Determining the Optimum Harvest Point in Oil Palm Interspecific Hybrids (O × G) to Maximize Oil Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Bunch and Fruit Morphological Changes
2.3. Bunch Components and Oil Quality Analyses
2.4. Experimental Design and Statistical Analysis
3. Results
3.1. Morphological Changes During Fruit and Bunch Morphological Development
3.2. Bunch Components
3.3. Oil Content and Quality Analysis in O × G Interspecific Hybrids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alhaji, A.M.; Almeida, E.S.; Carneiro, C.R.; da Silva, C.A.S.; Monteiro, S.; Coimbra, J.S.d.R. Palm Oil (Elaeis guineensis): A Journey through Sustainability, Processing, and Utilization. Foods 2024, 13, 2814. [Google Scholar] [CrossRef]
- Corley, R.H.V.; Tinker, P.B. The Oil Palm, 5th ed.; Wiley Blackwell: Oxford, UK, 2016. [Google Scholar]
- Fedepalma. Statistical Yearbook 2023. In The Oil Palm Agroindustry in Colombia and the World 2018–2022; Fedepalma: Bogota, Colombia, 2023; p. 237. [Google Scholar]
- Foreign Agricultural Service, U.S. Department of Agriculture. Oilseeds: World Markets and Trade; Foreign Agricultural Service, U.S. Department of Agriculture: Washington, DC, USA, 2024.
- Parveez, G.K.A.; Leow, S.S.; Kamil, N.D.; Madihah, A.Z.; Ithnin, M.; Ng, M.H.; Yusof, Y.A.; Idris, Z. Oil palm economic performance in Malaysia and R&D progress in 2023. J. Oil Palm Res. 2024, 36, 171–186. [Google Scholar]
- Soh, A.C.; Mayes, S.; Roberts, J.; Barcelos, E.; Amblard, P.; Alvarado, A.; Alvarado, J.H.; Escobar, R.; Sritharan, K.; Subramaniam, M. Elaeis oleifera × Elaeis guineensis interspecific hybrid improvement. In Oil Palm Breeding; CRC Press: Boca Raton, FL, USA, 2017; pp. 283–296. [Google Scholar]
- Barcelos, E.; Rios, S.d.A.; Cunha, R.N.; Lopes, R.; Motoike, S.Y.; Babiychuk, E.; Skirycz, A.; Kushnir, S. Oil palm natural diversity and the potential for yield improvement. Front. Plant Sci. 2015, 6, 190. [Google Scholar]
- Sunilkumar, K.; Mathur, R.K.; Sparjanbabu, D.S.; Pillai, R.S.N. Evaluation of interspecific oil palm hybrids for dwarfness. J. Plant. Crops 2015, 43, 29–34. [Google Scholar]
- Mozzon, M.; Foligni, R.; Mannozzi, C. Current Knowledge on Interspecific Hybrid Palm Oils as Food and Food Ingredient. Foods 2020, 9, 631. [Google Scholar] [CrossRef] [PubMed]
- Navia, E.A.; Vila, R.A.; Daza, E.E.; Restrepo, E.F.; Romero, H.M. Assessment of tolerance to bud rot in oil palm under field conditions. Eur. J. Plant Pathol. 2014, 140, 711–720. [Google Scholar] [CrossRef]
- Sundram, S.; Intan-Nur, A.M.A. South American Bud rot: A biosecurity threat to South East Asian oil palm. Crop Protect. 2017, 101, 58–67. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T. The BBCH system to coding the phenological growth stages of plants–history and publications. J. Kult. 2009, 61, 41–52. [Google Scholar]
- Hormaza, P.; Fuquen, E.M.; Romero, H.M. Phenology of the oil palm interspecific hybrid Elaeis oleifera × Elaeis guineensis. Sci. Agric. 2012, 69, 275–280. [Google Scholar] [CrossRef]
- Rincon, S.M.; Hormaza, P.A.; Moreno, L.P.; Prada, F.; Portillo, D.J.; García, J.A.; Romero, H.M. Use of phenological stages of the fruits and physicochemical characteristics of the oil to determine the optimal harvest time of oil palm interspecific O × G hybrid fruits. Ind. Crops Prod. 2013, 49, 204–210. [Google Scholar]
- Chang, C.; Parthiban, R.; Kalavally, V.; Hung, Y.M.; Wang, X. Unharvested palm fruit bunch ripeness detection with hybrid color correction. Smart Agric. Technol. 2024, 9, 100643. [Google Scholar]
- Forero, D.; Hormaza, P.; Romero, H. Phenological growth stages of African oil palm (Elaeis guineensis). Ann. Appl. Biol. 2012, 160, 56–65. [Google Scholar]
- Gillbanks, R.A. Standard agronomic procedures and practices. In Oil Palm. Management for Large and Sustainable Yields; Fairhurst, T., Härdter, R., Eds.; Potash & Phosphate Institute, International Potash Institute: Oxford, UK, 2003; pp. 115–150. [Google Scholar]
- Lai, J.W.; Ramli, H.R.; Ismail, L.I.; Wan Hasan, W.Z. Oil Palm Fresh Fruit Bunch Ripeness Detection Methods: A Systematic Review. Agriculture 2023, 13, 156. [Google Scholar] [CrossRef]
- Barcelos, E.; Amblard, P.; Berthaud, J.; Seguin, M. Genetic diversity and relationship in American and African oil palm as revealed by RFLP and AFLP molecular markers. Pesqui. Agropecu. Bras. 2002, 37, 1105–1114. [Google Scholar]
- Morcillo, F.; Serret, J.; Beckers, A.; Collin, M.; Tisné, S.; George, S.; Poveda, R.; Louise, C.; Tranbarger, T.J. A non-shedding fruit Elaeis oleifera palm reveals perturbations to hormone signaling, ROS homeostasis, and hemicellulose metabolism. Genes 2021, 12, 1724. [Google Scholar] [CrossRef]
- Moreno, L.P.; Romero, H.M. Phenology of the reproductive development of Elaeis oleifera (Kunth) Cortes. Agron. Colomb. 2015, 33, 29–35. [Google Scholar]
- Prada, F.; Romero, H.M. Muestreo y analisis de racimos en el cultivo de la palma de aceite. In Tecnologías para la Agroindustria de la Palma de Aceite, Guia de Facilitadores; Cenipalma: Bogotá, Colombia, 2012; p. 158. [Google Scholar]
- Widodo, P.; Nur, F.; Hafisah, E.; Forster, B.P.; Hasibuan, H.A. Bunch and Oil Analysis of Oil Palm: A Manual; CABI: Wallingford, UK, 2019; Volume 7. [Google Scholar]
- Sambanthamurthi, R.; Sundram, K.; Tan, Y.-A. Chemistry and biochemistry of palm oil. Prog. Lipid Res. 2000, 39, 507–558. [Google Scholar]
- Corley, R.H.V.; Tinker, P.B. The Oil Palm, 4th ed.; Blacwell Publishing Inc.: Oxford, UK, 2003; p. 562. [Google Scholar]
- Tranbarger, T.J.; Dussert, S.; Joet, T.; Argout, X.; Summo, M.; Champion, A.; Cros, D.; Omore, A.; Nouy, B.; Morcillo, F. Regulatory Mechanisms Underlying Oil Palm Fruit Mesocarp Maturation, Ripening, and Functional Specialization in Lipid and Carotenoid Metabolism. Plant Physiol. 2011, 156, 564–584. [Google Scholar] [CrossRef]
- González, D.A.; Cayón, G.; López, J.E.; Alarcón, W.H. Development and maturation of fruits of two Indupalma O×G hybrids (Elaeis oleifera × Elaeis guineensis). Agron. Colomb. 2013, 31, 343–351. [Google Scholar]
- Singh, R.; Low, E.-T.L.; Ooi, L.C.-L.; Ong-Abdullah, M.; Nookiah, R.; Ting, N.-C.; Marjuni, M.; Chan, P.-L.; Ithnin, M.; Manaf, M.A.A. The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nat. Commun. 2014, 5, 4106. [Google Scholar]
- Lieb, V.M.; Kerfers, M.R.; Kronmüller, A.; Esquivel, P.; Alvarado, A.; Jiménez, V.c.M.; Schmarr, H.-G.; Carle, R.; Schweiggert, R.M.; Steingass, C.B. Characterization of mesocarp and kernel lipids from Elaeis guineensis Jacq., Elaeis oleifera [Kunth] Cortés, and their interspecific hybrids. J. Agric. Food Chem. 2017, 65, 3617–3626. [Google Scholar]
- Castillo, E.G.; Rodríguez, C.L.F.; Páez, A.F. Evaluation of two harvesting procedures for oil palm (Elaeis guineensis Jacq.) fruits. A case study. Agron. Colomb. 2017, 35, 92–99. [Google Scholar]
- Mosquera-Montoya, M.; Ruiz-Alvarez, E.; Mesa-Fuquen, E. Economic assessment of technology adoption in oil palm plantations from Colombia. Int. J. Financ. Res. 2017, 8, 74. [Google Scholar]
- Sinisterra Ortiz, K.; Camperos, J.; Cortés, I.; Caicedo, A.; Castilla, C.; Ceballos, D. Validación a escala comercial del punto óptimo de cosecha para el cultivar híbrido interespecífico O × G Cereté x Deli. Rev. Palmas 2021, 42, 15–23. [Google Scholar]
- Ruiz Álvarez, E.; Banguera, J.; Pérez Toro, W.; Hernández Hernández, J.; Arévalo, J.; Mosquera Montoya, M. Technical and economic assessment of two harvesting tools for young Elaeis oleifera x E. guineensis oil palms. Agron. Colomb. 2020, 38, 418–428. [Google Scholar]
- Escallón-Barrios, M.; Castillo-Gomez, D.; Leal, J.; Montenegro, C.; Medaglia, A.L. Improving harvesting operations in an oil palm plantation. Ann. Oper. Res. 2022, 314, 411–449. [Google Scholar]
- Goh, J.Y.; Md Yunos, Y.; Mohamed Ali, M.S. Fresh Fruit Bunch Ripeness Classification Methods: A Review. Food Bioprocess Technol. 2025, 18, 183–206. [Google Scholar]
- You, K.; Wee, F.; Lee, Y.; Abbas, Z.; Lee, K.; Cheng, E.; Khe, C.; Jamlos, M. A review of oil palm fruit ripeness monitoring using microwave techniques in Malaysia. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Perlis, Malaysia, 23 December 2019; p. 012007. [Google Scholar]
- Ibrahim, Z.; Sabri, N.; Isa, D. Palm oil fresh fruit bunch ripeness grading recognition using convolutional neural network. J. Telecommun. Electron. Comput. Eng. (JTEC) 2018, 10, 109–113. [Google Scholar]
- Lai, J.W.; Ramli, H.R.; Ismail, L.I.; Hasan, W.Z.W. Real-Time Detection of Ripe Oil Palm Fresh Fruit Bunch Based on YOLOv4. IEEE Access 2022, 10, 95763–95770. [Google Scholar]
- Tzuan, G.T.H.; Hashim, F.H.; Raj, T.; Baseri Huddin, A.; Sajab, M.S. Oil palm fruits ripeness classification based on the characteristics of protein, lipid, carotene, and guanine/cytosine from the Raman spectra. Plants 2022, 11, 1936. [Google Scholar] [CrossRef]
- Setiawan, A.W.; Mengko, R.; Putri, A.P.H.; Danudirdjo, D.; Ananda, A.R. Classification of palm oil fresh fruit bunch using multiband optical sensors. Int. J. Electr. Comput. Eng. 2019, 9, 2386. [Google Scholar]
- Mozaffari, M.; Sadeghi, S.; Asefi, N. Prediction of the quality properties and maturity of apricot by laser light backscattering imaging. Postharvest Biol. Technol. 2022, 186, 111842. [Google Scholar]
O × G Hybrid | Planting Date | Harvest Time of the Bunches Analyzed | Location |
---|---|---|---|
Coari × La Mé —C × LM (Sepalm-Palm Elite, Bogota, Colombia) | 2008 | First half of 2013 (rainy season) and the second half of 2014 (dry season) | Araki plantation, located at km. 52, road Tumaco—Pasto, corregimiento Espriella. |
Brazil × Djongo —B × DJ (Unipalma S.A., Villavicencio, Colombia) | 2009 | First half of 2014 (rainy season) and the second half of 2014 (dry season) | Astorga S.A., located at km. 36, road Tumaco—Pasto. Corregimiento Caunapí river. |
Manaos × Compacta—M × C (ASD, San Jose, Costa Rica) | 2012 | End of 2017 (dry season) and the first half of 2018 (rainy season) | Palmas de Tumaco S.A, located near to the Mira River. Bajo Mira. |
Cultivar | PS | Palmitic Acid (C16:0) | Stearic Acid (C18:0) | Oleic Acid (C18:1n9c) | Linoleic Acid (C18:2n6c) | Vaccenic Acid (C18:1n7c) |
---|---|---|---|---|---|---|
Brazil × Djongo | 805 | 29.8 ± 3.33 | 2.4 ± 0.30 | 54.2 ± 3.59 | 10.2 ± 0.81 | 1.5 ± 0.24 |
806 | 33.5 ± 2.47 | 2.1 ± 0.28 | 48.8 ± 2.73 | 11.5 ± 0.55 | 1.7 ± 0.28 | |
807 | 30.9 ± 3.18 | 2.3 ± 0.48 | 51.4 ± 2.95 | 11.7 ± 0.70 | 1.6 ± 0.52 | |
809 | 29.6 ± 4.60 | 2.5 ± 0.38 | 52.2 ± 4.30 | 12.0 ± 1.04 | 1.5 ± 0.29 | |
Coari × La Mé | 805 | 32.3 ± 3.59 | 2.4 ± 0.69 | 50.9 ± 3.83 | 10.4 ± 0.68 | 1.6 ± 0.39 |
806 | 34.5 ± 1.53 | 2.5 ± 0.62 | 49.2 ± 1.86 | 10.1 ± 0.75 | 1.5 ± 0.36 | |
807 | 33.1 ± 1.61 | 2.6 ± 0.59 | 49.5 ± 2.63 | 10.9 ± 0.91 | 1.5 ± 0.52 | |
809 | 34.1 ± 3.05 | 2.3 ± 0.42 | 47.8 ± 3.33 | 11.5 ± 0.78 | 1.7 ± 0.43 | |
Manaos × Compacta | 805 | 36.0 ± 3.01 | 3.0 ± 0.71 | 45.4 ± 2.93 | 12.2 ± 0.89 | 1.2 ± 0.26 |
806 | 37.3 ± 4.56 | 2.8 ± 0.48 | 44.6 ± 4.58 | 11.7 ± 1.54 | 1.2 ± 0.24 | |
807 | 37.2 ± 4.58 | 2.3 ± 0.42 | 43.7 ± 4.91 | 12.4 ± 1.33 | 1.6 ± 0.51 | |
809 | 39.4 ± 2.93 | 2.5 ± 0.45 | 40.6 ± 4.31 | 13.3 ± 1.55 | 1.4 ± 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, H.M.; Ruiz-Romero, R.; Caicedo-Zambrano, A.F.; Ayala-Diaz, I.; Rodríguez, J.L. Determining the Optimum Harvest Point in Oil Palm Interspecific Hybrids (O × G) to Maximize Oil Content. Agronomy 2025, 15, 887. https://doi.org/10.3390/agronomy15040887
Romero HM, Ruiz-Romero R, Caicedo-Zambrano AF, Ayala-Diaz I, Rodríguez JL. Determining the Optimum Harvest Point in Oil Palm Interspecific Hybrids (O × G) to Maximize Oil Content. Agronomy. 2025; 15(4):887. https://doi.org/10.3390/agronomy15040887
Chicago/Turabian StyleRomero, Hernán Mauricio, Rodrigo Ruiz-Romero, Arley Fernando Caicedo-Zambrano, Iván Ayala-Diaz, and Jenny Liset Rodríguez. 2025. "Determining the Optimum Harvest Point in Oil Palm Interspecific Hybrids (O × G) to Maximize Oil Content" Agronomy 15, no. 4: 887. https://doi.org/10.3390/agronomy15040887
APA StyleRomero, H. M., Ruiz-Romero, R., Caicedo-Zambrano, A. F., Ayala-Diaz, I., & Rodríguez, J. L. (2025). Determining the Optimum Harvest Point in Oil Palm Interspecific Hybrids (O × G) to Maximize Oil Content. Agronomy, 15(4), 887. https://doi.org/10.3390/agronomy15040887