Lodging Resistance of Japonica Hybrid Rice Plants Studied in Relation to Mechanical and Physicochemical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design and Process
2.3. Experimental Items and Methods
- (1)
- Panicle features: At 21 days after full heading, 10 representative plants were selected from each plot as samples. The inner and outer cut angles of the panicles were measured using a protractor, and the numbers, length, extension length, and fresh weight of the panicles were measured at the same time.
- (2)
- Plant type features: A total of 10 plants with the same growth in each plot were selected, and the main stem was selected. The length, width, base angle (the angle between the leaf base and the stem), and leaf open angle (the angle between the straight line between the tip and the leaf pillow and the stem) were measured.
- (3)
- Stem morphological features: A total of 10 representative plants from each plot were taken as samples, and the plant height, gravity center height, internode numbers, internode length, internode fresh weight, leaf sheath length, leaf sheath fresh weight, leaf length, leaf fresh weight, and the corresponding dry weight were measured using a ruler and a scale.
- (4)
- Cell and vascular structure: Generally, the first internode of the rice stem is shorter, and lodging often occurs in the second segment. Therefore, the second internode of the stem was studied in more detail in this experiment. Fresh sections of the second internode were prepared, observed, and imaged under an Olympus IX81 fluorescent inverted microscope. The cross-sectional area, number of cell layers, and number and area of vascular bundles were measured through Image-Pro Plus software.
- (5)
- Chemical composition: The 30 cm stem on the ground was deoxidized at 105 °C for 30 min, dried at 80 °C to a constant mass, crushed, and sifted through a grinder so that the particle diameter was less than 0.254 mm, and then the contents of cellulose, lignin, silicon, and potassium were measured. The silicon and potassium contents were determined through inductively coupled plasma mass spectrometry. A polyester net bag method (DB37T3370-2018 [39]) was adopted to determine the content of cellulose and lignin.
- (6)
- Mechanical properties: The bending test for the stems was carried out on a universal material test machine (JVJ-2DS, Shanghai Jujing Precision Instrument Manufacturing Co., Ltd., Shanghai, China.) based on the three-point bending principle. The max bending force, breaking moment, bending section coefficient, single stem weight mass moment, bending strength, Young’s elastic modulus, inertia moment, and other mechanical properties of the rice stems were measured, and then the lodging index of the rice stems was calculated. The displacement speed of the sensor was 5 mm/min. Stem yield failure occurs at the point where the pressure reaches the maximum value, that is, the maximum bending resistance of the stem Fmax (N). Before the experiment, basic parameters such as the outer and inner diameter of the stem’s hollow section were measured and calculated with a Vernier caliper. Equations (1)–(7) were adapted from Seko et al. (1959) [40,41] to calculate mechanical properties.
2.4. Statistical Analysis of Data
3. Results
3.1. Panicle Characteristics
3.2. Plant Type Characteristics
3.3. Stem Morphological Characteristics
3.4. Cell and Vascular Structure
3.5. Chemical Composition
3.6. Mechanical Properties
3.7. Correlation Between Lodging Characteristics and Lodging Index
4. Discussion
4.1. Effects of Stem Physicochemical Characteristics on Lodging Resistance of Japonica Hybrid Rice
4.2. Establishment of Mechanical Evaluation Index and Its Effects on Lodging Resistance of Japonica Hybrid Rice
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, M.; Lei, T.; Cao, J.; Tao, Z.; Cao, F.; Chen, J.; Yin, X.; Zou, Y. Linking grain yield and lodging resistance with growth patterns in rice. Exp. Agric. 2022, 58, e24. [Google Scholar] [CrossRef]
- Ordonio, R.L.; Matsuoka, M. New path towards a better rice architecture. Cell Res. 2017, 27, 1189–1190. [Google Scholar] [CrossRef]
- Pacleb, M.; Jeong, O.Y.; Lee, J.S.; Padolina, T.; Braceros, R.; Pautin, L.; Torollo, G.; Sana, E.E.; Del-Amen, J.Y.; Baek, M.K.; et al. Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy 2021, 11, 2253. [Google Scholar] [CrossRef]
- Avakyan, E.R.; Dzhamirze, R.R. Rice lodging resistance. RUDN J. Agron. Anim. Ind. 2018, 13, 366–372. [Google Scholar] [CrossRef]
- Guha, P.K.; Magar, N.D.; Kommana, M.; Barbadikar, K.M.; Suneel, B.; Gokulan, C.; Lakshmi, D.V.; Patel, H.K.; Sonti, R.V.; Sundaram, R.M.; et al. Strong culm: A crucial trait for developing next-generation climate-resilient rice lines. Physiol. Mol. Biol. Plants 2024, 30, 665–686. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Xiao, Z.; Meng, Q.; Fa, X.; Wang, C.; Jing, W.; Wang, W.; Zhu, K.; Zhang, W.; Gu, J.; et al. The synergistic effect of variety improvement and alternate wetting and drying irrigation on yield, water use efficiency and lodging resistance in rice. Eur. J. Agronomy 2025, 164, 127507. [Google Scholar] [CrossRef]
- Shah, L.; Yahya, M.; Shah, S.M.A.; Nadeem, M.; Ali, A.; Ali, A.; Wang, J.; Riaz, M.W.; Rehman, S.; Wu, W.; et al. ImprovingLodging Resistance: Using Wheat and Rice as Classical Examples. Int. J. Mol. Sci. 2019, 20, 4211. [Google Scholar] [CrossRef]
- Venkata, R.P.R.; Lakshminarayana, R.V.; Akkareddy, S.; Hariprasad, R.K.; Siddiq, E.A. Genetic analysis of culm strength and its related traits in rice (Oryza sativa L.). Appl. Biol. Res. 2019, 21, 166–175. [Google Scholar]
- Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Che Man, H. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture 2022, 12, 741. [Google Scholar] [CrossRef]
- Ko, H.; Reynante, L.O.; Makoto, M. Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands. Proc. Jpn. Acad. 2017, 93, 220–233. [Google Scholar]
- Bian, J.; Ren, G.; Han, C.; Xu, F.; Qiu, S.; Tang, J.; Zhang, H.; Wei, H.; Gao, H. Comparative analysis on grain quality and yield of different panicle weight indica-Japonica hybrid rice (Oryza sativa L.) cultivars. J. Integr. Agric. 2020, 19, 999–1009. [Google Scholar] [CrossRef]
- Bian, J.; Ren, G.; Xu, F.; Zhang, H.; Wei, H. Comparison of grain yield and quality of different types of Japonica rice cultivars in the northern Jiangsu plain. J. Integr. Agric. 2021, 20, 2065–2076. [Google Scholar] [CrossRef]
- Ichiro, N.; Hideki, S.; Kei, M.; Hideo, M.; Shuichi, F.; Utako, Y. Genetic studies for breeding of rice cultivars with superior grain appearance and lodging resistance from the rice cultivar ‘Emi-no-kizuna’. Plant Prod. Sci. 2019, 22, 546–553. [Google Scholar]
- Ilyushko, M.V.; Romashova, M.V.; Guchenko, S.S. Resistance to Lodging of the Doubled Haploids of the Far East-Bred Rice Oriza sativa L. Russ. Agric. Sci. 2023, 49, 259–264. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Trivellini, A.; Chhillar, H.; Chopra, P.; Ferrante, A.; Khan, N.A.; Ismail, A.M. The Significance and Functions of Ethylene in Flooding Stress Tolerance in Plants. Environ. Exp. Bot. 2020, 179, 104188. [Google Scholar] [CrossRef]
- Miao, W.; Li, F.; Lu, J.; Wang, D.; Chen, M.; Tang, L.; Xu, Z.; Chen, W. Biochar application enhanced rice biomass production and lodging resistance via promoting co-deposition of silica with hemicellulose and lignin. Sci. Total Environ. 2022, 855, 158818. [Google Scholar] [CrossRef]
- Zhou, T.; Cui, R.; Shu, C.; Zhu, K.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; Gu, J.; Yang, J. Combining urea and controlled release nitrogen fertilizer to enhance lodging resistance of rice (Oryza sativa L.) by altering accumulation of silicon and cell wall polymers at high yielding levels. Field Crops Res. 2024, 315, 109459. [Google Scholar] [CrossRef]
- Kashiwagi, T. Novel QTL for Lodging Resistance, PRL4, Improves Physical Properties with High Non-Structural Carbohydrate Accumulation of Basal Culms in Rice (Oryza sativa L.). Euphytica 2022, 218, 83. [Google Scholar] [CrossRef]
- Shao, Z.; Gu, J.; He, L.; Xu, Y.; Shang, B.; Feng, Z. Effects of elevated ozone, warming, and their interactions on the stem lodging resistance of rice under fully open-field conditions. Agric. Ecosyst. Environ. 2024, 376, 109249. [Google Scholar] [CrossRef]
- Mulsanti, I.W.; Yamamoto, T.; Ueda, T.; Samadi, A.F.; Kamahora, E.; Rumanti, I.A.; Thanh, V.C.; Adachi, S.; Suzuki, S.; Kanekatsu, M.; et al. Finding the superior allele of Japonica-type for increasing stem lodging resistance in indica rice varieties using chromosome segment substitution lines. Rice 2018, 11, 25. [Google Scholar] [CrossRef]
- Jiang, M.; Yamamoto, E.; Yamamoto, T.; Matsubara, K.; Kato, H.; Adachi, S.; Nomura, T.; Kamahora, E.; Ma, J.; Ookawa, T. Mapping of QTLs associated with lodging resistance in rice (Oryza sativa L.) using the recombinant inbred lines derived from two high yielding cultivars, Tachisugata and Hokuriku 193. Plant Growth Regul. 2019, 87, 267–276. [Google Scholar] [CrossRef]
- Mustikarini, E.D.; Prayoga, G.I.; Santi, R.; Nurqirani, Z.; Saragi, H. Genetic Parameter Contributing to Lodging Resistance of F2 Population in Red Rice. IOP Conf. Ser. Earth Environ. Sci. 2019, 334, 012066. [Google Scholar] [CrossRef]
- Zhu, H.; Nie, L.; He, X.; Wang, X.; Long, P.; Chen, H. Water and fertilizer management is an important way to synergistically enhance the yeld, rice quality and lodging resistance of hybrid rice. Plants 2024, 13, 2518. [Google Scholar] [CrossRef]
- Agake, S.; Ohwaki, Y.; Kojima, K.; Yoshikawa, E.; Artigas, R.M.D.; Bellingrath, K.S.D.; Yamada, T.; Ookawa, T.; Ohkama, O.N.; Yokoyama, T. Biofertilizer with bacillus pumilus TUAT1 spores improves growth, productivity, and lodging resistance in forage rice. Agronomy 2022, 12, 2325. [Google Scholar] [CrossRef]
- Zhong, X.; Liang, K.; Peng, B.; Tian, K.; Li, X.; Huang, N.; Liu, Y.; Pan, J. Basal internode elongation of rice as affected by light intensity and leaf area. Crop J. 2020, 8, 62–70. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, N.; Lai, S.; Frei, M.; Wang, Y.; Yang, L. Elevated CO2 improves lodging resistance of rice by changing physicochemical properties of the basal internodes. Sci. Total Environ. 2019, 647, 223–231. [Google Scholar] [CrossRef]
- Gui, M.Y.; Wang, D.; Xiao, H.H.; Tu, M.; Li, F.L.; Li, W.C.; Ji, S.D.; Wang, T.X.; Li, J.Y. Studies of the relationship between rice stem composition and lodging resistance. J. Agric. Sci. 2018, 156, 387–395. [Google Scholar] [CrossRef]
- Shi, M.; Wang, T.; Sun, D.; Xiong, W.; Kuang, F.; Zhu, D. Distribution law of vascular bundle stiffness in rice stems and microscale simulation. Biosyst. Eng. 2025, 250, 325–342. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Y.; Xu, H.; Zhao, M.; Xu, Q.; Li, F. Genetic enhancement of lodging resistance in rice due to the key cell wall polymer lignin, which affects stem characteristics. Breed. Sci. 2018, 68, 508–515. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, C.; Li, X.; He, C.; Ding, Z.; Du, X. Lodging resistance of rice plants studied from the perspective of culm mechanical properties, carbon framework, free volume, and chemical composition. Sci. Rep. 2022, 12, 20026. [Google Scholar] [CrossRef]
- Tuiwong, P.; Lordkaew, S.; Veeradittakit, J.; Jamjod, S.; Prom-u-thai, C. Efficacy of nitrogen and zinc application at different growth stages on yield, grain zinc, and nitrogen concentration in rice. Agronomy 2022, 12, 2093. [Google Scholar] [CrossRef]
- Deng, H.; Li, Y.; Ashraf, U.; Gui, R.; Wang, Z.; Nawaz, H.; Tang, X.; Duan, M.; Mo, Z. The application of liquid fertilizer with reduced nitrogen rate improves the lodging resistance in fragrant rice. J. Soil Sci. Plant Nutr. 2023, 23, 6071–6087. [Google Scholar] [CrossRef]
- Weng, F.; Zhang, W.; Wu, X.; Xu, X.; Ding, Y.; Li, G.; Liu, Z.; Wang, S. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice. Sci. Rep. 2017, 7, 46596. [Google Scholar] [CrossRef]
- Durga, P.M.; Kalaimagal, T.; Manonmani, S.; Jagadeesan, R.; Sritharan, N.; Senthilkumar, G. Breeding Resilience: Exploring Lodging Resistance Mechanisms in Rice. Rice Sci. 2024, 31, 659–672. [Google Scholar]
- Yang, H.; Huang, J.; Ye, Y.; Xu, Y.; Xiao, Y.; Chen, Z.; Li, X.; Ma, Y.; Lu, T.; Rao, Y. Research Progress on Mechanical Strength of Rice Stalks. Plants 2024, 13, 1726. [Google Scholar] [CrossRef]
- Luo, X.; Wu, Z.; Fu, L.; Dan, Z.; Yuan, Z.; Liang, T.; Zhu, R.; Hu, Z.; Wu, X. Evaluation of lodging resistance in rice based on an optimized parameter from lodging index. Crop Sci. 2022, 62, 1318–1332. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, J.; Zhao, Q.; Zhou, X. Physical Traits Related to Rice Lodging Resistance under Different Simplified-Cultivation Methods. Agron. J. 2018, 110, 127–132. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Guo, X. Stem characteristic associated with lodging resistance of rice changes with varied alternating drought and flooding stress. Agronomy 2022, 12, 3070. [Google Scholar] [CrossRef]
- DB37T3370-2018; National Public Service Platform for Standards Information. SAC: Beijing, China, 2010. Available online: https://std.samr.gov.cn/ (accessed on 22 December 2024).
- Seko, H.; Samoto, K.; Suzuki, K. Lodging of rice plant in relation to several different cultural conditions. Jpn. J. Crop Sci. 1959, 27, 173–176. [Google Scholar] [CrossRef]
- Zhang, M.H.; Mo, Z.W.; Liao, J.; Pan, S.G.; Chen, X.F.; Zheng, L.; Luo, X.W.; Wang, Z.M. Lodging resistance related to root traits for mechanized wet-seeding of two super rice cultivars. Rice Sci. 2021, 28, 200–208. [Google Scholar]
- Tsugawa, S.; Shima, H.; Ishimoto, Y.; Ishikawa, K. Thickness-stiffness trade-off improves lodging resistance in rice. Sci. Rep. 2023, 13, 10828. [Google Scholar] [CrossRef] [PubMed]
- Keerthiraj, B.; Biju, S.; Joseph, J.; Job, A.M.; Cockerham, C.C.; Cuo, Y.H.; Zhu, S.G.; Zhang, L.B.; Detang, Z.; Chenghuan, C.; et al. Combining ability studies for lodging resistance and yield traits in rice. Electron. J. Plant Breed. 2021, 12, 1380–1386. [Google Scholar]
- Gong, D.; Dai, G.; Chen, Y.; Yu, G. Optimal tillage depths for enhancing rice yield, quality and lodging resistance in the rice production systems of northeast China. PeerJ 2023, 11, e15739. [Google Scholar] [CrossRef]
- Rani, M.G.; Satyanarayana, P.V.; Ahmed, M.L.; Rani, Y.A.; Rao, V.S.; Jhansirani, P. Breeding strategies for lodging resistance in rice. Int. J. Bio-Resour. Stress Manag. 2017, 8, 895–903. [Google Scholar] [CrossRef]
- Ma, X.; Wu, J.; Su, Y.; Qin, S.; Pilla, F. Utilizing hydrophobic sand to construct an air-permeable aquiclude to enhance rice yield and lodging resistance. Agronomy 2024, 14, 2085. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, X.; Zhang, B.; Yuan, X.; Xing, Y.; Liu, H.; Luo, L.; Chen, G.; Xiong, L. Genetic analyses of lodging resistance and yield provide insights into post-Green-Revolution breeding in rice. Plant Biotechnol. J. 2020, 19, 814–829. [Google Scholar] [CrossRef]
- Jyothi, B.; Revadi, P.; Chandrappa, A.; Akshay, M.; Subhakara, R.I.; AVSR, S.; Raman, M.S. Genome-wide association studies for a comprehensive understanding of the genetic architecture of culm strength and yield traits in rice. Front. Plant Sci. 2024, 14, 1298083. [Google Scholar]
- Shao, Z.; Zhang, Y.; Hu, S.; Gao, B.; Jing, L.; Wang, Y.; Wang, Y.; Yang, L. Impacts of ozone stress on stem lodging characteristics of different indica and Japonica rice cultivars. Crop Sci. 2023, 63, 1508–1524. [Google Scholar] [CrossRef]
- Nomura, T.; Ohkubo, S.; Nagano, A.J.; Samadi, A.F.; Adachi, S.; Ookawa, T. Physiological and morphological factors affecting leaf sheath reinforcement and their contribution to lodging resistance in rice. Plant Prod. Sci. 2023, 2, 48–64. [Google Scholar] [CrossRef]
- Kato, Y.; Collard, B.C.; Septiningsih, E.M.; Ismail, A.M. Increasing flooding tolerance in rice:combining tolerance of submergence and of stagnant flooding. Ann. Bot. 2019, 124, 1199–1209. [Google Scholar] [CrossRef]
- Dang, Z.; Wang, Y.; Wang, M.; Cao, L.; Ruan, N.; Huang, Y.; Li, F.; Xu, Q.; Chen, W. The Fragile culm19 (FC19) mutation largely improves plant lodging resistance, biomass saccharification, and cadmium resistance by remodeling cell walls in rice. J. Hazard. Mater. 2023, 458, 132020. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Cui, J.; Ran, C.; Zhang, Y.; Liang, J.; Shao, X.; Zhang, Q.; Geng, Y.; Guo, L. Paclobutrazol enhanced stem lodging resistance of direct-seeded rice by affecting basal internode development. Plants 2024, 13, 2289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, L.; Wu, X.; Ding, Y.; Li, G.; Li, J.; Weng, F.; Liu, Z.; Tang, S.; Ding, C.; et al. lodging resistance of Japonica rice (Oryza Sativa L.): Morphological and anatomical traits due to top-dressing nitrogen application rates. Rice 2016, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cui, J.; Bao, S.; Liu, W.; Geng, Y.; Liang, X.; Li, S.; Guo, L.; Shao, X. Effects of nitrogen fertilizer application rate on lodging resistance for rice (Oryza sativa L.) stem. Sci. Rep. 2025, 15, 2149. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Yan, X.; Chen, K.; Tian, F.; Yang, X.; Cao, L.; Ruan, N.; Dang, Z.; Yin, X.; et al. The DEP1 Mutation Improves Stem Lodging Resistance and Biomass Saccharification by Affecting Cell Wall Biosynthesis in Rice. Rice 2024, 17, 35. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Zhai, W.; Tong, Z.; Shen, T.; Li, Y.; Zhang, M.; Sigua, G.C.; Chen, J.; Ding, F. Controlled-Release Nitrogen Fertilizer Improved Lodging Resistance and Potassium and Silicon Uptake of Direct-Seeded Rice. Crop Sci. 2019, 59, 2733–2740. [Google Scholar] [CrossRef]
- Olagunju, S.O.; Atayese, M.O.; Sakariyawo, O.S.; Dare, E.O. Effects of multi-growth stage water deficit and orthosilicic acid fertiliser on lodging resistance of rice cultivars. Crop Pasture Sci. 2022, 73, 370–389. [Google Scholar] [CrossRef]
- Gong, D.; Xu, Z.; Zheng, W.; Dai, G.; Chen, Y.; Yu, G. Biochar application improves the yield, lodging resistance, and lignin synthesis mechanism in rice. Crop Sci. 2024, 64, 968–981. [Google Scholar] [CrossRef]
- Wang, X.; Xu, L.; Li, X.; Yang, G.; Wang, F.; Peng, S. Grain yield and lodging-related traits of ultrashort-duration varieties for direct-seeded and double-season rice in Central China. J. Integr. Agric. 2022, 21, 2888–2899. [Google Scholar] [CrossRef]
- Ding, C.; Luo, X.; Wu, Q.; Lu, B.; Ding, Y.; Song, J.; Li, G. Compact plant type rice has higher lodging and N resistance under machine transplanting. J. Integr. Agric. 2021, 20, 65–77. [Google Scholar] [CrossRef]
- Ahmad, F.S.; Hiroki, S.; Tadamasa, U.; Toshio, Y.; Shunsuke, A.; Taiichiro, O. Identification of quantitative trait loci for breaking and bending types lodging resistance in rice, using recombinant inbred lines derived from Koshihikari and a strong culm variety, Leaf Star. Plant Growth Regul. 2019, 89, 83–98. [Google Scholar]
- Yuan, S.; Linquist, B.A.; Wilson, L.T.; Cassman, K.G.; Stuart, A.M.; Pede, V.; Miro, B.; Saito, K.; Agustiani, N.; Aristya, V.E.; et al. Sustainable intensification for a larger global rice bowl. Nat. Commun. 2021, 12, 7163. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Luan, X.; Liang, J.; Hung, Y.; Hsieh, T.; Zhang, X. Rice OsPEX1, an extensin-like protein, affects lignin biosynthesis and plant growth. Plant Mol. Biol. 2019, 100, 151–161. [Google Scholar] [CrossRef] [PubMed]
Variety | Gravity Center Height/cm | Second Segment | Third Segment | Second Sheath | Third Sheath | ||||
---|---|---|---|---|---|---|---|---|---|
Length/cm | Weight/g | Length/cm | Weight/g | Length/cm | Weight/g | Length/cm | Weight/g | ||
LY1052 | 42.19 c | 12.61 b | 1.90 a | 20.10 b | 1.92 a | 23.53 b | 0.91 a | 23.25 b | 1.82 a |
LY9906 | 44.21 b | 11.38 c | 1.20 b | 16.73 d | 1.18 b | 22.20 c | 0.67 b | 22.88 b | 0.69 c |
GY1 | 44.43 b | 11.35 c | 0.98 d | 18.25 c | 1.05 c | 22.39 c | 0.46 c | 21.15 c | 1.60 b |
NL313 | 47.32 a | 13.58 a | 1.12 c | 21.25 a | 1.06 c | 24.64 a | 0.62 b | 26.16 a | 0.52 d |
Variety | Cell Structure | Vascular Structure | |||||||
---|---|---|---|---|---|---|---|---|---|
Tissue Layer Number | Tissue Thickness/μm | Cell Layer Number | Cell Thickness/μm | Cross Area /cm2 | Large Vascular Number | Small Vascular Number | Large Vascular Area/μm2 | Small Vascular Area/μm2 | |
LY1052 | 20.80 c | 638.39 c | 3.50 a | 23.30 c | 0.10 b | 30.10 b | 29.30 c | 14,536.34 c | 8374.65 b |
LY9906 | 22.90 b | 656.66 b | 3.50 a | 26.85 b | 0.12 a | 31.80 a | 30.40 b | 176,653.71 b | 8628.32 b |
GY1 | 24.00 a | 678.73 a | 3.50 a | 27.65 a | 0.11 ab | 31.30 a | 31.40 a | 20,765.19 a | 10,242.07 a |
NL313 | 19.10 d | 550.77 d | 3.20 a | 17.11 d | 0.09 c | 29.00 c | 25.30 d | 11,078.46 d | 5385.54 c |
Variety | Stem | Sheath | ||||||
---|---|---|---|---|---|---|---|---|
Cellulose /(%) | Lignin /(%) | Silicon /(%) | Potassium /(%) | Cellulose /(%) | Lignin /(%) | Silicon /(%) | Potassium /(%) | |
LY1052 | 34.16 b | 1.15 c | 0.02 c | 1.26 c | 33.39 a | 2.18 b | 0.04 c | 0.68 c |
LY9906 | 38.70 a | 3.42 a | 0.04 a | 1.75 b | 29.83 c | 3.26 a | 0.04 a | 0.67 c |
GY1 | 38.08 a | 2.99 b | 0.04 a | 2.25 a | 32.77 ab | 1.25 d | 0.04 bc | 1.04 a |
NL313 | 25.07 c | 1.17 c | 0.03 b | 0.71 d | 32.59 b | 1.62 c | 0.04 ab | 0.82 b |
Variety | Max Bending Resistance/N | Breaking Moment /N·cm | Bending Section Coefficient/cm3 | Single Stem Weight Mass Moment /N·cm | Bending Strength /N·cm−2 | Young’s Elastic Modulus/N·cm−2 | Inertia Moment/cm4 | Lodging Index |
---|---|---|---|---|---|---|---|---|
LY1052 | 10.18 c | 19.29 c | 2.1 × 10−2 b | 13.89 b | 906.91 b | 7.69 × 104 c | 6.7 × 10−3 b | 0.72 b |
LY9906 | 10.73 b | 20.55 b | 2.1 × 10−2 ab | 13.36 b | 948.38 ab | 8.13 × 104 b | 6.6 × 10−3 c | 0.65 c |
GY1 | 11.75 a | 21.44 a | 2.2 × 10−2 a | 12.65 d | 970.18 a | 8.85 × 104 a | 6.5 × 10−3 c | 0.59 d |
NL313 | 6.40 d | 15.93 d | 1.8 × 10−2 c | 24.38 a | 770.72 c | 6.01 × 104 d | 7.2 × 10−3 a | 1.53 a |
Lodging-Related Characteristics | Correlation Coefficient | Lodging-Related Characteristics | Correlation Coefficient | ||
---|---|---|---|---|---|
Features of rice panicles | Panicle numbers | 0.925 | Features of plant type | Plant height | −0.989 * |
Panicle inner cut angle | 0.952 * | Base angle of flag leaf | 0.864 | ||
Panicle outer cut angle | 0.957 * | Open angle of flag leaf | 0.823 | ||
Panicle length | −0.683 | Base angle of penultimate leaf | −0.504 | ||
Panicle extension length | −0.487 | Open angle of penultimate leaf | 0.926 | ||
Single panicle fresh weight | −0.911 | Base angle of antepenultimate leaf | −0.220 | ||
Open angle of antepenultimate leaf | 0.376 | ||||
Stem morphological features | Second internode length | 0.890 | Stem microstructure | Tissue thickness | −0.984 * |
Second internode weight | −0.186 | Tissue layer | −0.861 | ||
Second sheath length | 0.900 | Cell thickness | −0.958 * | ||
Second sheath weight | −0.028 | Cell layer | −0.993 | ||
Third internode length | 0.766 | Cross area | −0.687 | ||
Third internode weight | −0.279 | Large vascular number | −0.866 | ||
Third sheath length | 0.940 | Small vascular number | −0.979 * | ||
Third sheath weight | −0.631 | Large vascular area | −0.859 | ||
Gravity center height | 0.819 | Small vascular area | −0.951 * | ||
Stem chemical composition | Cellulose (stem) | −0.972 * | Stem mechanical properties | Max bending force | −0.986 * |
Lignin (stem) | −0.640 | Breaking moment | −0.968 * | ||
Silicon (stem) | −0.281 | Bending section coefficient | −0.983 * | ||
Potassium (stem) | −0.859 | Single stem weight mass moment | 0.998 ** | ||
Cellulose (sheath) | 0.211 | Bending strength | −0.984 * | ||
Lignin (sheath) | −0.298 | Young’s elastic modulus | −0.958 * | ||
Silicon (sheath) | 0.400 | Inertia moment | 0.989 * | ||
Potassium (sheath) | −0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Ma, Z.; He, N.; Tang, Z.; Wang, C.; Zheng, W.; Wang, H.; Sui, G.; Gao, H.; Wang, L. Lodging Resistance of Japonica Hybrid Rice Plants Studied in Relation to Mechanical and Physicochemical Characteristics. Agronomy 2025, 15, 699. https://doi.org/10.3390/agronomy15030699
Zhang L, Ma Z, He N, Tang Z, Wang C, Zheng W, Wang H, Sui G, Gao H, Wang L. Lodging Resistance of Japonica Hybrid Rice Plants Studied in Relation to Mechanical and Physicochemical Characteristics. Agronomy. 2025; 15(3):699. https://doi.org/10.3390/agronomy15030699
Chicago/Turabian StyleZhang, Liying, Zuobin Ma, Na He, Zhiqiang Tang, Changhua Wang, Wenjing Zheng, Hui Wang, Guomin Sui, Hong Gao, and Lili Wang. 2025. "Lodging Resistance of Japonica Hybrid Rice Plants Studied in Relation to Mechanical and Physicochemical Characteristics" Agronomy 15, no. 3: 699. https://doi.org/10.3390/agronomy15030699
APA StyleZhang, L., Ma, Z., He, N., Tang, Z., Wang, C., Zheng, W., Wang, H., Sui, G., Gao, H., & Wang, L. (2025). Lodging Resistance of Japonica Hybrid Rice Plants Studied in Relation to Mechanical and Physicochemical Characteristics. Agronomy, 15(3), 699. https://doi.org/10.3390/agronomy15030699