Revolutionizing Salinized Farmland: How Salt-Controlled Irrigation Transforms Microbial Diversity and Soil Organic Matter in a Salt-Alkali Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Soil Physical and Chemical Properties and Microbial Analysis
2.3. Statistical Analysis
3. Results
3.1. Changes in Soil Organic Matter Before and After Irrigation
3.2. The Soil and Surface Water Quality Before and After Irrigation
3.3. The Microbial Composition of Soil Before and After Irrigation
3.4. Key Factors Affecting Soil Dissolved Organic Matter Before and After Irrigation
4. Discussion
4.1. Effects of Salt-Controlled Irrigation on Soil and Water Quality
4.2. Factors Affecting Microbial and DOM Compositions in Salt Farmland
4.3. Mechanism of Microbial Control on DOM Characteristics with Salt-Controlled Irrigation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Koegel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.T.; Liu, Z.X.; Wei, T.Y.; Xie, G.H. Evaluation of energy input and output of sweet sorghum grown as a bioenergy crop on coastal saline-alkali land. Energy 2012, 47, 166–173. [Google Scholar] [CrossRef]
- Heng, T.; Liao, R.; Wang, Z.; Wu, W.; Li, W.; Zhang, J. Effects of combined drip irrigation and sub-surface pipe drainage on water and salt transport of saline-alkali soil in Xinjiang, China. J. Arid Land 2018, 10, 932–945. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Ma, C.; Lei, C.-Y.; Zhu, X.-L.; Ren, C.-G.; Liu, N.; Liu, Z.-Y.; Du, H.; Tang, T.; Li, R.-Z.; Cui, H.-L. Saline-alkali land amendment and value development: Microalgal biofertilizer for efficient production of a halophytic crop—Chenopodium quinoa. Land Degrad. Dev. 2023, 34, 956–968. [Google Scholar] [CrossRef]
- Du, Y.; Liu, X.; Zhang, L.; Zhou, W. Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Sci. Total Environ. 2023, 880, 163226. [Google Scholar] [CrossRef]
- Baloch, M.Y.J.; Zhang, W.; Sultana, T.; Akram, M.; Shoumik, B.A.; Khan, M.Z.; Farooq, M.A. Utilization of sewage sludge to manage saline-alkali soil and increase crop production: Is it safe or not? Environ. Technol. Innov. 2023, 32, 103266. [Google Scholar] [CrossRef]
- Liu, C.; Shang, H.; Han, L.; Sun, X. Effect of alkali residue and humic acid on aggregate structure of saline-alkali soil. Soil Sci. Soc. Am. J. 2024, 88, 291–303. [Google Scholar] [CrossRef]
- Heng, T.; He, X.-L.; Yang, L.-L.; Xu, X.; Feng, Y. Mechanism of Saline-Alkali land improvement using subsurface pipe and vertical well drainage measures and its response to agricultural soil ecosystem. Environ. Pollut. 2022, 293, 118535. [Google Scholar] [CrossRef]
- Dong, W.; Guo, J.; Xu, L.; Song, Z.; Zhang, J.; Tang, A.; Zhang, X.; Leng, C.; Liu, Y.; Wang, L.; et al. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China. J. Environ. Sci. 2018, 64, 289–297. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Liu, X.; Sun, H. Evaluating soil water and salt transport in response to varied rainfall events and hydrological years under brackish water irrigation in the North China Plain. Geoderma 2022, 422, 115954. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, H.; Zhang, P.; Bai, Y.; Zhang, Q. Impact of Changing Irrigation Patterns on Saltwater Dynamics of Soil in Farmlands and their Shelterbelts in the Irrigated Zone of Kalamiji oasis. Irrig. Drain. 2015, 64, 393–399. [Google Scholar] [CrossRef]
- Sun, S.M.; Yang, P.L.; An, Q.X.; Xu, R.; Yao, B.L.; Li, F.Y.; Zhang, X.X. Investigation into surface and subsurface drip irrigation for jujube trees grown in saline soil under extremely arid climate. Eur. J. Hortic. Sci. 2016, 81, 165–174. [Google Scholar] [CrossRef]
- Chen, L.; Yue, S.; Sun, L.; Gao, M.; Wang, R. Study on the Effects of Irrigation Quotas and Amendments on Salinized Soil and Maize Growth. Water 2024, 16, 2194. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Miao, Q.; Feng, L.; Chi, Z.; Li, Z.; Li, W. Effect of Subsurface Drainage in Regulating Water on Desalinization and Microbial Communities in Salinized Irrigation Soils. Agronomy 2024, 14, 282. [Google Scholar] [CrossRef]
- Tian, F.; Miao, Q.; Shi, H.; Li, R.; Dou, X.; Duan, J.; Liu, J.; Feng, W. Study on Water and Salt Transport under Different Subsurface Pipe Arrangement Conditions in Severe Saline-Alkali Land in Hetao Irrigation District with DRAINMOD Model. Water 2023, 15, 3001. [Google Scholar] [CrossRef]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Soong, J.L.; Horton, A.J.; Campbell, E.E.; Haddix, M.L.; Wall, D.H.; Parton, A.J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 2015, 8, 776. [Google Scholar] [CrossRef]
- Roth, V.-N.; Lange, M.; Simon, C.; Hertkorn, N.; Bucher, S.; Goodall, T.; Griffiths, R.I.; Mellado-Vazquez, P.G.; Mommer, L.; Oram, N.J.; et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. 2019, 12, 755. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.A.; Shinfuku, M.; Junier, P.; Poirier, S.; Verrecchia, E.; Sebag, D.; DeAngelis, K.M. Direct evidence for the role of microbial community composition in the formation of soil organic matter composition and persistence. Isme Commun. 2021, 1, 64. [Google Scholar] [CrossRef] [PubMed]
- Leinemann, T.; Preusser, S.; Mikutta, R.; Kalbitz, K.; Cerli, C.; Hoeschen, C.; Mueller, C.W.; Kandeler, E.; Guggenberger, G. Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles. Soil Biol. Biochem. 2018, 118, 79–90. [Google Scholar] [CrossRef]
- Friedel, J.K.; Langer, T.; Siebe, C.; Stahr, K. Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico. Biol. Fertil. Soils 2000, 31, 414–421. [Google Scholar] [CrossRef]
- Dalkmann, P.; Siebe, C.; Amelung, W.; Schloter, M.; Siemens, J. Does Long-Term Irrigation with Untreated Wastewater Accelerate the Dissipation of Pharmaceuticals in Soil? Environ. Sci. Technol. 2014, 48, 4963–4970. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Li, Y.; Bian, P.; Hu, Y.; Zhang, J.; Shen, W. Effects of irrigation on the fate of microplastics in typical agricultural soil and freshwater environments in the upper irrigation area of the Yellow River. J. Hazard. Mater. 2023, 447, 130766. [Google Scholar] [CrossRef]
- Grace, J.B. Structural Equation Modeling and Natural Systems; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Rusan, M.J.M.; Hinnawi, S.; Rousan, L. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Farhadkhani, M.; Nikaeen, M.; Yadegarfar, G.; Hatamzadeh, M.; Pourmohammadbagher, H.; Sahbaei, Z.; Rahmani, H.R. Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Res. 2018, 144, 356–364. [Google Scholar] [CrossRef]
- Li, W.; Liu, N.; Li, J.; Wang, B.; Shi, X.; Liang, X.; Yang, M.; Xu, S.; Liu, C.-Q. Chemodiversity of Dissolved Organic Matter Is Governed by Microbial Biogeography in Inland Waters. Environ. Sci. Technol. 2023, 57, 7753–7763. [Google Scholar] [CrossRef]
- Guo, G.-X.; Deng, H.; Qiao, M.; Yao, H.-Y.; Zhu, Y.-G. Effect of Long-Term Wastewater Irrigation on Potential Denitrification and Denitrifying Communities in Soils at the Watershed Scale. Environ. Sci. Technol. 2013, 47, 3105–3113. [Google Scholar] [CrossRef]
- Wang, B.; Liu, N.; Yang, M.; Wang, L.; Liang, X.; Liu, C.-Q. Co-occurrence of planktonic bacteria and archaea affects their biogeographic patterns in China’s coastal wetlands. Environ. Microbiome 2021, 16, 19. [Google Scholar] [CrossRef]
- Yang, M.; Shi, J.; Wang, B.; Xiao, J.; Li, W.; Liu, C.-Q. Control of Hydraulic Load on Bacterioplankton Diversity in Cascade Hydropower Reservoirs, Southwest China. Microb. Ecol. 2020, 80, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Nyirabuhoro, P.; Liu, M.; Xiao, P.; Liu, L.; Yu, Z.; Wang, L.; Yang, J. Seasonal Variability of Conditionally Rare Taxa in the Water Column Bacterioplankton Community of Subtropical Reservoirs in China. Microb. Ecol. 2020, 80, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Chefetz, B.; Mualem, T.; Ben-Ari, J. Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater. Chemosphere 2008, 73, 1335–1343. [Google Scholar] [CrossRef]
- Don, A.; Roedenbeck, C.; Gleixner, G. Unexpected control of soil carbon turnover by soil carbon concentration. Environ. Chem. Lett. 2013, 11, 407–413. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling downwards—Dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Steinbeiss, S.; Temperton, V.M.; Gleixner, G. Mechanisms of short-term soil carbon storage in experimental grasslands. Soil Biol. Biochem. 2008, 40, 2634–2642. [Google Scholar] [CrossRef]
- Deng, S.; Zheng, X.; Chen, X.; Zheng, S.; He, X.; Ge, T.; Kuzyakov, Y.; Wu, J.; Su, Y.; Hu, Y. Divergent mineralization of hydrophilic and hydrophobic organic substrates and their priming effect in soils depending on their preferential utilization by bacteria and fungi. Biol. Fertil. Soils 2021, 57, 65–76. [Google Scholar] [CrossRef]
- Zark, M.; Dittmar, T. Universal molecular structures in natural dissolved organic matter. Nat. Commun. 2018, 9, 3178. [Google Scholar] [CrossRef]
- Marschner, B.; Kalbitz, K. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 2003, 113, 211–235. [Google Scholar] [CrossRef]
- Yang, J.; Duan, Y.; Zhang, R.; Liu, C.; Wang, Y.; Li, M.; Ding, Y.; Awasthi, M.K.; Li, H. Connecting soil dissolved organic matter to soil bacterial community structure in a long-term grass-mulching apple orchard. Ind. Crops Prod. 2020, 149, 112344. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Yu, S.; Lv, J.; Jiang, L.; Geng, P.; Cao, D.; Wang, Y. Changes of Soil Dissolved Organic Matter and Its Relationship with Microbial Community along the Hailuogou Glacier Forefield Chronosequence. Environ. Sci. Technol. 2023, 57, 4027–4038. [Google Scholar] [CrossRef] [PubMed]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- Leresche, F.; Vialykh, E.A.; Rosario-Ortiz, F.L. Computational Calculation of Dissolved Organic Matter Absorption Spectra. Environ. Sci. Technol. 2021, 56, 491–500. [Google Scholar] [CrossRef]
- Liu, N.; Lou, X.; Li, X.; Shuai, Z.; Liu, H.; Jiang, Z.; Wei, S. Rhizosphere dissolved organic matter and iron plaque modified by organic amendments and its relations to cadmium bioavailability and accumulation in rice. Sci. Total Environ. 2021, 792, 148216. [Google Scholar] [CrossRef]
- Xu, X.; Kang, J.; Shen, J.; Zhao, S.; Wang, B.; Zhang, X.; Chen, Z. EEM-PARAFAC characterization of dissolved organic matter and its relationship with disinfection by-products formation potential in drinking water sources of northeastern China. Sci. Total Environ. 2021, 774, 145297. [Google Scholar] [CrossRef]
- Lu, R.K. Analysis Methods of Soil Agrochemistry; China Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr.-Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Osburn, C.L.; Handsel, L.T.; Mikan, M.P.; Paerl, H.W.; Montgomery, M.T. Fluorescence Tracking of Dissolved and Particulate Organic Matter Quality in a River-Dominated Estuary. Environ. Sci. Technol. 2012, 46, 8628–8636. [Google Scholar] [CrossRef]
- Sun, H.; Yu, R.; Liu, X.; Cao, Z.; Li, X.; Zhang, Z.; Wang, J.; Zhuang, S.; Ge, Z.; Zhang, L.; et al. Drivers of spatial and seasonal variations of CO2 and CH4 fluxes at the sediment water interface in a shallow eutrophic lake. Water Res. 2022, 222, 118916. [Google Scholar] [CrossRef]
- Li, X.; Yu, R.; Wang, J.; Sun, H.; Liu, X.; Ren, X.; Zhuang, S.; Guo, Z.; Lu, X. Greenhouse gas emissions from Daihai Lake, China: Should eutrophication and salinity promote carbon emission dynamics? J. Environ. Sci. 2024, 135, 407–423. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Wang, T.; Yang, Z.; Wen, X.; Yang, K.; Huang, Y.; Chen, W.; He, Y.; Shi, X.; et al. Resupply, diffusion, and bioavailability of Hg in paddy soil-water environment with flood-drain-reflood and straw amendment. Environ. Res. 2023, 231, 116127. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yu, R.; Yu, G.; Bai, Y.; Li, M.; Liu, Z.; Qu, S.; Miao, P.; Ma, H.; Zhang, T.; et al. Revolutionizing Salinized Farmland: How Salt-Controlled Irrigation Transforms Microbial Diversity and Soil Organic Matter in a Salt-Alkali Soil. Agronomy 2025, 15, 956. https://doi.org/10.3390/agronomy15040956
Yang X, Yu R, Yu G, Bai Y, Li M, Liu Z, Qu S, Miao P, Ma H, Zhang T, et al. Revolutionizing Salinized Farmland: How Salt-Controlled Irrigation Transforms Microbial Diversity and Soil Organic Matter in a Salt-Alkali Soil. Agronomy. 2025; 15(4):956. https://doi.org/10.3390/agronomy15040956
Chicago/Turabian StyleYang, Xu, Ruihong Yu, Guanglei Yu, Yansong Bai, Muhan Li, Zeyuan Liu, Shen Qu, Ping Miao, Hongli Ma, Tao Zhang, and et al. 2025. "Revolutionizing Salinized Farmland: How Salt-Controlled Irrigation Transforms Microbial Diversity and Soil Organic Matter in a Salt-Alkali Soil" Agronomy 15, no. 4: 956. https://doi.org/10.3390/agronomy15040956
APA StyleYang, X., Yu, R., Yu, G., Bai, Y., Li, M., Liu, Z., Qu, S., Miao, P., Ma, H., Zhang, T., & Jia, Y. (2025). Revolutionizing Salinized Farmland: How Salt-Controlled Irrigation Transforms Microbial Diversity and Soil Organic Matter in a Salt-Alkali Soil. Agronomy, 15(4), 956. https://doi.org/10.3390/agronomy15040956