbiol. 2022, 13, 680988. [Google Scholar] [CrossRef]
- Wang, W.; Nie, Y.; Tian, H.; Quan, X.; Li, J.; Shan, Q.; Li, H.; Cai, Y.; Ning, S.; Santos Bermudez, R.; et al. Microbial Community, Co-Occurrence Network Relationship and Fermentation Lignocellulose Characteristics of Broussonetia papyrifera Ensiled with Wheat Bran. Microorganisms 2022, 10, 2015. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Zhang, S.; Xing, J.; Song, C.; Meng, Q.; Li, J.; Jia, S.; Shan, A. Anaerobic fermentation featuring wheat bran and rice bran realizes the clean transformation of Chinese cabbage waste into livestock feed. Front. Microbiol. 2023, 14, 1108047. [Google Scholar] [CrossRef]
- Li, J.; Meng, Q.; Wang, C.; Song, C.; Lyu, Y.; Li, J.; Shan, A. The interaction between temperature and citric acid treatment in the anaerobic fermentation of Chinese cabbage waste. J. Clean Prod. 2023, 383, 135502. [Google Scholar] [CrossRef]
- Liu, W. Effects of Foliar Selenium Application in Different Periods on Hay and Silage Quality and Spatial Transformation of Selenium in Cyperus Esculentus; Northeast Agricultural University: Harbin, China, 2022. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media1. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Wu, W.; Xie, J.; Zhang, H. Dietary fibers influence the intestinal SCFAs and plasma metabolites profiling in growing pigs. Food Funct. 2016, 7, 4644–4654. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Robinson, P.H.; Swanepoel, N.; Heguy, J.M.; Price, T.; Meyer, D.M. ‘Shrink’ losses in commercially sized corn silage piles: Quantifying total losses and where they occur. Sci. Total Environ. 2016, 542, 530–539. [Google Scholar] [CrossRef]
- Cai, A.M.; Xue, X.; Zhao, J.H.; Lian, H.X.; Fu, T.; Gao, T.Y. Evaluation of Nutrient Value and Comparison of Rumen Degradation Rate between Spring-Grown Peanut Vine and Summer-Grown Peanut Vine. Chin. J. Anim. Nutr. 2019, 31, 1823–1832. [Google Scholar]
- Liu, T.Y.; Guo, X.; Guo, L.X. The effects of cutting on yield and quality of peanut vine. Ecol. Domest. Anim. 2002, 23, 38–40. [Google Scholar]
- Zheng, X.L.; Ye, H.L.; Wang, J.H.; Xu, G.Z.; Weng, B.Q. Effect of vine cutting time on yield and quality of peanuts and vine. Fujian J. Agric. Sci. 2011, 26, 234–237. [Google Scholar]
- Wang, Q.; Wang, R.; Wang, C.; Dong, W.; Zhang, Z.; Zhao, L.; Zhang, X. Effects of Cellulase and Lactobacillus plantarum on Fermentation Quality, Chemical Composition, and Microbial Community of Mixed Silage of Whole-Plant Corn and Peanut Vines. Appl. Biochem. Biotechnol. 2022, 194, 2465–2480. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Zhu, M.; Wang, C. The In Vitro Digestion and Fermentation Characteristics of Feedstuffs Inoculated With Cecal or Colic Fluid of Dezhou Donkey. J. Equine Vet. Sci. 2022, 110, 103864. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, B.; Xiao, J.; Guo, M.; Zhao, S.; Hu, M.; Cui, Y.; Li, D.; Wang, C.; Ma, S.; et al. Effects of Different Roughage Diets on Fattening Performance, Meat Quality, Fatty Acid Composition, and Rumen Microbe in Steers. Front. Nutr. 2022, 9, 885069. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.C.; Li, W.J.; Wang, W.K.; Wang, Y.L.; Zhang, F.; Lv, L.K.; Yang, H.J. Foxtail millet (Setaria italica L.) silage compared peanut vine hay (Arachis hypogaea L.) exhibits greater feed efficiency via enhancing nutrient digestion and promoting rumen fermentation more efficiently in feedlotting lambs. Small Rumin. Res. 2022, 215, 106704. [Google Scholar] [CrossRef]
- Li, J.; Lian, H.; Zheng, A.; Zhang, J.; Dai, P.; Niu, Y.; Gao, T.; Li, M.; Zhang, L.; Fu, T. Effects of Different Roughages on Growth Performance, Nutrient Digestibility, Ruminal Fermentation, and Microbial Community in Weaned Holstein Calves. Front. Vet. Sci. 2022, 9, 864320. [Google Scholar] [CrossRef]
- Tawila, M.; Omer, H.; Gad, S. Partial Replacing of Concentrate Feed Mixture by Potato Processing Waste in Sheep Rations. Am-Euras. J. Agric. & Environ. Sci. 2008, 4, 156–164. [Google Scholar]
- Fu, C.; Batima, N.E.B.H.T.; Ma, H.H.; Sun, Q.Y.; Zhou, Y.; Wang, G.L.; Li, S.Y.; Xu, B.; Wang, L.Y. Construction of Nutrient Component Prediction Model of Peanut Vines Based on Near Infrared Spectroscopy. Chin. J. Anim. Nutr. 2023, 35, 4697–4705. [Google Scholar]
- Tang, M.Q. Effects of Different Additives on the Quality of Peanut Seed Silage and Its Effect on Growth Performance in Fattening Sheep; Henan Agricultural University: Zhengzhou, China, 2020. [Google Scholar]
- Li, J.; Meng, Q.; Xing, J.; Wang, C.; Song, C.; Ma, D.; Shan, A. Citric acid enhances clean recycling of Chinese cabbage waste by anaerobic fermentation. J. Clean Prod. 2022, 348, 131366. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Yuan, X.-J.; Guo, G.; Li, J.-F.; Bai, Y.-F.; Shao, T. Effects of molasses on the fermentation characteristics of mixed silage prepared with rice straw, local vegetable by-products and alfalfa in Southeast China. J. Integr. Agric. 2017, 16, 664–670. [Google Scholar] [CrossRef]
- Hillion, M.-L.; Moscoviz, R.; Trably, E.; Leblanc, Y.; Bernet, N.; Torrijos, M.; Escudié, R. Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion. Waste Manag. 2018, 71, 147–155. [Google Scholar] [CrossRef]
- Toledo, A.F.; Dondé, S.C.; Silva, A.P.; Cezar, A.M.; Coelho, M.G.; Tomaluski, C.R.; Virgínio, G.F.; Costa, J.H.C.; Bittar, C.M.M. Whole-plant flint corn silage inclusion in total mixed rations for pre- and postweaning dairy calves. J. Dairy Sci. 2023, 106, 6185–6197. [Google Scholar] [CrossRef]
- Silva, T.B.P.; Del Valle, T.A.; Ghizzi, L.G.; Silva, G.G.; Gheller, L.S.; Marques, J.A.; Dias, M.S.S.; Nunes, A.T.; Grigoletto, N.T.S.; Takiya, C.S.; et al. Partial replacement of corn silage with whole-plant soybean and black oat silages for dairy cows. J. Dairy Sci. 2021, 104, 9842–9852. [Google Scholar] [CrossRef]
- Chen, L.; Bao, X.; Guo, G.; Huo, W.; Xu, Q.; Wang, C.; Li, Q.; Liu, Q. Effects of Hydrolysable Tannin with or without Condensed Tannin on Alfalfa Silage Fermentation Characteristics and In Vitro Ruminal Methane Production, Fermentation Patterns, and Microbiota. Animals 2021, 11, 1967. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Lee, Y.H.; Lee, W.H.; Oh, Y.-K.; Park, K.; Kwak, W.S. Long-term anaerobic conservation of fruit and vegetable discards without or with moisture adjustment after aerobic preservation with sodium metabisulfite. Waste Manag. 2019, 87, 258–267. [Google Scholar] [CrossRef]
- Huang, P.; Chen, M.; Chen, D.; Zang, M.; Zhang, W.; Lin, X.; Han, H.; Zhang, Q. Effects of Neolamarckia cadamba Leaf Extract on Dynamic Fermentation Characteristics and Bacterial Community of Stylosanthes guianensis Silage. Fermentation 2024, 10, 347. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Xing, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresour. Technol. 2019, 284, 349–358. [Google Scholar] [CrossRef]
- Restelatto, R.; Novinski, C.O.; Pereira, L.M.; Silva, E.P.A.; Volpi, D.; Zopollatto, M.; Schmidt, P.; Faciola, A.P. Chemical composition, fermentative losses, and microbial counts of total mixed ration silages inoculated with different Lactobacillus species. J. Anim. Sci. 2019, 97, 1634–1644. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- You, L.J.; Bao, W.C.; Yao, C.Q.; Zhao, F.Y.; Jin, H.; Huang, W.Q.; Li, B.H.; Kwok, L.Y.; Liu, W.J. Changes in chemical composition, structural and functional microbiome during alfalfa (Medicago sativa) ensilage with Lactobacillus plantarum PS-8. Anim. Nutr. 2022, 9, 100–109. [Google Scholar] [CrossRef]
- Benjamim da Silva, É.; Polukis, S.A.; Smith, M.L.; Voshell, R.S.; Leggett, M.J.; Jones, P.B.; Kung, L. The use of Lentilactobacillus buchneri PJB1 and Lactiplantibacillus plantarum MTD1 on the ensiling of whole-plant corn silage, snaplage, and high-moisture corn. J. Dairy Sci. 2024, 107, 883–901. [Google Scholar] [CrossRef]
- He, L.; Lv, H.; Chen, N.; Wang, C.; Zhou, W.; Chen, X.; Zhang, Q. Improving fermentation, protein preservation and antioxidant activity of Moringa oleifera leaves silage with gallic acid and tannin acid. Bioresour. Technol. 2020, 297, 122390. [Google Scholar] [CrossRef]
- He, L.; Wang, C.; Xing, Y.; Zhou, W.; Pian, R.; Chen, X.; Zhang, Q. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresour. Technol. 2020, 296, 122336. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Feng, Y.; Pei, J.; Li, J.; Wang, Z.; Fu, S.; Zheng, Y.; Li, Z.; Peng, Z. Effects of Lactobacillus plantarum additive and temperature on the ensiling quality and microbial community dynamics of cauliflower leaf silages. Bioresour. Technol. 2020, 307, 123238. [Google Scholar] [CrossRef] [PubMed]
- Ogunade, I.M.; Jiang, Y.; Pech Cervantes, A.A.; Kim, D.H.; Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Franco, M.; Ding, Z.; Hao, L.; Ke, W.; Wang, M.; Xie, D.; Li, Z.; Zhang, Y.; Ai, L.; et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J. Anim. Sci. Biotechnol. 2022, 13, 7. [Google Scholar] [CrossRef]
- Xu, J.; Peng, S.; Xiong, Y.; Zheng, Z.; Liu, M.; Xu, J.; Chen, W.; Liu, M.; Kong, J.; Wang, C.; et al. A review on fermented vegetables: Microbial community and potential upgrading strategy via inoculated fermentation. Compr. Rev. Food. Sci. Food Saf. 2024, 23, e13362. [Google Scholar] [CrossRef]
- Yang, C.; Huang, B.; Lin, J.; Yang, Q.; Guo, Y.; Liu, D.; Sun, B. Isolation and screening of high biofilm producing lactic acid bacteria, and exploration of its effects on the microbial hazard in corn straw silage. J. Hazard. Mater. 2024, 480, 136009. [Google Scholar] [CrossRef]
- Dong, Z.; Shao, T.; Li, J.; Yang, L.; Yuan, X. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile Napier grass silages. J. Dairy Sci. 2020, 103, 4288–4301. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, X.; Li, J.; Dong, Z.; Shao, T. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresour. Technol. 2019, 275, 280–287. [Google Scholar] [CrossRef]
- Wang, S.; Shao, T.; Li, J.; Zhao, J.; Dong, Z. Fermentation Profiles, Bacterial Community Compositions, and Their Predicted Functional Characteristics of Grass Silage in Response to Epiphytic Microbiota on Legume Forages. Front. Microbiol. 2022, 13, 830888. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Xing, Y.; Zheng, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q.; Marco, M.L. Dynamics of Bacterial Community and Fermentation Quality during Ensiling of Wilted and Unwilted Moringa oleifera Leaf Silage with or without Lactic Acid Bacterial Inoculants. mSphere 2019, 4, e00341-19. [Google Scholar] [CrossRef]
- Guo, L.; Yao, D.; Li, D.; Lin, Y.; Bureenok, S.; Ni, K.; Yang, F. Effects of Lactic Acid Bacteria Isolated From Rumen Fluid and Feces of Dairy Cows on Fermentation Quality, Microbial Community, and in vitro Digestibility of Alfalfa Silage. Front. Microbiol. 2019, 10, 2998. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Jin, L.; Niu, Y.D.; Huang, Q.; McAllister, T.A.; Yang, H.E.; Denise, H.; Xu, Z.; Acharya, S.; Wang, S.; et al. Condensed Tannins Affect Bacterial and Fungal Microbiomes and Mycotoxin Production during Ensiling and upon Aerobic Exposure. Appl. Environ. Microbiol. 2018, 84, e02274-17. [Google Scholar] [CrossRef]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef]
- Liang, J.; Li, G.; Hou, L.; Zhao, M.; Cai, L. Leptosphaerulina species isolated from golf turfgrass in China, with description of L. macrospora, sp. nov. Mycologia 2021, 113, 956–967. [Google Scholar] [CrossRef]
- Huo, H.; Huangfu, J.; Song, P.; Zhang, D.; Shi, Z.; Zhao, L.; Li, Z.; Zhou, H. Isolation, Identification and Characterization of Leptosphaerulina trifolii, the Causative Agent of Alfalfa Leptosphaerulina Leaf Spot in Inner Mongolia, China. Agronomy 2024, 14, 1156. [Google Scholar] [CrossRef]
- Liu, X.P.; Jing, X.M.; Yan, H.X.; Li, G.L.; Luo, Y.H. First Report of Leptosphaerulina Leaf Spot Caused by Leptosphaerulina trifolii on Alfalfa in Heilongjiang Province, China. Plant Dis. 2019, 103, 2673. [Google Scholar] [CrossRef]
- Xu, S.; Yang, J.; Qi, M.; Smiley, B.; Rutherford, W.; Wang, Y.; McAllister, T.A. Impact of Saccharomyces cerevisiae and Lactobacillus buchneri on microbial communities during ensiling and aerobic spoilage of corn silage1. J. Anim. Sci. 2019, 97, 1273–1285. [Google Scholar] [CrossRef]
- Huhtanen, P.; Rinne, M.; Nousiainen, J. Evaluation of the factors affecting silage intake of dairy cows: A revision of the relative silage dry-matter intake index. Animal 2007, 1, 758–770. [Google Scholar] [CrossRef]
- Jonsson, A.; Pahlow, G. Systematic classification and biochemical characterization of yeast growing in grass silage inoculated with lactobacillus cultures. Anim. Res. Dev. A Biannu. Collect. Recent Ger. Contrib. Concern. Dev. Through Anim. Res. 1984, 20, 7–22. [Google Scholar]
- Brzonkalik, K.; Hümmer, D.; Syldatk, C.; Neumann, A. Influence of pH and carbon to nitrogen ratio on mycotoxin production by Alternaria alternata in submerged cultivation. AMB Express 2012, 2, 28. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Sun, R.; Ou, W.; Chen, S.; Hou, G.; Zhou, H. Co-Ensiling Whole-Plant Cassava with Corn Stalk for Excellent Silage Production: Fermentation Characteristics, Bacterial Community, Function Profile, and Microbial Ecological Network Features. Agronomy 2024, 14, 501. [Google Scholar] [CrossRef]
- Du, G.; Zhang, G.; Shi, J.; Zhang, J.; Ma, Z.; Liu, X.; Yuan, C.; Li, X.; Zhang, B. Keystone Taxa Lactiplantibacillus and Lacticaseibacillus Directly Improve the Ensiling Performance and Microflora Profile in Co-Ensiling Cabbage Byproduct and Rice Straw. Microorganisms 2021, 9, 1099. [Google Scholar] [CrossRef]
- Chang, L.S.; Wang, W.Q.; Yang, Y.; Yang, H.; Yang, J.B.; Du, G.Z.; Zhang, T.F.; Yi, X.G.; Xiao, G.L.; Chen, B. Study on the composition of culturable gut bacteria in the larvae of Yunnan population of Tuta absoluta and the degradation for macromolecular compounds. J. Environ. Entomol. 2022, 44, 1240–1251. [Google Scholar]
- Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- Lei, L.; Gu, J.; Wang, X.; Song, Z.; Wang, J.; Yu, J.; Hu, T.; Dai, X.; Xie, J.; Zhao, W. Microbial succession and molecular ecological networks response to the addition of superphosphate and phosphogypsum during swine manure composting. J. Environ. Manag. 2021, 279, 111560. [Google Scholar] [CrossRef]
CP | EE | NDF | ADF | Ash | CF | HC | CEL | ADL | References |
---|---|---|---|---|---|---|---|---|---|
8.18 | 2.73 | 41.35 | 38.10 | ND | ND | 3.25 | ND | ND | [23] |
9.8 | 3.10 | 57.60 | 39.50 | ND | ND | 18.10 | ND | ND | [24] |
12.20 | 2.60 | 49.17 | 40.80 | ND | ND | 8.37 | ND | ND | [25] |
8.80 | 2.10 | 59.00 | 43.00 | ND | ND | 16.00 | ND | ND | [26] |
7.70 | 2.11 | 60.20 | 53.70 | 11.70 | 41.7 | 6.55 | ND | ND | [4] |
8.95 | 2.17 | 39.34 | 31.96 | 11.03 | ND | 7.38 | ND | ND | [27] |
8.93 | 2.67 | 47.30 | 32.50 | 9.25 | 40.52 | 14.80 | 26.73 | 5.77 | [28] |
12.04 | 2.31 | 46.92 | 35.95 | 9.98 | ND | 10.97 | ND | ND | [6] |
10.44 | 2.41 | 37.70 | 34.50 | 16.80 | ND | 3.20 | 26.57 | 7.93 A | [20] |
7.16 | 2.06 | 55.43 | 51.55 | 10.56 | ND | 3.88 | 39.87 | 11.68 B | |
7.79 | 3.69 | ND | 46.16 | 10.07 | 32.20 | ND | 26.05 | 20.11 C | [29] |
Items | CP | EE | NDF | ADF | Reference |
---|---|---|---|---|---|
Whole-plant corn silage | 8.26 | 2.06 | 48.36 | 30.38 | [6] |
Peanut vine silage | 12.37 | 3.43 | 42.31 | 37.74 | |
Whole-plant flint corn silage | 6.13 | 3.51 | 50.55 | 29.83 | [34] |
Foxtail millet silage | 11.5 | 3.3 | 57.9 | 40.8 | [26] |
Corn silage | 8.48 | 2.19 | 57.8 | 42.7 | [35] |
Black oat silage | 5.61 | 2.06 | 71.4 | 54.1 | |
Soybean silage | 12.6 | 4.40 | 54.8 | 48.0 | |
Alfalfa silage | 23.3 | ND | 31.6 | 26.0 | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Teng, C.; Wang, J.; Liang, Y.; Jing, X.; Zhong, R.; Chen, L.; Zhang, H. From Field to Fermentation: Optimizing Peanut Vine Nutrients Through Advanced Harvest and Silage Practices. Agronomy 2025, 15, 1271. https://doi.org/10.3390/agronomy15061271
Li K, Teng C, Wang J, Liang Y, Jing X, Zhong R, Chen L, Zhang H. From Field to Fermentation: Optimizing Peanut Vine Nutrients Through Advanced Harvest and Silage Practices. Agronomy. 2025; 15(6):1271. https://doi.org/10.3390/agronomy15061271
Chicago/Turabian StyleLi, Kai, Chunran Teng, Junhong Wang, Yuxiang Liang, Xiaokang Jing, Ruqing Zhong, Liang Chen, and Hongfu Zhang. 2025. "From Field to Fermentation: Optimizing Peanut Vine Nutrients Through Advanced Harvest and Silage Practices" Agronomy 15, no. 6: 1271. https://doi.org/10.3390/agronomy15061271
APA StyleLi, K., Teng, C., Wang, J., Liang, Y., Jing, X., Zhong, R., Chen, L., & Zhang, H. (2025). From Field to Fermentation: Optimizing Peanut Vine Nutrients Through Advanced Harvest and Silage Practices. Agronomy, 15(6), 1271. https://doi.org/10.3390/agronomy15061271