Foliar Application of γ-Polyglutamic Acid Enhances Growth, Yield, and Rhizosphere Microbiota of Summer Maize Under Varied Water Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plant Sampling and Analysis
2.3. Soil Sampling and Microbial Analysis
2.4. High-Throughput Sequencing and Bioinformatics
2.5. Statistical Analysis
3. Results
3.1. Effects on Biomass and Photosynthesis at Silking Stage
3.2. Effects on Morphological Parameters at Filling Stage
3.3. Effects on Nutrient Accumulation
3.4. Effects on Yield and Yield Components
3.5. Effects on Rhizosphere Microbiota
4. Discussion
4.1. γ-PGA Enhances Maize Growth and Yield
4.2. γ-PGA Modulates Rhizosphere Microbiota
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ishfaq, M.; Wang, Y.; Xu, J.; Hassan, M.U.; Yuan, H.; Liu, L.; He, B.; Ejaz, I.; White, P.J.; Cakmak, I.; et al. Improvement of Nutritional Quality of Food Crops with Fertilizer: A Global Meta-Analysis. Agron. Sustain. Dev. 2023, 43, 74. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent Advances in the Chemistry of Nitrogen, Phosphorus and Potassium as Fertilizers in Soil: A Review. Pedosphere 2023, 33, 385–406. [Google Scholar] [CrossRef]
- Savy, D.; Cozzolino, V. Novel Fertilising Products from Lignin and Its Derivatives to Enhance Plant Development and Increase the Sustainability of Crop Production. J. Clean. Prod. 2022, 366, 132832. [Google Scholar] [CrossRef]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Braganca, R.; Goncalves, B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Sirisansaneeyakul, S.; Cao, M.; Kongklom, N.; Chuensangjun, C.; Shi, Z.; Chisti, Y. Microbial Production of Poly-γ-Glutamic Acid. World J. Microbiol. Biotechnol. 2017, 33, 173. [Google Scholar] [CrossRef]
- Elbanna, K.; Alsulami, F.S.; Neyaz, L.A.; Abulreesh, H.H. Poly (γ) Glutamic Acid: A Unique Microbial Biopolymer with Diverse Commercial Applicability. Front. Microbiol. 2024, 15, 1348411. [Google Scholar] [CrossRef] [PubMed]
- Jing, B.; Shi, W.; Wang, Y. Poly-γ-glutamic Acid Enhanced the Yield and Photosynthesis of Soybeans by Adjusting Soil Aggregates and Water Distribution. J. Sci. Food Agric. 2024, 104, 6884–6892. [Google Scholar] [CrossRef]
- Lei, P.; Xu, Z.; Ding, Y.; Tang, B.; Zhang, Y.; Li, H.; Feng, X.; Xu, H. Effect of Poly(γ-glutamic acid) on the Physiological Responses and Calcium Signaling of Rape Seedlings (Brassica napus L.) under Cold Stress. J. Agric. Food Chem. 2015, 63, 10399–10406. [Google Scholar] [CrossRef]
- Ma, H.; Li, P.; Liu, X.; Li, C.; Zhang, S.; Wang, X.; Tao, X. Poly-γ-Glutamic Acid Enhanced the Drought Resistance of Maize by Improving Photosynthesis and Affecting the Rhizosphere Microbial Community. BMC Plant Biol 2022, 22, 11. [Google Scholar] [CrossRef]
- Tanumihardjo, S.A.; McCulley, L.; Roh, R.; Lopez-Ridaura, S.; Palacios-Rojas, N.; Gunaratna, N.S. Maize Agro-Food Systems to Ensure Food and Nutrition Security in Reference to the Sustainable Development Goals. Glob. Food Secur. 2020, 25, 100327. [Google Scholar] [CrossRef]
- Singh, A.; Pandey, H.; Pandey, S.; Lal, D.; Chauhan, D.; Aparna; Antre, S.H.; Santhosh, B.; Kumar, A. Drought Stress in Maize: Stress Perception to Molecular Response and Strategies for Its Improvement. Funct. Integr. Genom. 2023, 23, 296. [Google Scholar] [CrossRef]
- Hong, L.; Wei, L.; Fanglan, G.; Jiao, L.; Shiheng, T.; Hong, Y.; Yao, R.; Xinyue, G.; Can, Y. Unveiling the Regulatory Mechanism of Poly-γ-Glutamic Acid on Soil Characteristics under Drought Stress through Integrated Metagenomics and Metabolomics Analysis. Front. Microbiol. 2024, 15, 1387223. [Google Scholar] [CrossRef]
- Yin, A.; Jia, Y.; Qiu, T.; Gao, M.; Cheng, S.; Wang, X.; Sun, Y. Poly-γ-Glutamic Acid Improves the Drought Resistance of Maize Seedlings by Adjusting the Soil Moisture and Microbial Community Structure. Appl. Soil Ecol. 2018, 129, 128–135. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, J.; Lei, P.; Wang, Q.; Feng, X.; Xu, H. Poly-γ-Glutamic Acid Induces System Tolerance to Drought Stress by Promoting Abscisic Acid Accumulation in Brassica napus L. Sci. Rep. 2020, 10, 252. [Google Scholar] [CrossRef]
- Zhai, Z.; Shi, W.; Liu, L.; Jing, B. Effects of Poly-γ-Glutamic Acid on Soil Pore Structure, Maize Grain Filling, Yield and Water Use Efficiency under Mulched Drip Irrigation. Field Crops Res. 2024, 317, 109528. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S rRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Blaalid, R.; Kumar, S.; Nilsson, R.H.; Abarenkov, K.; Kirk, P.M.; Kauserud, H. ITS1 versus ITS2 as DNA Metabarcodes for Fungi. Mol. Ecol. Resour. 2013, 13, 218–224. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and Tools for High Throughput rRNA Analysis. Nucleic Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahe, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Matar, J.; El Khoury, H.; Charr, J.-C.; Guyeux, C.; Chretien, S. SpCLUST: Towards a Fast and Reliable Clustering for Potentially Divergent Biological Sequences. Comput. Biol. Med. 2019, 114, 103439. [Google Scholar] [CrossRef]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a Unified Paradigm for Sequence-based Identification of Fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Kinh, C.T.; Schwartz, T.; Hosomi, M.; Terada, A.; Lackner, S. Determining Uncertainties in PICRUSt Analysis—An Easy Approach for Autotrophic Nitrogen Removal. Biochem. Eng. J. 2019, 152, 107328. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Shi, W.; Yue, X.; Liang, J.; Wen, L.; Li, J.; Li, N.; Lu, Y. Poly-γ-Glutamic Acid Enhances the Wheat Yield, Water Use Efficiency and Soil Physicochemical Properties of the Arid Area in the Northwest China. Arch. Agron. Soil Sci. 2023, 69, 2663–2676. [Google Scholar] [CrossRef]
- Xu, Z.; Wan, C.; Xu, X.; Feng, X.; Xu, H. Effect of Poly (γ-Glutamic Acid) on Wheat Productivity, Nitrogen Use Efficiency and Soil Microbes. J. Soil Sci. Plant Nutr. 2013, 13, 744–755. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Zhang, K.; Li, S.; Zhang, Y. Effect of γ-PGA and γ-PGA SAP on Soil Microenvironment and the Yield of Winter Wheat. PLoS ONE 2023, 18, e0288299. [Google Scholar] [CrossRef]
- Guo, J.Z.; Zhang, K.P.; Zhang, J.J.; Li, S.; Zhang, Y.K. Effects of Poly-γ-Glutamic Acid Super Absorbent Polymer on Soil Microenvironment and Growth of Winter Wheat. Appl. Ecol. Environ. Res. 2023, 21, 2457–2475. [Google Scholar] [CrossRef]
- Xu, Z.; Lei, P.; Feng, X.; Li, S.; Xu, H. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic acid) in Arabidopsis thiana Based on GeneChip Microarray. J. Agric. Food Chem. 2016, 64, 6257–6266. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Gao, J.M.; Ren, X.H.; Gao, Y.B.; Huang, G.H.; Wang, X.; Guo, X.; Cheng, C.H.; Wang, W.M. Effects of Poly-γ-Glutamic Acid (γ-PGA) on Metabolites of Flue-Cured Tobacco Leaves Based on Metabolomics Analysis. Russ. J. Plant Physiol. 2023, 70, 140. [Google Scholar] [CrossRef]
- Xu, Z.; Lei, P.; Feng, X.; Xu, X.; Liang, J.; Chi, B.; Xu, H. Calcium Involved in the Poly(γ-glutamic acid)-Mediated Promotion of Chinese Cabbage Nitrogen Metabolism. Plant Physiol. Biochem. 2014, 80, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Lei, P.; Pang, X.; Li, H.; Feng, X.; Xu, H. Exogenous Application of Poly-γ-glutamic acid Enhances Stress Defense in Brassica napus L. Seedlings by Inducing Cross-Talks between Ca2+, H2O2, Brassinolide, and Jasmonic Acid in Leaves. Plant Physiol. Biochem. 2017, 118, 460–470. [Google Scholar] [CrossRef]
- Lei, P.; Pang, X.; Feng, X.; Li, S.; Chi, B.; Wang, R.; Xu, Z.; Xu, H. The Microbe-Secreted Isopeptide Poly-γ-glutamic Acid Induces Stress Tolerance in Brassica napus L. Seedlings by Activating Crosstalk between H2O2 and Ca2+. Sci. Rep. 2017, 7, 41618. [Google Scholar] [CrossRef]
- Ma, H.; Li, P.; Xiao, N.; Xia, T. Poly-γ-glutamic Acid Promoted Maize Root Development by Affecting Auxin Signaling Pathway and the Abundance and Diversity of Rhizosphere Microbial Community. BMC Plant Biol. 2022, 22, 521. [Google Scholar] [CrossRef]
- Ma, H.; Li, C.; Xiao, N.; Liu, J.; Li, P.; Xu, J.; Yan, J.; Zhang, S.; Xia, T. Heterologous Synthesis of Poly-γ-Glutamic Acid Enhanced Drought Resistance in Maize (Zea mays L.). Int. J. Biol. Macromol. 2024, 273, 133179. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Zhang, J.; Zhang, Z.; Li, J. Experimental Study on the Effect of the Physicochemical Properties of Contaminated Fillers in Bioretention System on Microbial Community Structure. Water Air Soil Pollut. 2021, 232, 298. [Google Scholar] [CrossRef]
- Giannelli, G.; Bisceglie, F.; Pelosi, G.; Bonati, B.; Cardarelli, M.; Antenozio, M.L.; Degola, F.; Visioli, G. Phyto-Beneficial Traits of Rhizosphere Bacteria: In Vitro Exploration of Plant Growth Promoting and Phytopathogen Biocontrol Ability of Selected Strains Isolated from Harsh Environments. Plants 2022, 11, 230. [Google Scholar] [CrossRef]
- Govindasamy, V.; George, P.; Ramesh, S.V.; Sureshkumar, P.; Rane, J.; Minhas, P.S. Characterization of Root-Endophytic Actinobacteria from Cactus (Opuntia ficus-indica) for Plant Growth Promoting Traits. Arch. Microbiol. 2022, 204, 150. [Google Scholar] [CrossRef]
- Higashi, A.; Fujitani, Y.; Nakayama, N.; Tani, A.; Ueki, S. Selective Growth Promotion of Bloom-Forming Raphidophyte Heterosigma Akashiwo by a Marine Bacterial Strain. Harmful Algae 2016, 60, 150–156. [Google Scholar] [CrossRef]
- Cao, T.; Fang, Y.; Chen, Y.; Kong, X.; Yang, J.; Alharbi, H.; Kuzyakov, Y.; Tian, X. Synergy of Saprotrophs with Mycorrhiza for Litter Decomposition and Hotspot Formation Depends on Nutrient Availability in the Rhizosphere. Geoderma 2022, 410, 115662. [Google Scholar] [CrossRef]
- Steinauer, K.; Thakur, M.P.; Emilia Hannula, S.; Weinhold, A.; Uthe, H.; van Dam, N.M.; Martijn Bezemer, T. Root Exudates and Rhizosphere Microbiomes Jointly Determine Temporal Shifts in Plant-Soil Feedbacks. Plant Cell Environ. 2023, 46, 1885–1899. [Google Scholar] [CrossRef] [PubMed]
- Krishnaveni, N.; Aparna, M.S.; Poonkothai, M. Studies on Arthobacter fluorescence: A Nitrogen Fixing Bacterium. Plant Arch. 2007, 7, 641–642. [Google Scholar]
- Kim, Y.-J.; Park, J.Y.; Balusamy, S.R.; Huo, Y.; Nong, L.K.; Thi Le, H.; Yang, D.C.; Kim, D. Comprehensive Genome Analysis on the Novel Species Sphingomonas Panacis DCY99T Reveals Insights into Iron Tolerance of Ginseng. Int. J. Mol. Sci. 2020, 21, 2019. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.C.R.; Rötter, R.P.; Bracho-Mujica, G.; Nelson, W.C.D.; Lam, Q.D.; Recktenwald, C.; Abdulai, I.; Odhiambo, J.; Foord, S. Drought Patterns: Their Spatiotemporal Variability and Impacts on Maize Production in Limpopo Province, South Africa. Int. J. Biometeorol. 2023, 67, 133–148. [Google Scholar] [CrossRef]
- Nicolas-Espinosa, J.; Garcia-Ibanez, P.; Lopez-Zaplana, A.; Yepes-Molina, L.; Albaladejo-Marico, L.; Carvajal, M. Confronting Secondary Metabolites with Water Uptake and Transport in Plants under Abiotic Stress. Int. J. Mol. Sci. 2023, 24, 2826. [Google Scholar] [CrossRef]
- Sangamesh, M.B.; Jambagi, S.; Vasanthakumari, M.M.; Shetty, N.J.; Kolte, H.; Ravikanth, G.; Nataraja, K.N.; Shaanker, R.U. Thermotolerance of Fungal Endophytes Isolated from Plants Adapted to the Thar Desert, India. Symbiosis 2018, 75, 135–147. [Google Scholar] [CrossRef]
- Graziano, C.E.P.L.; Alves, K.A.; Gandolfo, M.A.; Dario, G.; Oliveira, R.B. Spraying Quality of Crop Protection Products Using Two Droplet Spectra in Three Periods of the Day. Eng. Agric. 2017, 37, 1183–1189. [Google Scholar] [CrossRef]
Treatment | Grain Number per Ear | 100-Grain Weight (g) | Yield (kg·ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
W1 | W2 | Average | W1 | W2 | Average | W1 | W2 | Average | |
S0 | 403 ± 61 | 678 ± 42 | 541 ± 157 b | 22.65 ± 0.87 | 23.67 ± 0.52 | 23.16 ± 0.85 b | 5471 ± 1008 | 9564 ± 689 | 7518 ± 2371 b |
S1 | 515 ± 19 | 724 ± 29 | 619 ± 117 a | 23.34 ± 2.08 | 29.89 ± 0.97 | 26.61 ± 3.87 a | 7149 ± 368 | 12,794 ± 873 | 10,025 ± 3165 a |
S2 | 536 ± 59 | 747 ± 68 | 641 ± 128 a | 24.46 ± 1.82 | 28.78 ± 0.90 | 26.62 ± 2.69 a | 7809 ± 845 | 12,901 ± 308 | 10,301 ± 2837 a |
Average | 485 ± 75 b | 716 ± 52 a | 600 ± 135 | 23.48 ± 1.65 b | 27.45 ± 2.96 a | 25.47 ± 3.09 | 6809 ± 1247 b | 11,753 ± 1540 a | 9281 ± 2937 |
W | 0.002 ** | 0.023 * | 0.003 ** | ||||||
S | 0.041 * | 0.000 ** | 0.001 ** | ||||||
W×S | 0.573 ns | 0.001 ** | 0.255 ns |
OTU | Classification | Contribution Rate | Up/Down | Function | |
---|---|---|---|---|---|
W2S1 vs. W2S0 | OTU207 | p_Acidobacteria; c_Subgroup 6 | 1.832% | down | Unknown |
OTU1153 | g_Arthrobacter | 1.71% | up | Soil purification, nitrogen fixation | |
OTU3937 | p_Acidobacteria; c_Subgroup 6 | 1.267% | down | Unknown | |
OTU615 | f_Pyrinomonadaceae; g_RB41 | 1.034% | down | Unknown | |
OTU528 | p_Acidobacteria; c_Subgroup 6 | 0.818% | down | Unknown | |
OTU2789 | g_Streptomyces | 0.755% | up | Suppress soil-borne diseases | |
OTU2610 | g_Sphingomonas | 0.659% | up | Soil remediation, rhizosphere promotion | |
OTU174 | g_Altererythrobacter | 0.622% | up | Soil purification | |
OTU475 | f_Blastocatellaceae | 0.604% | down | Carbon cycle | |
OTU3485 | p_Chloroflexi; c_KD4-96 | 0.596% | up | Carbon sequestration | |
W2S2 vs. W2S0 | OTU207 | p_Acidobacteria; c_Subgroup 6 | 2.003% | down | Unknown |
OTU1153 | g__Arthrobacter | 1.880% | down | Soil purification | |
OTU3937 | p_Acidobacteria; c_Subgroup 6 | 1.602% | down | Unknown | |
OTU528 | p_Acidobacteria; c_Subgroup 6 | 1.032% | down | Unknown | |
OTU615 | f_Pyrinomonadaceae; g_RB41 | 0.969% | down | Unknown | |
OTU475 | f_Blastocatellaceae | 0.822% | up | Carbon cycle | |
OTU2789 | g_Streptomyces | 0.766% | up | Suppress soil-borne diseases | |
OTU2610 | g_Sphingomonas | 0.520% | up | Soil remediation, rhizosphere promotion | |
OTU2650 | f_Blastocatellaceae | 0.481% | down | Carbon cycl | |
OTU1886 | g_Blastococcus | 0.474% | up | nitrogen fixation |
OTU | Classification | Contribution Rate | Up/Down | Function | |
---|---|---|---|---|---|
W2S1 vs. W2S0 | OTU379 | s_Chaetomium grande | 10.31% | up | Suppress soil-borne diseases |
OTU22 | s_Mortierella alpina | 5.71% | up | Promote growth | |
OTU77 | o_Pleosporales | 3.55% | down | Unknown | |
OTU819 | s_Mortierella alpina | 3.44% | down | Promote growth | |
OTU72 | s_Mortierella elongata | 3.03% | down | Promote growth | |
OTU365 | f_Chaetomiaceae | 3.01% | up | Biological control | |
OTU377 | g_Fusarium | 2.49% | up | Pathogenic bacteria | |
OTU739 | p_unclassified_k_Fungi | 2.17% | down | Unknown | |
OTU350 | c_Sordariomycetes | 1.97% | down | Soil purification | |
OTU317 | s_Preussia terricola | 1.89% | down | Suppress soil-borne diseases | |
W2S2 vs. W2S0 | OTU379 | s_Chaetomium grande | 11.37% | up | Suppress soil-borne diseases |
OTU22 | s_Mortierella alpina | 7.08% | up | Promote growth | |
OTU819 | s_Mortierella alpina | 4.01% | up | Promote growth | |
OTU72 | s_Mortierella elongata | 3.55% | up | Promote growth | |
OTU77 | o_Pleosporales | 3.48% | down | Unknown | |
OTU331 | f_Chaetomiaceae | 2.60% | up | Degradation of organic matter | |
OTU739 | p_unclassified_k__Fungi | 2.20% | down | Unknown | |
OTU317 | s_Preussia terricola | 1.88% | down | Unknown | |
OTU350 | c_Sordariomycetes | 1.86% | down | Dung fungi | |
OTU377 | g_Fusarium | 1.85% | down | Pathogenic bacteria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Guo, Z.; Zhang, S.; Li, F.; Han, Y. Foliar Application of γ-Polyglutamic Acid Enhances Growth, Yield, and Rhizosphere Microbiota of Summer Maize Under Varied Water Regimes. Agronomy 2025, 15, 754. https://doi.org/10.3390/agronomy15030754
Wang Y, Guo Z, Zhang S, Li F, Han Y. Foliar Application of γ-Polyglutamic Acid Enhances Growth, Yield, and Rhizosphere Microbiota of Summer Maize Under Varied Water Regimes. Agronomy. 2025; 15(3):754. https://doi.org/10.3390/agronomy15030754
Chicago/Turabian StyleWang, Yi, Zhenfeng Guo, Shujie Zhang, Fang Li, and Yanlai Han. 2025. "Foliar Application of γ-Polyglutamic Acid Enhances Growth, Yield, and Rhizosphere Microbiota of Summer Maize Under Varied Water Regimes" Agronomy 15, no. 3: 754. https://doi.org/10.3390/agronomy15030754
APA StyleWang, Y., Guo, Z., Zhang, S., Li, F., & Han, Y. (2025). Foliar Application of γ-Polyglutamic Acid Enhances Growth, Yield, and Rhizosphere Microbiota of Summer Maize Under Varied Water Regimes. Agronomy, 15(3), 754. https://doi.org/10.3390/agronomy15030754