Soil Conservation and Influencing Factors in Xiangyang City, Hanjiang River Basin
Abstract
1. Introduction
2. Study Area
3. Data Sources and Research Methods
3.1. Data Sources
3.2. Research Method
3.2.1. Calculation of Soil Conservation
Input Model Data | Data Type/Parameter | Data Source | Type | Pixel Size (m) |
---|---|---|---|---|
Land use data | Land type | Earth System Science Data Discussions | Raster | 30 × 30 |
DEM | Altitude | Geospatial Data Cloud | Raster | 30 × 30 |
Rainfall erosivity factor | Precipitation | National Tibetan Plateau/Third Pole Environment Data Center | Raster | 30 × 30 |
Soil erodibility factor | Organic carbon, sand, and sticky soil gravel | Harmonized World Soil Database | Raster | 30 × 30 |
Watersheds | Boundary | National Catalogue Service For Geographic Information | Shape | - |
Biophysical table | Table 2 | InVEST guidebook; related literature | CSV | - |
Threshold flow accumulation | 1000 | InVEST guidebook; related literature | Constant | - |
Borselli k | 0.5 | InVEST guidebook; related literature | Constant | - |
Borselli IC0 | 0.8 | InVEST guidebook; related literature | Constant | - |
SDRMAX | 0.5 | InVEST guidebook; related literature | Constant | - |
LULC | Lucode | C | p |
---|---|---|---|
Cropland | 1 | 0.23 | 0.75 |
Forest | 2 | 0.05 | 0.15 |
Grassland | 3 | 0.06 | 0.35 |
Wetland | 4 | 0 | 0 |
Built-up areas | 5 | 0 | 0 |
Bare land | 6 | 1 | 1 |
3.2.2. Rainfall Erosivity Factor (R)
3.2.3. Soil Erodibility Factor (K)
3.2.4. Vegetation Coverage and Soil and Water Conservation Measure Factors (CP)
3.2.5. Slope Length and Gradient Factor (LS)
3.2.6. InVEST Model
3.2.7. PLUS Contribution Analysis
4. Results
4.1. Temporal and Spatial Evolution Characteristics of Soil Conservation
4.2. Characteristics of Interannual Variation in Soil Conservation
4.3. Spatial Variation Characteristics of Soil Conservation
4.4. Analysis of Impacts of Different Land Use Types on Soil Conservation
4.5. Analysis of Factors Affecting Soil Conservation
5. Discussion
5.1. Analysis of Dynamic Changes in Soil Conservation
5.2. Analysis of Driving Factors for Soil Conservation
5.3. Soil Conservation Recommendations
6. Conclusions
- (1)
- Soil conservation in the study area showed an interannual variation pattern of first decreasing and then increasing. The year 2010 was a critical period for urbanization development, during which urban areas rapidly expanded, construction land increased, and surrounding farmland, forests, and other areas were encroached upon. The land type changed from one with a higher soil conservation capacity to one with a lower soil conservation capacity, resulting in a decrease in overall soil conservation in 2010. Since the 12th Five Year Plan of Xiangyang City in 2012 was announced, emphasis has been placed on the development of forest resources in the southwestern mountainous areas. Industrial development is prohibited within protected areas, and an ecological security guarantee system is established to strengthen the ecological barrier. The government attaches great importance to the construction of forest resources in the western mountainous areas while also taking into account the protection of arable land in the eastern region. The increase in forest resources led to an increase in soil conservation in the entire area of Xiangyang city.
- (2)
- The high-value areas of soil conservation were mainly distributed in the central, southwestern, and northwestern regions of the study area, while the low-value areas were mainly distributed in the eastern region. The soil conservation amount varied among the different land types, specifically manifested as forest land > cultivated land > grassland > cropland > wetland > unused land. The total amount of soil conservation in different administrative regions, from high to low, was as follows: Baokang > Nanzhang > Gucheng > Zaoyang > Xiangzhou > Yicheng > Laohekou > Xiangcheng > Fancheng. Baokang, Nanzhang, Gucheng, and other places are mainly characterized by mountainous landforms, with forest land being the main land use type. In contrast, the eastern regions of Zaoyang and Yicheng are mainly characterized by hilly and plain farmland, while Xiangzhou, Xiangcheng, Fancheng, and other urban areas have construction land as their main land use type. The soil conservation function of forest land is strong, while the soil conservation capacity of farmland and construction land is weak, resulting in different soil conservation levels in different administrative regions.
- (3)
- In the analysis of factors affecting ecosystem service functions, it was found that the overall importance of natural factors was higher than that of socioeconomic factors. The DEM and NDVI factors had the most significant impact; the slope factor was the most stable factor; and the precipitation and temperature factors were the most unstable. The importance ranking of socioeconomic factors in soil conservation services is rising, with an opposite trend to that of soil conservation. Socioeconomic factors mainly affect soil conservation due to changes in land use caused by human activities. The increase in population means that people need to build more houses to live in, and people will change the surrounding land type, which directly affects soil conservation. The impact of frequent human activities on soil conservation deserves further in-depth discussion. Therefore, in subsequent ecological protection and governance work, the research area should focus on strengthening the supervision and control of human activities.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, L. Soil erosion assessment and threat analysis in Heishui river basin based on inVEST model. Southwest China J. Agric. Sci. 2021, 34, 1892–1899. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Liu, X.; Nian, L.; Yang, Y.; Liu, X. Spatial and Temporal Coupling Relationship Between Alpine Grassland Vegetation and Soil Water Conservation Function. J. Soil Water Conserv. 2023, 37, 243–251, 274. [Google Scholar] [CrossRef]
- Zhang, X.; He, S.; Yang, Y. Evaluation of wetland ecosystem services value of the yellow river delta. Environ. Monit. Assess. 2021, 193, 353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, L.; He, H.; Ren, X.; Niu, Z.; Lü, Y.; Xu, Q.; Chang, Q.; Liu, W.; Li, P. Quality changes of China′s ter-restrial ecosystem based on reference system. Acta Ecol. Sin. 2021, 41, 7100–7113. [Google Scholar] [CrossRef]
- Ke, Q.; Zhou, Q.; Zhuang, B. Construction of ecological security pattern in Guangdong-Hong Kong-Macao Greater Bay Area based on the balance of ecosystem services supply and demand. J. Ecol. 2024, 44, 1765–1779. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, Q.; Liang, J.; Zhang, J.; Wang, C.; Zhang, Z. Impacts of landscape pattern on ecosystem services: A case study of the Hanjiang Eco-Economic Belt. World Reg. Stud. 2023, 32, 152–165. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Daryanto, S.; Fu, B.; Wang, S.; Liu, Y. Metacoupling supply and demand for soil conservation service. Curr. Opin. Environ. Sustain. 2018, 33, 136–141. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Angarita, H.; Kareiva, P.; Leon, J.; Mandle, L.; Wolny, S.; Davies, J.; Fisher, D.; et al. InVEST 3.2. 0 User’s Guide; The Natural Capital Project, Stanford: Stanford, CA, USA, 2018; Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 4 March 2024).
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [PubMed]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Sikder, S.; Korzhenevych, A. Application of an interdisciplinary research framework for discerning land use transitions in the peri-urban areas of India. Appl. Geogr. 2023, 155, 102944. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Dong, J.; Liu, Y.; Meersmans, J.; Li, H.; Wu, J. Applying ant colony algorithm to identify ecological security patterns in megacities. Environ. Modell. Softw. 2019, 117, 214–222. [Google Scholar] [CrossRef]
- Dong, J.; Lyu, Y. Appraisal of urban land ecological security and analysis of influencing factors: A case study of Hefei city, China. Environ. Sci. Pollut. Res. 2022, 29, 90803–90819. [Google Scholar] [CrossRef]
- Nie, W.; Shi, Y.; Siaw, M.J.; Yang, F.; Wu, R.; Wu, X.; Zheng, X.; Bao, Z. Constructing and optimizing ecological network at county and town Scale: The case of Anji County, China. Ecol. Indic. 2021, 132, 108294. [Google Scholar] [CrossRef]
- Bouguerra, S.; Jebari, S. Identification and prioritization of sub-watersheds for land and water management using InVEST SDR model: Rmelriver basin, Tunisia. Arab. J. Geosci. 2017, 10, 348. [Google Scholar] [CrossRef]
- Ougougdal, H.A.; Khebiza, M.Y.; Messouli, M.; Bounoua, L. Delineation of vulnerable areas to water erosion in a mountain region using SDR-InVEST model: A case study of the Ourika watershed, Morocco. Sci. Afr. 2020, 10, e646. [Google Scholar] [CrossRef]
- Gashaw, T.; Bantider, A.; Zeleke, G.; Alamirew, T.; Jemberu, W.; Worqlul, A.W.; Dile, Y.T.; Bewket, W.; Meshesha, D.T.; Adem, A.A. Evaluating InVEST model for estimating soil loss and sediment export in data scarce regions of the Abbay (Upper Blue Nile) Basin: Implications for land managers. Environ. Chall. 2021, 5, 100381. [Google Scholar] [CrossRef]
- Guo, Z.; Yan, Z.; PaErHaTi, M.; He, R.; Yang, H.; Wang, R.; Ci, H. Assessment of soil erosion and its driving factors in the Huaihe region using the InVEST-SDR model. Geocarto Int. 2023, 38, 2213208. [Google Scholar] [CrossRef]
- Abeysingha, N.S.; Muthunayaka, C.H.; Nirmanee, K.; Amarasekara, M.; Ray, L. Application of InVEST SDR model to assess soil erosion and sediment export: A case study from Deduru Oya River Basin, Sri Lanka. J. Agric. Eng. 2023, 60, 419–431. [Google Scholar] [CrossRef]
- Alaoui, H.I.; Chemchaoui, A.; Kacem, H.A. Economic valuation of sediment retention services in the Oued-Beht watershed (Morocco): A spatiotemporal analysis using InVEST SDR-InVEST model. Ecol. Front. 2024, 44, 1158–1168. [Google Scholar] [CrossRef]
- Ureta, J.C.; Trespalacio, G.M.; Anastacio, N.J.C.; Sapugay, A.F.; Ureta, J.U. Estimating Sediment Export and Retention Capacity of Existing Land Cover in Balanac and Sta. Cruz Watersheds, Philippines Using InVEST-SDR Model. Philipp. J. Sci. 2022, 151, 1963–1978. Available online: https://philjournalsci.dost.gov.ph/images/pdf/pjs_pdf/vol151no5/estimating_sediment_export_and_retention_capacity_of_existing_land_cover_in_Balanac_Sta_Cruz_watersheds_.pdf (accessed on 12 December 2024). [CrossRef]
- Wang, D.; Li, Z.; Zeng, G.; Nie, X.; Liu, C. Evaluation of Regionalization of Soil and Water Conservation in China. Sustainability 2018, 10, 3320. [Google Scholar] [CrossRef]
- Yu, T.; Zheng, S.; Zhu, J.; Tang, M.; Dong, R.; Wang, Y. Evaluation on the ecological security status in Nanyang City, the water source region of the Middle Route of South-to-North Water Diversion Project in China. Acta Ecol. Sin. 2021, 41, 7292–7300. [Google Scholar] [CrossRef]
- Huo, Z.; Feng, S.; Kang, S.; Li, W.; Chen, S. Effect of climate changes and water-related human activities on annual stream flows of the Shiyang river basin in arid north-west China. Hydrol. Process. 2008, 22, 3155–3167. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, G.; Lu, Y. Evaluation of urban wetland landscapes based on a comprehensive model—A comparative study of three urban wetlands in Hangzhou, China. Environ. Res. Commun. 2023, 5, 035004. [Google Scholar] [CrossRef]
- Nolte, C. High-resolution land value maps reveal underestimation of conservation costs in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 29577–29583. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J. Identifying priority areas for biodiversity conservation based on Marxan and InVEST model. Landsc. Ecol. 2022, 37, 3043–3058. [Google Scholar] [CrossRef]
- Fu, K.; Jia, G.; Yu, X.; Chen, L. Analysis of temporal and spatial carbon stock changes and driving mechanism in Xinjiang region by coupled PLUS-InVEST-Geodector model. Huan Jing Ke Xue = Huanjing Kexue 2024, 45, 5416–5430. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shao, Z.; Xia, C.; Fang, K.; Chen, R.; Zhou, J. Ecosystem services assessment based on land use simulation: A case study in the Heihe River Basin, China. Ecol. Indic. 2022, 143, 109402. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Zhang, C.; Yang, H. Spatio-temporal evolution and prediction of carbon storage in Guilin based on FLUS and InVEST models. Remote Sens. 2023, 15, 1445. [Google Scholar] [CrossRef]
- Wu, X.; Shen, C.; Shi, L.; Wan, Y.; Ding, J.; Wen, Q. Spatio-temporal evolution characteristics and simulation prediction of carbon storage: A case study in Sanjiangyuan Area, China. Ecol. Inform. 2024, 80, 102485. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, Y.; Han, Z. Research on spatial patterns and sustainable development of rural tourism destinations in the Yellow River Basin of China. Land 2021, 10, 849. [Google Scholar] [CrossRef]
- Liu, M.; Liu, M.; Zhao, Y. Research on the Countermeasures of Rural Tourism Development in Xiangyang City. In Proceedings of the 2nd International Conference on Management, Economy and Law (ICMEL 2021), Moscow, Russia, 15–16 September 2021; Atlantis Press: Dordrecht, The Netherlands, 2021; pp. 251–256. [Google Scholar]
- Liu, C.; Yang, Q.; Zhou, F.; Ai, R.; Cheng, L. Assessing production–living–ecological spaces and its urban–rural gradients in Xiangyang City, China: Insights from land-use function symbiosis. Environ. Sci. Pollut. Res. 2024, 31, 13688–13705. [Google Scholar] [CrossRef]
- Zuo, Q.; Luo, Z.; Ding, X. Harmonious development between socio-economy and river-lake water systems in Xiangyang City, China. Water 2016, 8, 509. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, H. Spatial and temporal evolution of tourism ecological security in the old revolutionary region of the Dabie Mountains from 2001 to 2020. Sustainability 2022, 14, 10762. [Google Scholar] [CrossRef]
- Xiao, Q.; Hu, D.; Xiao, Y. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir region of China. J. Clean. Prod. 2017, 163, S172–S180. [Google Scholar] [CrossRef]
- Hu, X.; Li, Z.; Nie, X.; Wang, D.; Huang, J.; Deng, C.; Shi, L.; Wang, L.; Ning, K. Regionalization of soil and water conservation aimed at ecosystem services improvement. Sci. Rep. 2020, 10, 3469. [Google Scholar] [CrossRef]
- Ma, M.Y.; Yu, Y.L.; Guo, J.; Zhao, N.; Li, X.; Xu, W. Heavy metal pollution characteristics and potential ecological risk assessment in surface sediments from small and medium rivers of the branches of Xiangyang section, Hanjiang River. Acta Sci. Circumstantiae 2019, 39, 3144–3153. [Google Scholar] [CrossRef]
- Jia, H. Research on the rural homestay in Xiangyang City. In Proceedings of the 2018 International Seminar on Education Research and Social Science (ISERSS 2018), Kuala Lumpur, Malaysia, 27–29 July 2018; Atlantis Press: Dordrecht, The Netherlands, 2018; pp. 230–233. [Google Scholar] [CrossRef]
- Ma, X.; Li, J.; Yu, Y.; Xu, X. Water Ecological Security Pattern Based on Hydrological Regulation Service: A Case Study of the Upper Hanjiang River. Sustainability 2024, 16, 7913. [Google Scholar] [CrossRef]
- Yang, X.; Li, W.; Zhang, P.; Chen, H.; Lai, M.; Zhao, S. The dynamics and driving mechanisms of rural revitalization in western China. Agriculture 2023, 13, 1448. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Wang, Q. Utilization of foreign investment in the productive service industry in Hubei province, China and its optimization counter-measures. PLoS ONE 2024, 19, e0302494. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, T.; Nijkamp, P.; Xie, X.; Liu, J. Farmers’ livelihood adaptability in rural tourism destinations: An evaluation study of rural revitalization in China. Sustainability 2020, 12, 9544. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Risse, L.M.; Nearing, M.A. Evaluation of WEPP and its comparison with USLE and RUSLE. Trans. ASAE 2000, 43, 1129–1135. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Esmaeili, A. Improvement to the prediction of the USLE K factor. Geomorphology 2014, 204, 229–234. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G. A system of erosion—Sediment yield models. Soil Technol. 1997, 11, 43–55. [Google Scholar] [CrossRef]
- Renard, K.G.; Ferreira, V.A. RUSLE model description and database sensitivity. J. Environ. Qual. 1993, 22, 458–466. [Google Scholar] [CrossRef]
- El-Hassanin, A.S.; Labib, T.M.; Gaber, E.I. Effect of vegetation cover and land slope on runoff and soil losses from the watersheds of Burundi. Agric. Ecosyst. Environ. 1993, 43, 301–308. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, L.; Ma, R.; Jia, Y.; Yang, F.; Zhou, H.; Cao, X. Influence of soil moisture content and soil and water conservation measures on time to runoff initiation under different rainfall intensities. Catena 2019, 182, 104172. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Gong, J.; Fu, B.; Huang, Y. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. Catena 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Muliastuty, W.O.; Sitorus, S.R.; Poerwanto, R.; Hardjomidjojo, H. An analysis of soil erosion, value of crop management and conservation practice factor of red pepper crop under different ridge types. J. Environ. Earth Sci. 2015, 5, 130–137. Available online: https://core.ac.uk/download/pdf/234664428.pdf (accessed on 13 April 2025).
- McCool, D.K.; Foster, G.R.; Weesies, G.A. Slope length and steepness factors (LS). In Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture: Washington, DC, USA, 1997; Volume 703. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K. A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences 2015, 5, 117–126. [Google Scholar] [CrossRef]
- Bhattacharya, R.K.; Chatterjee, N.D.; Das, K. Modelling of soil erosion susceptibility incorporating sediment connectivity and export at landscape scale using integrated machine learning, InVEST-SDR and Fragstats. J. Environ. Manag. 2024, 353, 120164. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Ling, M.; Chen, J.; Lan, Y.; Chen, Z.; You, H.; Han, X.; Zhou, G. Exploring the Drivers of Soil Conservation Variation in the Source of Yellow River under Diverse Development Scenarios from a Geospatial Perspective. Sustainability 2024, 16, 777. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Xiao, H.; Ning, K.; Tang, C. Effects of land use and land cover on soil erosion control in southern China: Implications from a systematic quantitative review. J. Environ. Manag. 2021, 282, 111924. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Fang, N.; Wang, X.; Piao, S.; Chan, C.N.; Li, S.; Zeng, Y.; Shi, Z.; Tian, M.; Xu, Y.J. Substantially enhanced landscape carbon sink due to reduced terrestrial-aquatic carbon transfer through soil conservation in the Chinese Loess Plateau. Earth’s Future 2023, 11, e2023E–e3602E. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, X.; Peng, H. The spatiotemporal changes and trade-off synergistic effects of ecosystem services in the Jianghan Plain of China under different scenarios. Environ. Res. Commun. 2024, 6, 035015. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, C.; Pang, J.; Zha, X.; Li, X.; Zhang, Y. Concentration of heavy metals in the modern flood slackwater deposits along the upper Hanjiang River valley, China. Catena 2014, 116, 123–131. [Google Scholar] [CrossRef]
- Liu, T.; Huang, C.C.; Pang, J.; Zha, X.; Zhou, Y.; Zhang, Y.; Ji, L. Late Pleistocene and Holocene palaeoflood events recorded by slackwater deposits in the upper Hanjiang River valley, China. J. Hydrol. 2015, 529, 499–510. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J. Quantitatively determining the priorities of regional ecological compensation for cultivated land in different main functional areas: A case study of Hubei province, China. Land 2021, 10, 247. [Google Scholar] [CrossRef]
- Cui, X.; Liu, C.; Shan, L.; Lin, J.; Zhang, J.; Jiang, Y.; Zhang, G. Spatial-Temporal responses of ecosystem services to land use transformation driven by rapid urbanization: A case study of Hubei Province, China. Int. J. Environ. Res. Public Health 2021, 19, 178. [Google Scholar] [CrossRef]
- Shao, S.; Yang, Y. Identification of ecological improvement zones in different ecological functional zones in northwest Hubei, China. Ecol. Indic. 2023, 155, 111032. [Google Scholar] [CrossRef]
- Song, M.; Huntsinger, L.; Han, M. How does the ecological well-being of urban and rural residents change with rural-urban land conversion? The case of Hubei, China. Sustainability 2018, 10, 527. [Google Scholar] [CrossRef]
- Mao, P.; Pang, J.; Huang, C.; Zha, X.; Zhou, Y.; Guo, Y.; Zhou, L. A multi-index analysis of the extraordinary paleoflood events recorded by slackwater deposits in the Yunxi Reach of the upper Hanjiang River, China. Catena 2016, 145, 1–14. [Google Scholar] [CrossRef]
- Li, H.; Yang, Q.; Nie, Z.; Zhang, G.; Shang, H. Influences and Environmental Effects on Different Soil Structure to Parameters of Vadose Zone. J. Soil. Water Conserv. 2002, 16, 100–102. [Google Scholar] [CrossRef]
- Zhou, P.; Luukkanen, O.; Tokola, T.; Nieminen, J. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 2008, 75, 319–325. [Google Scholar] [CrossRef]
- Junior, R.V.; Varandas, S.; Fernandes, L.S.; Pacheco, F.A.L. Environmental land use conflicts: A threat to soil conservation. Land Use Policy 2014, 41, 172–185. [Google Scholar] [CrossRef]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C. Global change pressures on soils from land use and management. Glob. Change Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef] [PubMed]
- Ogieriakhi, M.O.; Woodward, R.T. Understanding why farmers adopt soil conservation tillage: A systematic review. Soil Secur. 2022, 9, 100077. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Abrantes, J.R.C.B.; Prats, S.A.; Keizer, J.J.; de Lima, J.L.M.P. Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil Tillage Res. 2018, 180, 238–249. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.; Tang, C.; Shi, Z.; Yang, J. Efficacy of orchard terrace measures to minimize water erosion caused by extreme rainfall in the hilly region of China: Long-term continuous in situ observations. J. Environ. Manag. 2021, 278, 111537. [Google Scholar] [CrossRef]
- Hassangavyar, M.B.; Samani, A.N.; Rashidi, S.; Tiefenbacher, J.P. Catchment-scale soil conservation: Using climate, vegetation, and topo-hydrological parameters to support decision making and implementation. Sci. Total Environ. 2020, 712, 136124. [Google Scholar] [CrossRef]
- Renison, D.; Hensen, I.; Suarez, R.; Cingolani, A.M.; Marcora, P.; Giorgis, M.A. Soil conservation in Polylepis mountain forests of Central Argentina: Is livestock reducing our natural capital? Austral Ecol. 2010, 35, 435–443. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Yu, S.; Wang, Z.; Zhao, J.; Fang, N.; Xiao, H.; Wang, L.; Shi, Z. Soil conservation of sloping farmland in China: History, present, and future. Earth-Sci. Rev. 2024, 249, 104655. [Google Scholar] [CrossRef]
- Stašek, J.; Krása, J.; Mistr, M.; Dostál, T.; Devátý, J.; Středa, T.; Mikulka, J. Using a rainfall simulator to define the effect of soil conservation techniques on soil loss and water retention. Land 2023, 12, 431. [Google Scholar] [CrossRef]
Year | Soil Conservation | Cropland | Forest | Grassland | Wetland | Built-Up Areas | Bare Land | Total |
---|---|---|---|---|---|---|---|---|
2000 | Total | 1.34 × 109 | 2.05 × 109 | 0.02 × 109 | 0.12 × 109 | 0.10 × 109 | 0.0003 | 3.64 × 109 |
Proportion | 36.81% | 56.46% | 0.61% | 3.37% | 2.73% | 0.0090% | 100% | |
2010 | Total | 1.23 × 109 | 1.66 × 109 | 0.01 × 109 | 0.14 × 109 | 0.10 × 109 | 0.0000 | 3.14 × 109 |
Proportion | 39.18% | 52.77% | 0.21% | 4.60% | 3.22% | 0.0003% | 100% | |
2020 | Total | 1.27 × 109 | 2.32 × 109 | 0.00 × 109 | 0.14 × 109 | 0.13 × 109 | 0.0000 | 3.86 × 109 |
Proportion | 32.84% | 60.20% | 0.05% | 3.53% | 3.36% | 0.0001% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, X.; Liu, X.; Zhang, W.; Liu, S.; Xu, J.; Zeng, G. Soil Conservation and Influencing Factors in Xiangyang City, Hanjiang River Basin. Agronomy 2025, 15, 976. https://doi.org/10.3390/agronomy15040976
Liu X, Li X, Liu X, Zhang W, Liu S, Xu J, Zeng G. Soil Conservation and Influencing Factors in Xiangyang City, Hanjiang River Basin. Agronomy. 2025; 15(4):976. https://doi.org/10.3390/agronomy15040976
Chicago/Turabian StyleLiu, Xiaojing, Xuanhui Li, Xiaohuang Liu, Wei Zhang, Songhang Liu, Jiaqi Xu, and Guanzhong Zeng. 2025. "Soil Conservation and Influencing Factors in Xiangyang City, Hanjiang River Basin" Agronomy 15, no. 4: 976. https://doi.org/10.3390/agronomy15040976
APA StyleLiu, X., Li, X., Liu, X., Zhang, W., Liu, S., Xu, J., & Zeng, G. (2025). Soil Conservation and Influencing Factors in Xiangyang City, Hanjiang River Basin. Agronomy, 15(4), 976. https://doi.org/10.3390/agronomy15040976