Replacing Mineral with Organic Fertilisers in Maize Basal Fertilisation: Impacts on GHG Emissions and Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Soil Characteristics
2.2. Experimental Design
2.3. Analytical Procedures
2.3.1. Maize Growth and Yield
2.3.2. Gaseous Emission Measurements
2.4. Calculations and Statistical Analysis
3. Results and Discussion
3.1. Maize Yields and Plant Nutrient Content
3.2. Greenhouse Gas Emissions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006; ISBN 978-92-5-105571-7. [Google Scholar]
- Singh, B. Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy 2018, 8, 48. [Google Scholar] [CrossRef]
- Xie, H.; Huang, Y.; Chen, Q.; Zhang, Y.; Wu, Q. Prospects for Agricultural Sustainable Intensification: A Review of Research. Land 2019, 8, 157. [Google Scholar] [CrossRef]
- Oenema, O.; Wrage, N.; Velthof, G.L.; Van Groenigen, J.W.; Dolfing, J.; Kuikman, P.J. Trends in global nitrous oxide emissions from animal production systems. Nutr. Cycl. Agroecosyst. 2005, 72, 51–65. [Google Scholar] [CrossRef]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure management: Implications for greenhouse gas emissions. Anim. Feed. Sci. Technol. 2011, 166–167, 514–531. [Google Scholar] [CrossRef]
- Webb, J.; Pain, B.; Bittman, S.; Morgan, J. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—A review. Agric. Ecosyst. Environ. 2010, 137, 39–46. [Google Scholar] [CrossRef]
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; de Vries, W.; Weiss, F.; et al. Impacts of European livestock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Calleja-Cervantes, M.; Aparicio-Tejo, P.; Villadas, P.; Irigoyen, I.; Irañeta, J.; Fernández-González, A.; Fernández-López, M.; Menéndez, S. Rational application of treated sewage sludge with urea increases GHG mitigation opportunities in Mediterranean soils. Agric. Ecosyst. Environ. 2017, 238, 114–127. [Google Scholar] [CrossRef]
- Francaviglia, R.; Di Bene, C.; Farina, R.; Salvati, L.; Vicente-Vicente, J.L. Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: A comprehensive data analysis. Mitig. Adapt. Strat. Glob. Change 2019, 24, 795–818. [Google Scholar] [CrossRef]
- Latini, A.; Giagnacovo, G.; Campiotti, C.A.; Bibbiani, C.; Mariani, S. A Narrative review of the facts and perspectives on agricultural fertilization in Europe, with a focus on Italy. Horticulturae 2021, 7, 158. [Google Scholar] [CrossRef]
- Tröster, M.F. Assessing the Value of Organic Fertilizers from the Perspective of EU Farmers. Agriculture 2023, 13, 1057. [Google Scholar] [CrossRef]
- European Commission. EUROSTAT. Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 11 March 2025).
- Bergstrand, K.-J. Organic fertilizers in greenhouse production systems—A review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database, Inputs from Livestock Manure; FAO: Rome, Italy, 1997; Available online: https://www.fao.org/faostat/en/#data (accessed on 11 March 2025).
- Sørensen, C.G.; Jacobsen, B.H.; Sommer, S.G. An Assessment Tool applied to Manure Management Systems using Innovative Technologies. Biosyst. Eng. 2003, 86, 315–325. [Google Scholar] [CrossRef]
- Huijsmans, J.; Verwijs, B.; Rodhe, L.; Smith, K. Costs of emission-reducing manure application. Bioresour. Technol. 2004, 93, 11–19. [Google Scholar] [CrossRef]
- Sheldrick, W.; Syers, J.K.; Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycl. Agroecosystems 2003, 66, 119–131. [Google Scholar] [CrossRef]
- Prado, J.; Ribeiro, H.; Alvarenga, P.; Fangueiro, D. A step towards the production of manure-based fertilizers: Disclosing the effects of animal species and slurry treatment on their nutrients content and availability. J. Clean. Prod. 2022, 337, 130369. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of Manure Nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar] [CrossRef]
- Schröder, J. Revisiting the agronomic benefits of manure: A correct assessment and exploitation of its fertilizer value spares the environment. Bioresour. Technol. 2005, 96, 253–261. [Google Scholar] [CrossRef]
- Ramos, M.; Quinton, J.; Tyrrel, S. Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms. J. Environ. Manag. 2006, 78, 97–101. [Google Scholar] [CrossRef]
- Kwon, J.-W. Mobility of veterinary drugs in soil with application of manure compost. Bull. Environ. Contam. Toxicol. 2011, 87, 40–44. [Google Scholar] [CrossRef]
- Walling, E.; Vaneeckhaute, C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef]
- Esteves, C.; Costa, E.; Mota, M.; Martins, M.; Ribeiro, H.; Fangueiro, D. Partial replacement of mineral fertilisers with animal manures in an apple orchard: Effects on GHG emission. J. Environ. Manag. 2024, 356, 120552. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. USA 2014, 1312, 105–112. [Google Scholar]
- Instituto Nacional de Estatística—Estatísticas Agrícolas: 2022. INE: Lisboa, Portugal, 2023. Available online: https://www.ine.pt/xurl/pub/137687 (accessed on 15 March 2025).
- Osterholz, W.R.; Rinot, O.; Liebman, M.; Castellano, M.J. Can mineralization of soil organic nitrogen meet maize nitrogen demand? Plant Soil 2016, 415, 73–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, Y.; Hu, Y.; Christie, P.; Zhang, J.; Li, X. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil Tillage Res. 2016, 155, 85–94. [Google Scholar] [CrossRef]
- Xing, Y.; Mi, F.; Wang, X. Effects of different nitrogen fertilizer types and application rates on maize yield and nitrogen use efficiency in Loess Plateau of China. J. Soils Sediments 2022, 22, 1938–1958. [Google Scholar] [CrossRef]
- Chadwick, D.; Wei, J.; Yan’An, T.; Guanghui, Y.; Qirong, S.; Qing, C. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe (UNECE). Framework Code for Good Agricultural Practice for Reducing Ammonia Emissions. 2015. Available online: https://unece.org/environment-policy/publications/framework-code-good-agricultural-practice-reducing-ammonia (accessed on 15 March 2025).
- Código de Boas Práticas Agrícolas (CBPA). Law nº 1230/2018. Republic Diary No. 25/2018, Series 2 of 2018-02-05. 2018, pp. 4123–4170. Available online: https://diariodarepublica.pt/dr/detalhe/despacho/1230-2018-114627305 (accessed on 17 August 2024).
- Fangueiro, D.; Surgy, S.; Fraga, I.; Cabral, F.; Coutinho, J. Band application of treated cattle slurry as an alternative to slurry injection: Implications for gaseous emissions, soil quality, and plant growth. Agric. Ecosyst. Environ. 2015, 211, 102–111. [Google Scholar] [CrossRef]
- Instituto Português do Mar e da Atmosfera (IPMA). Climate Normals; Portuguese Institute for Sea and Atmosphere: Lisbon, Portugal, 2011; Available online: https://www.ipma.pt/en/oclima/normais.clima/ (accessed on 16 November 2024).
- Temminghoff, E.E.; Houba, V.J. Plant Analysis Procedures, 2nd ed.; Kluwer Academic Publishers: London, UK, 2004. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. Manag. Water Fertil. Sustain. Agric. Intensif. 2015, 270, 1–30. [Google Scholar]
- Fangueiro, D.; Pereira, J.L.; Fraga, I.; Surgy, S.; Vasconcelos, E.; Coutinho, J. Band application of acidified slurry as an alternative to slurry injection in a Mediterranean double cropping system: Agronomic effect and gaseous emissions. Agric. Ecosyst. Environ. 2018, 267, 87–99. [Google Scholar] [CrossRef]
- Fangueiro, D.; Senbayran, M.; Trindade, H.; Chadwick, D. Cattle slurry treatment by screw press separation and chemically enhanced settling: Effect on greenhouse gas emissions after land spreading and grass yield. Bioresour. Technol. 2008, 99, 7132–7142. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., P’ean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar] [CrossRef]
- Xiong, D.; Chen, J.; Yu, T.; Gao, W.; Ling, X.; Li, Y.; Peng, S.; Huang, J. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 2015, 5, 13389. [Google Scholar] [CrossRef]
- Mehrabi, F.; Sepaskhah, A.R. Leaf Nitrogen, Based on SPAD Chlorophyll Reading Can Determine Agronomic Parameters of Winter Wheat. Int. J. Plant Prod. 2021, 16, 77–91. [Google Scholar] [CrossRef]
- Rocha, R.; Galvão, J.; Teixeira, P.; Miranda, G.; Agnes, E.; Pereira, P.; Leite, U. Relação do Índice SPAD, determinado pelo clorofilômetro, com teor de nitrogênio na folha e rendimento de grãos em três genótipos de milho. Rev. Bras. Milho Sorgo 2005, 4, 161–171. [Google Scholar] [CrossRef]
- Yuan, D.; Hu, Y.; Jia, S.; Li, W.; Zamanian, K.; Han, J.; Huang, F.; Zhao, X. Microbial Properties Depending on Fertilization Regime in Agricultural Soils with Different Texture and Climate Conditions: A Meta-Analysis. Agronomy 2023, 13, 764. [Google Scholar] [CrossRef]
- Duong, T.T.T.; Penfold, C.; Marschner, P. Differential effects of composts on properties of soils with different textures. Biol. Fertil. Soils 2012, 48, 699–707. [Google Scholar] [CrossRef]
- Barut, Z.B.; Ertekin, C.; Karaagac, H.A. Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey. Energy 2011, 36, 5466–5475. [Google Scholar] [CrossRef]
- López-Garrido, R.; Madejón, E.; León-Camacho, M.; Girón, I.; Moreno, F.; Murillo, J. Reduced tillage as an alternative to no-tillage under Mediterranean conditions: A case study. Soil Tillage Res. 2014, 140, 40–47. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Pareja-Sánchez, E.; Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Is it feasible to reduce tillage and N use while improving maize yield in irrigated Mediterranean agroecosystems? Eur. J. Agron. 2019, 109, 125919. [Google Scholar] [CrossRef]
- Rodriguez, F.; Guerrero, C.; Moral, R.; Ayguade, H.; Mataix-Beneyto, J. Effects of composted and non-composted solid phase of pig slurry on N, P, and K contents in two Mediterranean soils. Commun. Soil Sci. Plant Anal. 2005, 36, 635–647. [Google Scholar] [CrossRef]
- Ros, M.; García, C.; Hernandez, M.T. Evaluation of different pig slurry composts as fertilizer of horticultural crops: Effects on selected chemical and microbial properties. Renew. Agric. Food Syst. 2007, 22, 307–315. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.; Cabrera, M.; Franklin, D.; Gaskin, J.; Kissel, D. Effect of soil texture on nitrogen mineralization from organic fertilizers in four common southeastern soils. Soil Sci. Soc. Am. J. 2020, 84, 534–542. [Google Scholar] [CrossRef]
- Chadwick, D.R.; Pain, B.F.; Brookman, S.K.E. Nitrous Oxide and Methane Emissions following Application of Animal Manures to Grassland. J. Environ. Qual. 2000, 29, 277–287. [Google Scholar] [CrossRef]
- Fan, Y.; Hao, X.; Carswell, A.; Misselbrook, T.; Ding, R.; Li, S.; Kang, S. Inorganic nitrogen fertilizer and high N application rate promote N2O emission and suppress CH4 uptake in a rotational vegetable system. Soil Tillage Res. 2021, 206, 104848. [Google Scholar] [CrossRef]
- Kravchenko, I.; Boeckx, P.; Galchenko, V.; Van Cleemput, O. Short- and medium-term effects of NH4+ on CH4 and N2O fluxes in arable soils with a different texture. Soil Biol. Biochem. 2002, 34, 669–678. [Google Scholar] [CrossRef]
- Sanchez-Martin, L.; Sanz-Cobena, A.; Meijide, A.; Quemada, M.; Vallejo, A. The importance of the fallow period for N2O and CH4 fluxes and nitrate leaching in a Mediterranean irrigated agroecosystem. Eur. J. Soil Sci. 2010, 61, 710–720. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, R.; Peng, S.; Zhang, J.; Lin, X.; Wang, Y. Variations in Methanogenic and Methanotrophic Communities Resulted in Different Methane Emissions from Paddy Soil Applied with Two Types of Manure. Agronomy 2023, 13, 1268. [Google Scholar] [CrossRef]
- Song, L.; Tian, P.; Zhang, J.; Jin, G. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China. Sci. Total. Environ. 2017, 609, 1303–1311. [Google Scholar] [CrossRef]
- Struck, I.J.A.; Taube, F.; Hoffmann, M.; Kluß, C.; Herrmann, A.; Loges, R.; Reinsch, T. Full greenhouse gas balance of silage maize cultivation following grassland: Are no-tillage practices favourable under highly productive soil conditions? Soil Tillage Res. 2020, 200, 104615. [Google Scholar] [CrossRef]
- Six, J.; Ogle, S.M.; Breidt, F.J.; Conant, R.T.; Mosier, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. 2004, 10, 155–160. [Google Scholar] [CrossRef]
- Maucieri, C.; Tolomio, M.; McDaniel, M.D.; Zhang, Y.; Robatjazi, J.; Borin, M. No-tillage effects on soil CH4 fluxes: A meta-analysis. Soil Tillage Res. 2021, 212, 105042. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Rochette, P.; Angers, D.A.; Bittman, S.; Buckley, K.; Massé, D.; Bélanger, G.; Eriksen-Hamel, N.; Gasser, M. Soil Nitrous Oxide Emissions Following Band-Incorporation of Fertilizer Nitrogen and Swine Manure. J. Environ. Qual. 2010, 39, 1545–1553. [Google Scholar] [CrossRef]
- Köster, J.R.; Well, R.; Dittert, K.; Giesemann, A.; Lewicka-Szczebak, D.; Mühling, K.; Herrmann, A.; Lammel, J.; Senbayram, M. Soil denitrification potential and its influence on N2O reduction and N2O isotopomer ratios. Rapid Commun. Mass Spectrom. 2013, 27, 2363–2373. [Google Scholar] [CrossRef]
- Cui, P.; Fan, F.; Yin, C.; Song, A.; Huang, P.; Tang, Y.; Zhu, P.; Peng, C.; Li, T.; Wakelin, S.A.; et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol. Biochem. 2016, 93, 131–141. [Google Scholar] [CrossRef]
- King, K.W.; Torbert, H.A. Nitrate and ammonium losses from surface-applied organic and inorganic fertilizers. J. Agric. Sci. 2007, 145, 385–393. [Google Scholar] [CrossRef]
- Leytem, A.B.; Moore, A.D.; Dungan, R.S. Greenhouse Gas Emissions from an Irrigated Crop Rotation Utilizing Dairy Manure. Soil Sci. Soc. Am. J. 2019, 83, 137–152. [Google Scholar] [CrossRef]
Site 1 | Site 2 | Site 3 | |
---|---|---|---|
pH (H2O) | 7.3 ± 0.1 | 7.5 ± 0.1 | 7.0 ± 0.1 |
Soil organic matter (g kg−1 dry soil) | 13.0 ± 0.0 | 21.0 ± 0.1 | 15.0 ± 0.1 |
Olsen-P (mg P2O5 kg−1) | 32.7 ± 2.95 | 29.0 ± 1.7 | 17.2 ± 3.4 |
Egner-Riehm-K (mg K2O kg−1) | 139.7 ± 7.1 | 183.3 ± 12.1 | 144.4 ± 5.6 |
Electrical conductivity (dS m−1) | 0.095 ± 0.0 | 0.137 ± 0.0 | 0.092 ± 0.1 |
NH4+ (mg N kg−1) | 1.7 ± 0.3 | 1.5 ± 0.1 | 1.3 ± 0.2 |
NO3− (mg N kg−1) | 19.3 ± 1.7 | 35.7 ± 6.9 | 27.8 ± 1.6 |
Texture class | Sandy | Sandy loam | Sandy loam |
Coarse sand (g kg−1) | 642.6 ± 62.4 | 240.1 ± 11.3 | 220.3 ± 34.6 |
Fine sand (g kg−1) | 140.4 ± 44.5 | 292.8 ± 12.6 | 336.4 ± 25.7 |
Silt (g kg−1) | 35.7 ± 6.9 | 19.3 ± 1.7 | 27.8 ± 1.6 |
Clay (g kg−1) | 101.7 ± 7.6 | 193.3 ± 7.6 | 195.6 ± 15.8 |
Basal | Seedling | Top Dressing | Irrigation | |
---|---|---|---|---|
Kg N ha−1 | ||||
Site 1 | ||||
MF | 60.0 | 22.5 | 78 | 140 |
CM | 85.6 | 22.5 | 52 | 140 |
PS | 168.6 | 22.5 | 0 | 109 |
Site 2 | ||||
MF | 60.0 | 22.5 | 78 | 140 |
CM | 93.4 | 22.5 | 44 | 140 |
PS | 80.5 | 22.5 | 50 | 140 |
Site 3 | ||||
MF | 160.0 | 22.5 | 0 | 118 |
CM | 163.4 | 22.5 | 0 | 118 |
PS | 166.6 | 22.5 | 0 | 118 |
pH | EC | DM | Total N | P | K | |
---|---|---|---|---|---|---|
mS cm−1 | % | g kg−1 (FM) | ||||
Site 1 | ||||||
PS | 7.68 ± 0.01 | 8.79 ± 0.02 | 4.68 ± 0.09 | 2.68 ± 0.01 | 0.49 ± 0.03 | 0.86 ± 0.03 |
CM | 6.61 ± 0.01 | 10.18 ± 0.01 | 83.54 ± 0.44 | 16.86 ± 0.93 | 40.54 ± 0.32 | 16.07 ± 0.11 |
Sites 2 and 3 | ||||||
PS | 7.34 ± 0.01 | 10.26 ± 0.02 | 4.03 ± 0.03 | 2.92 ± 0.01 | 0.51 ± 0.04 | 0.83 ± 0.02 |
CM | 8.62 ± 0.03 | 13.70 ± 0.27 | 32.23 ± 0.76 | 8.05 ± 0.48 | 9.27 ± 0.24 | 4.35 ± 0.15 |
Maize Growth Indicators | Production Indicators | ||||||||
---|---|---|---|---|---|---|---|---|---|
Leaf Content (mg kg−1) | Chlorophyll Levels (SPAD Levels) | Grain Yield (kg DM ha−1) | Grain Content (mg kg−1) | N-PNB (kg N Exported kg N Applied−1) | |||||
N | P | K | N | P | K | ||||
Site 1 | |||||||||
CM | 17.70 a | 2.67 a | 38.48 a | 35.27 b | 15,667 | 8.97 b | 3.31 a | 3.93 a | 0.47 b |
MF | 14.09 b | 2.49 b | 39.41 a | 42.07 ab | 17,287 | 7.62 c | 3.25 a | 3.80 a | 0.44 b |
PS | 16.22 a | 2.50 b | 36.69 b | 43.72 a | 17,261 | 9.72 a | 3.28 a | 3.90 a | 0.56 a |
Site 2 | |||||||||
CM | 19.77 a | 2.83 a | 39.99 a | 49.40 a | 20,224 | 10.68 a | 3.23 a | 3.89 a | 0.72 a |
MF | 19.76 a | 3.00 a | 44.95 a | 49.43 a | 19,768 | 9.83 a | 3.31 a | 4.04 a | 0.65 a |
PS | 19.06 a | 2.79 a | 40.97 a | 48.57 a | 20,259 | 9.04 a | 3.26 a | 3.97 a | 0.61 a |
Site 3 | |||||||||
CM | 21.18 a | 2.77 a | 41.17 a | 56.71 a | 15,838 | 8.66 a | 3.17 a | 3.89 a | 0.46 a |
MF | 20.92 a | 2.73 a | 38.37 a | 54.77 a | 15,934 | 9.15 a | 2.65 a | 3.36 a | 0.49 a |
PS | 20.65 a | 2.91 a | 39.83 a | 54.46 a | 16,130 | 8.80 a | 3.08 a | 3.84 a | 0.47 a |
Treatments | Site 1 | Site 2 | Site 3 | |||
---|---|---|---|---|---|---|
CH4 | ||||||
g C ha−1 | g C t−1 DM | g C ha−1 | g C t−1 DM | g C ha−1 | g C t−1 DM | |
CM | 1453 a | 93 a | 3657 a | 181 a | 1224 a | 77 a |
MF | 455 ab | 26 ab | 1866 b | 94 b | −393 a | −25 a |
PS | −276 b | −16 b | 2287 ab | 113 b | 830 a | 51 a |
N2O | ||||||
g N ha−1 | g N t−1 DM | g N ha−1 | g N t−1 DM | g N ha−1 | g N t−1 DM | |
CM | 3212 a | 205 a | 8175 a | 404 a | 5570 a | 352 a |
MF | 2446 a | 142 a | 7767 a | 393 a | 4098 b | 257 b |
PS | 2872 a | 166 a | 7470 a | 369 a | 4736 ab | 294 ab |
N2O (% of total N applied) | ||||||
CM | 1.071 a | - | 2.725 a | - | 1.857 a | - |
MF | 0.815 a | - | 2.589 a | - | 1.366 b | - |
PS | 0.957 a | - | 2.490 a | - | 1.579 ab | - |
CO2 | ||||||
kg C ha−1 | kg C t−1 DM | kg C ha−1 | kg C t−1 DM | kg C ha−1 | kg C t−1 DM | |
CM | 5972 a | 381 a | 4204 a | 208 a | 3389 a | 214 a |
MF | 4883 a | 282 a | 4099 a | 207 a | 3282 a | 206 a |
PS | 5010 a | 290 a | 4368 a | 182 a | 2657 a | 165 a |
GWP | ||||||
kg CO2 eq ha−1 | kg CO2 eq t−1 DM | kg CO2 eq ha−1 | kg CO2 eq t−1 DM | kg CO2 eq ha−1 | kg CO2 eq t−1 DM | |
CM | 1430 a | 91 a | 3640 a | 180 a | 2434 a | 154 a |
MF | 1066 a | 62 a | 3400 a | 172 a | 1744 b | 109 b |
PS | 1222 a | 71 a | 3287 a | 162 a | 2062 ab | 128 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, C.; Silva, A.A.; Mota, M.; Coutinho, J.; Fraga, I.; Fangueiro, D. Replacing Mineral with Organic Fertilisers in Maize Basal Fertilisation: Impacts on GHG Emissions and Yield. Agronomy 2025, 15, 865. https://doi.org/10.3390/agronomy15040865
Esteves C, Silva AA, Mota M, Coutinho J, Fraga I, Fangueiro D. Replacing Mineral with Organic Fertilisers in Maize Basal Fertilisation: Impacts on GHG Emissions and Yield. Agronomy. 2025; 15(4):865. https://doi.org/10.3390/agronomy15040865
Chicago/Turabian StyleEsteves, Catarina, Arejacy Antonio Silva, Mariana Mota, João Coutinho, Irene Fraga, and David Fangueiro. 2025. "Replacing Mineral with Organic Fertilisers in Maize Basal Fertilisation: Impacts on GHG Emissions and Yield" Agronomy 15, no. 4: 865. https://doi.org/10.3390/agronomy15040865
APA StyleEsteves, C., Silva, A. A., Mota, M., Coutinho, J., Fraga, I., & Fangueiro, D. (2025). Replacing Mineral with Organic Fertilisers in Maize Basal Fertilisation: Impacts on GHG Emissions and Yield. Agronomy, 15(4), 865. https://doi.org/10.3390/agronomy15040865