Laboratory Assessment of Plant Losses by Sphenarium purpurascens and Control with Entomopathogenic Fungi in Oil Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Losses Caused by S. purpurascens in the N4, N5 Stages and Adult Crops of M. sativa, Z. mays, Helianthus sp., C. dactylon and C. pepo
2.2. Entomopathogenic Fungi and Their Culturing
2.3. Preparation of Oil Emulsion-Based Conidia Suspensions
2.4. Viability of Entomopathogenic Fungi in Vegetable Oil Emulsions
2.5. Effectiveness of Entomopathogenic Fungi in Oil Emulsions on S. purpurascens Under Laboratory Conditions
2.6. Pathogenicity and Dispersion of B. bassiana and M. robertssi in Oil Emulsions in S. purpurascens Adults
2.7. Statistical Analysis
3. Results
3.1. Losses Caused by the Developmental Stages of S. purpurascens in Five Crops
3.2. Evaluation of Entomopathogenic Fungi Viability in Vegetable Oil Emulsions
3.3. Effectiveness of Entomopathogenic Fungi in Vegetables Oil Emulsions on S. purpurascens Adults Under Laboratory Conditions
3.4. Pathogenicity and Dispersion of B. bassiana and M. robertsii in Oil Emulsions on S. purpurascens Adults
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diatta, A.A.; Min, D.; Jagadish, S.V.K. Drought stress responses in non-transgenic and transgenic alfalfa—Current status and future research directions. Adv. Agron. 2021, 170, 35–100. [Google Scholar] [CrossRef]
- Medina-García, G.; Echavarría- Cháirez, F.G.; Ruiz-Corral, J.A.; Rodríguez-Moreno, V.M.; Soria-Ruiz, J.; De la Mora-Orozco, C. Global warming effect on alfalfa production in Mexico. Rev. Mex. Cienc. Pecu. 2020, 11, 34–48. [Google Scholar] [CrossRef]
- Santillán-Fernández, A.; Salinas-Moreno, Y.; Valdez-Lazalde, J.R.; Carmona-Arellano, M.A.; Vera-López, J.E.; Pereira-Lorenzo, S. Relationship between maize seed productivity in Mexico between 1983 and 2018 with the adoption of genetically modified maize and the resilience of Local Races. Agriculture 2021, 11, 737. [Google Scholar] [CrossRef]
- Bhat, S.A.; Qadri, S.A.A.; Dubbey, V.; Sofi, I.B.; Huang, N.F. Impact of crop management practices on maize yield: Insights from farming in tropical regions and predictive modeling using machine learning. J. Agric. Food Res. 2024, 18, 101392. [Google Scholar] [CrossRef]
- Hernández-Trejo, A.; Estrada-Drouaillet, B.; Rodríguez-Herrera, R.; García-Giron, J.M.; Patiño-Arellano, S.A.; Osorio-Hernández, E. Importancia del control biológico de plagas en maíz (Zea mays L.). Rev. Mex. Cienc. Agríc. 2019, 10, 803–813. [Google Scholar] [CrossRef]
- McClure, M.; Herreid, J.; Jabbour, R. Insecticide application timing effects on alfalfa insect communities. J. Econ. Entomol. 2023, 116, 815–822. [Google Scholar] [CrossRef]
- Ramírez-Méndez, V.A.; González-Villegas, R.; Nájera-Rincón, M.B. Distribución y diversidad de chapulines (Orthoptera: Acridoidea) en agroecosistemas de maíz de la cuenca del Lago de Pátzcuaro. Entomol. Agríc. 2019, 6, 156–162. [Google Scholar]
- Romero-Arenas, O.; Amaro-Leal, L.J.; Rivera, A.; Parraguirre- Lezama, C.; Sánchez-Morales, P.; Villa-Ruano, N. Formulations of Beauveria bassiana MABb1 and mesoporous materials for the biological control of Sphenarium purpurascens in maize crops from Puebla, México. J. Asia-Pac. Entomol. 2020, 23, 653–659. [Google Scholar] [CrossRef]
- Song, H.; Amédégnato, C.; Cigliano, M.M.; Desutter-Grandcolas, L.; Heads, S.W.; Huang, Y.; Otte, D.; Whiting, M.F. 300 million years of diversification: Elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics 2015, 31, 621–651. [Google Scholar] [CrossRef]
- Benites, P.; Zaldívar-Riverón, A.; Meza-Lázaro, R.N.; Samacá-Sáenz, E.; Gutiérrez-Rodríguez, J.; Hernández-López, A. Multiple introgression events during the diversification history of the edible Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae). Mol. Phylogenet. Evol. 2023, 183, 107774. [Google Scholar] [CrossRef]
- Pedraza-Lara, C.; Barrientos-Lozano, L.; Rocha-Sánchez, A.Y.; Zaldívar-Riverón, A. Montane and coastal species diversification in the economically important Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae). Mol. Phylogenet. Evol. 2015, 84, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Mariño-Pérez, R.; Song, H. On the origin of the New World Pyrgomorphidae (Insecta: Orthoptera). Mol. Phylogenet Evol. 2019, 139, 106537. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Delgado, V.H.; Serrano-Meneses, M.A.; Cueva del Castillo, R. A macroevolutionary perspective of cryptic coloration in sexually dichromatic grasshoppers of the genus Sphenarium (Orthoptera: Pyrgomophidae). Oecologia 2025, 207, 19. [Google Scholar] [CrossRef]
- Quesada-Béjar, V.; Nájera-Rincón, M.B.; Reyes-Novelo, E.; González-Esquivel, C.E. Susceptibility of Sphenarium purpurascens purpurascens (Orthoptera: Pyrgomorphidae) instars to a commercial strain of Metarhizium acridum (Hypocreales: Clavicipitaceae) in Michoacán, México. Rev. Colomb. Entomol. 2019, 45, 1–6. [Google Scholar] [CrossRef]
- Cueva del -Castillo, R.; Sanabria-Urbán, S.; Mariño-Pérez, R.; Song, H. Annual temperature, body size, and sexual size dimorphism in the evolution of Pyrgomorphidae. Ecol. Evol. 2024, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, J.A.; Fan, R.; Naz, H.; Bamisile, B.S.; Hafeez, M.; Ghani, M.I.; Wei, Y.; Xu, Y.; Chen, X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front. Physiol. 2023, 13, 1112278. [Google Scholar] [CrossRef]
- Colmenarez, Y.C.; Vasquez, C. Benefits associated with the implementation of biological control programmes in Latin America. BioControl 2024, 69, 303–320. [Google Scholar] [CrossRef]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Bjorkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Jensen, D.F.; Jonsson, M.; et al. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021, 94, 665–676. [Google Scholar] [CrossRef]
- Amaro-Leal, L.J.; Romero-Arenas, O.; López-Olguín, J.F.; Parraguirre-Lezama, C.; Sanchez-Morales, P.; Rivera- Tapia, J.A. Mortality of Sphenarium purpurascens with Bio-preparations of Beauveria bassiana and Diatomite in vitro. Southwest. Entomol. 2018, 43, 1029–1039. [Google Scholar] [CrossRef]
- Pelizza, S.A.; Medina, H.; Ferreri, N.A.; Elíades, L.A.; Pocco, M.E.; Stenglein, S.A.; Lange, C.E. Virulence and enzymatic activity of three new isolates of (Beauveria bassiana) (Ascomycota: Hypocreales) from the South American locust Schistocerca cancellata (Orthoptera: Acrididae). J. King Saud Univ.–Sci. 2020, 32, 44–47. [Google Scholar] [CrossRef]
- Quesada-Béjar, V.; Nájera-Rincón, M.B.; Reyes-Novelo, E.; González-Esquivel, C.E. Pathogenicity of Metarhizium spp. on Sphenarium purpurascens in Central México. Southwest. Entomol. 2020, 45, 57–68. [Google Scholar] [CrossRef]
- Rivera-Tapia, A.; Amaro-Leal, L.J.; Valencia De Ita, M.A.; Parraguirre-Lezama, C.; Sangerman-Jarquín, D.M.; Romero-Arenas, O. Materiales porosos como soporte de viabilidad de Beauveria bassiana para el biocontrol de Sphenarium purpurascens in vitro. ITEA-Inf. Téc. Económica Agrar. 2021, 117, 90–107. [Google Scholar] [CrossRef]
- Mwikali, P.C.; Mwamburi, L.A.; Musinguzi, S.P. Biological characteristics and pathogenicity of entomopathogenic Beauveria bassiana (Bals.-Criv.) Vuill (Hypocreales: Cordycipitaceae) isolated from soils in Northern Kenya against desert locust (Schistocerca gregaria) (Forskål) (Orthoptera: Acrididae). Crop Prot. 2025, 190, 107126. [Google Scholar] [CrossRef]
- Imoulan, A.; Hussain, M.; Kirk, P.M.; El Meziane, A.; Yao, Y.J. Entomopathogenic fungus Beauveria: Host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. J. Asia Pac. Entomol. 2017, 20, 1204–1212. [Google Scholar] [CrossRef]
- Rizal, L.M.; Hereward, J.P.; Brookes, D.R.; Furlong, M.J.; Walter, G.H. Hidden diversity within Beauveria and Metarhizium—Comparing morphology, barcoding, multilocus phylogenies and whole-genome sequences. Fungal Ecol. 2024, 67, 101304. [Google Scholar] [CrossRef]
- Gebremariam, A.; Chekol, Y.; Assefa, F. Phenotypic, molecular, and virulence characterization of entomopathogenic fungi, Beauveria bassiana (Balsam) Vuillemin, and Metarhizium anisopliae (Metschn.) Sorokin from soil samples of Ethiopia for the development of mycoinsecticide. Heliyon 2021, 7, e07091. [Google Scholar] [CrossRef]
- Valle-Ramírez, S.B.; Torres-Gutiérrez, R.; Caicedo-Quinche, W.O.; Abril-Saltos, R.V.; Sucoshañay-Villalba, D.J. Isolation and characterization of Metarhizium spp. of sugar cane crops and their pathogenicity against Mahanarva andigena (Hemiptera: Cercopidae). Cienc. Tecnol. Agropecu. 2022, 23. [Google Scholar] [CrossRef]
- Bustos, G.; Silva, G.; Fisher, S.; Figueroa, I.; Urbina, A.; Rodríguez, J.C. Repelencia de Mezclas de Aceites Esenciales de Boldo, Laurel Chileno, y Tepa Contra el Gorgojo del Maíz. Southwest. Entomol. 2017, 42, 551–562. [Google Scholar] [CrossRef]
- Vázquez-Jorge, M.; de los, Á.; Aragón- García, A.; Bibbins- Martínez, M.D.; Castillo- Hernández, D.; Nava-Galicia, S.B.; Pérez -Torres, B. Sphenarium purpurascens control with Beauveria bassiana and extracts amaranth (Amaranthus hypocondriacus L.). Rev. Mex. Cienc. Agríc. 2016, 7, 235–247. [Google Scholar] [CrossRef]
- Aquino-Bolaños, T.; Aquino-López, T.; Ruiz-Vega, J.; Bautista-Cruz, A. Daños de Strategus aloeus (Coleoptera: Scarabaeidae) en dos especies de agave y su manejo a base de hongos entomopatógenos en suspensiones de aceite. Rev. Colomb. Entomol. 2024, 50, e12865. [Google Scholar] [CrossRef]
- Barrios, T.C.E.; Bustillo, P.A.E.; Ocampo, R.K.L.; Reina, C.M.A.; Alvarado, M.H.-L. Eficacia de hongos entomopatógenos en el control de Leptopharsa gibbicarina (Hemiptera: Tingidae) en palma de aceite. Rev. Colomb. Entomol. 2016, 42, 22–27. [Google Scholar] [CrossRef]
- Cerna-Chávez, E.; Lira-Ramos, K.V.; Ochoa-Fuentes, Y.M.; Delgado-Ortiz, J.C.; Cepeda-Siller, M.; González-Gaona, E. Actividad de extractos de plantas y hongos entomopatógenos para el control del picudo de la guayaba (Conotrachelus dimidiatus Champion) Coleóptera: Curculionidae. Biotecnia 2021, 23, 70–76. [Google Scholar] [CrossRef]
- Serrano-Limon, G.; Ramos-Elorduy, J. Biología de Sphenarium purpurascens (Charpentier) y algunos aspectos de su comportamiento (Orthoptera: Acrididae). An. Del Inst. Biol. UNAM Ser. Zool. 1989, 59, 139–152. [Google Scholar]
- Quijano-Carranza, J.Á. Ficha Técnica Chapulín: Brachystola spp., Melanoplus differentialis, Sphenarium purpurascens. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), México. Available online: https://www.gob.mx/cms/uploads/attachment/file/124821/Ficha_t_cnica.pdf (accessed on 6 March 2025).
- Berlanga-Padilla, A.M.; Hernández-Velázquez, V.M. Efecto de la temperatura sobre el crecimiento y la virulencia de Metarhizium anisopliae, M. a. var. acridum y Beauveria bassiana en Schistocerca piceifrons piceifrons. Manejo Integr. Plagas 2002, 63, 51–55. [Google Scholar]
- Pelizza, S.A.; Mariottini, Y.; Russo, L.M.; Vianna, F.M.; Scorsetti, A.C.; Lange, C.E. Application of Beauveria bassiana using different baits for the control of grasshopper pest Dichroplus maculipennis under field cage conditions. J. King Saud Univ.–Sci 2019, 31, 1511–1515. [Google Scholar] [CrossRef]
- SAS. SAS/STAT 9.1: User’s Guide; SAS Pub: Rotterdam, The Netherlands, 2004; ISBN 1-59047-244-6. Available online: https://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/stat_ug_7313.pdf (accessed on 3 December 2024).
- SENASICA. Ficha Técnica Chapulín. 2016. Available online: https://www.gob.mx/senasica/documentos/ficha-tecnica-chapulin, (accessed on 10 November 2024).
- Antonatos, A.S.; Emmanuel, G.N.; Fantinou, A.A. Efecct of temperature and species of plant on the consumption of leaves by three species of Orthoptera under laboratory conditions. Eur. J. Entomol. 2013, 110, 605–610. [Google Scholar] [CrossRef]
- Mancini, M.A.; Lange, C.E.; Mariottini, Y. Food consumption rates in Scotussa lemniscata (Orthoptera: Acrididae: Melanoplinae) under controlled conditions. Rev. Soc. Entomológica Argent. 2023, 82, 6. [Google Scholar] [CrossRef]
- Mariottini, Y.; De Wysiecki, M.L.; Lange, C.E. Pérdida de forraje ocasionada por diferentes densidades de Dichroplus maculipennis (Acrididae: Melanoplinae) en una pastura de Festuca arundinacea Schreb. Rev. Investig. Agropecu. 2018, 44, 92–100. [Google Scholar]
- Mariottini, Y.; Lange, C.E.; De Wysiecki, M.L. Efficiency of food utilization by Dichroplus maculipennis (Orthoptera: Acrididae: Melanoplinae) on four crop plants under controlled conditions. Stud. Neotrop. Fauna E 2019, 54, 206–216. [Google Scholar] [CrossRef]
- Portilla, M.; Abbas, H.K.; Accinelli, C.; Luttrell, R. Laboratory and Field Investigations on Compatibility of Beauveria bassiana (Hypocreales: Clavicipitaceae) Spores with a Sprayable Bioplastic Formulation for Application in the Biocontrol of Tarnished Plant Bug in Cotton. J. Econ. Entomol. 2019, 112, 549–557. [Google Scholar] [CrossRef]
- Youssef, M.M.A.; El-Nagdi, W.M.A.; Lotfy, D.E.M. Evaluation of the fungal activity of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus as biocontrol agents against root-knot nematode, Meloidogyne incognita on cowpea. Bull. Natl. Res. Cent 2020, 44, 1–11. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, E.; Chan-Cupul, W.; Pérez- Gutiérrez, A.; Cristóbal-Alejo, J.; Uch-Vazquez, B.; Tun-Suárez, J.M.; Munguía-Rosales, R. Crecimiento, esporulación y germinación in vitro de cinco cepas de Metarhizium y su virulencia en huevos y ninfas de Bemisia tabaci. Rev. Mex. Micol. 2011, 33, 9–15. [Google Scholar]
- Amanor, G.T.; Acheampo, M.A.; Luke, B.; Smith, D.; Ryan, M.; Kermode, A.; Morris, J.; Cornelius, E.W.; Eziah, V.Y.; Fening, K.O.; et al. Viability and virulence of freeze-dried (Beauveria bassiana), (Metarhizium acridum), and (Hirsutella thompsonii) isolates under non-refrigerated conditions in Ghana. Biocontrol Sci. Technol. 2024, 34, 296–315. [Google Scholar] [CrossRef]
- Alencar-Lima, H.M.; De Melo-Rodrigues, V.; Rodrigues-Sabino, A.; Cardoso-dos Santos, M.Q.; Soares-de Lima, I.; Guimaraes-Duarte, A.; Negrisoli-Junior, A.S.; Da Silva, J.M. Effect of isolates of entomopathogenic fungi in the coconut eye borer. Comun. Sci. 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Adatia, A.; Johnson, D.; Entz, S. Pathogenicity of two new isolates of Metarhizium anisopliae from Canadian soil to Melanoplus bivittatus (Orthoptera: Acrididae) and Tenebrio molitor (Coleoptera: Tenebrionidae). Can. Entomol. 2010, 142, 128–134. [Google Scholar] [CrossRef]
- Huerta, A.J.; Espinoza, F.; Tellez-Jurado, A.; Maqueda-Gálvez, A.P.; Arana-Cuenca, A. Control Biológico del Chapulín en México. BioTecnología 2014, 18, 28–49. [Google Scholar]
- Yong-Lee, J.; Mi-Woo, R.; Dong-Woo, S. Formulation of the entomopathogenic fungus Beauveria bassiana JN5R1W1 for the control of mosquito adults and evaluation of its novel applicability. J. Asia Pac. Entomo.l 2023, 26, 102056. [Google Scholar] [CrossRef]
- Shin, T.Y.; Lee, M.R.; Park, S.E.; Lee, S.J.; Kim, W.J.; Kim, J.S. Pathogenesis-related genes of entomopathogenic fungi. Arch. Insect Biochem. Physiol. 2020, 105, e21747. [Google Scholar] [CrossRef] [PubMed]
- Wakil, W.; Ghazanfar, M.U.; Usman, M.; Hunter, D.; Shi, W. Fungal-Based Biopesticide Formulations to Control Nymphs and Adults of the Desert Locust, Schistocerca gregaria Forskål (Orthoptera: Acrididae): A Laboratory and Field Cage Study. Agronomy 2022, 12, 5. [Google Scholar] [CrossRef]
- Mwikali, P.C.; Mwamburi, L.A.; Peter-Musinguzi, S. Formulation and bio-efficacy of different isolates of Beauveria bassiana against adults and third nymphal instar of desert locust (Schistocerca gregaria Forskål). Biol. Control. 2024, 198, 105642. [Google Scholar] [CrossRef]
Treatment | /Week 1 | /Week 2 | /Week 3 | Total |
---|---|---|---|---|
T1 N4 + M. sativa | 0.56 ± 0.10 cd | 0.64 ± 0.12 cd | 0.65 ± 0.12 cd | 0.61 ± 0.13 cd |
T2 N4 + Z. mays | 0.52 ± 0.09 cd | 0.63 ± 0.11 cd | 0.66 ± 0.16 cd | 0.60 ± 0.09 cd |
T3 N4 + Helianthus sp. | 0.87 ± 0.15 ab | 0.89 ± 0.17 ab | 0.98 ± 0.10 ab | 0.91 ± 0.16 ab |
T4 N4 + C. dactylon | 0.67 ± 0.20 cd | 0.69 ± 0.13 cd | 0.72 ± 0.09 cd | 0.69 ± 0.34 cd |
T5 N4 + C. pepo | 0.87 ± 0.17 ab | 0.94 ± 0.09 ab | 0.99 ± 0.11 ab | 0.93 ± 0.15 ab |
T6 N5 + M. sativa | 0.66 ± 0.25 cd | 0.78 ± 0.15 cd | 0.95 ± 0.16 ab | 0.79 ± 0.15 cd |
T7 N5 + Z. mays | 0.65 ± 0.07 cd | 0.70 ± 0.09 cd | 0.94 ± 0.11 ab | 0.76 ± 0.15 cd |
T8 N5 + Helianthus sp. | 0.85 ± 0.26 ab | 0.88 ± 0.24 bc | 0.98 ± 0.27 ab | 0.90 ± 0.11 ab |
T9 N5 + C. dactylon | 0.75 ± 0.16 bc | 0.76 ± 0.15 cd | 0.80 ± 0.13 cd | 0.77 ± 0.18 cd |
T10 N5 + C. pepo | 0.91 ± 0.15 ab | 0.95 ± 0.15 ab | 0.99 ± 0.11 ab | 0.95 ± 0.16 ab |
T11 Adult + M. sativa | 1.06 ± 0.11 a | 1.15 ± 0.21 a | 1.33 ± 0.11 a | 1.18 ± 0.14 a |
T12 Adult + Z. mays | 1.01 ± 0.03 a | 1.10 ± 0.22 a | 1.34 ± 0.14 a | 1.15 ± 0.23 a |
T13 Adult + Helianthus sp. | 0.90 ± 0.13 ab | 0.93 ± 0.17 bc | 0.99 ± 0.21 ab | 0.94 ± 0.11 ab |
T14 Adult + C. dactylon | 0.78 ± 0.15 bc | 0.80 ± 0.14 bc | 0.90 ± 0.18 ab | 0.82 ± 0.15 bc |
T15 Adult + C. pepo | 0.91 ± 0.16 ab | 0.95 ± 0.16 ab | 1.10 ± 0.14 a | 0.98 ± 0.15 ab |
Treatment | EPF | Oil | Concentration (%) | Viability (96 h) |
---|---|---|---|---|
T1 | B. bassiana | A. indica | 20 | 100 ± 0.0 a |
T2 | B. bassiana | M. oleifera | 20 | 100 ± 0.0 a |
T3 | B. bassiana | P. americana | 20 | 92.4 ± 4.4 ab |
T4 | B. bassiana | P. dulcis | 20 | 90.5 ± 6.8 ab |
T5 | B. bassiana | A. indica | 40 | 100 ± 0.0 a |
T6 | B. bassiana | M. oleifera | 40 | 100 ± 0.0 a |
T7 | B. bassiana | P. americana | 40 | 92.71 ± 6.8 ab |
T8 | B. bassiana | P. dulcis | 40 | 94 ± 1.14 ab |
T9 | M. robertsii | A. indica | 20 | 99.0 ± 1.14 a |
T10 | M. robertsii | M. oleifera | 20 | 100 ± 0.0 a |
T11 | M. robertsii | P. americana | 20 | 91.1 ± 1.14 ab |
T12 | M. robertsii | P. dulcis | 20 | 97.2 ± 1.14 ab |
T13 | M. robertsii | A. indica | 40 | 99.4 ± 6.8 a |
T14 | M. robertsii | M. oleifera | 40 | 99.2 ± 3.9 a |
T15 | M. robertsii | P. americana | 40 | 97.4 ± 6.8 ab |
T16 | M. robertsii | P. dulcis | 40 | 96.57 ± 4.6 ab |
T17 | B. bassiana | DW (absolute control) | 0 | 0 d |
T18 | M. robertsii | DW (absolute control) | 0 | 0 d |
Treatment | Concentration (%) | Time (h) | |||
---|---|---|---|---|---|
24 | 48 | 72 | 96 | ||
T1 A. indica | 40 | 28.5 ± 0.4 c | 42.8 ± 0.5 c | 57.1 ± 0.5 d | 85.7 ± 0.3 b |
T2 M. oleifera | 40 | 28.5 ± 0.4 c | 28.5 ± 0.4 d | 42.8 ± 0.5 e | 57.1 ± 0.5 c |
T3 P. americana | 40 | 28.5 ± 0.4 c | 28.5 ± 0.4 d | 57.1 ± 0.5 d | 57.1 ± 0.5 c |
T4 P. dulcis | 40 | 42.8 ± 0.5 b | 57.1 ± 0.5 b | 85.7 ± 0.3 b | 100 ± 0.0 a |
T5 B. bassiana + A. indica | 40 | 14.2 ± 0.3 d | 28.5 ± 0.4 d | 57.1 ± 0.5 d | 100 ± 0.0 a |
T6 B. bassiana + M. oleifera | 40 | 28.5 ± 0.4 c | 42.8 ± 0.5 c | 71.4 ± 0.4 c | 100 ± 0.0 a |
T7 B. bassiana + P. americana | 40 | 0 ± 0.0 e | 42.8 ± 0.5 c | 85.7 ± 0.3 b | 100 ± 0.0 a |
T8 B. bassiana + P. dulcis | 40 | 14.2 ± 0.3 d | 71.4 ± 7.3 a | 85.7 ± 0.3 b | 85.7 ± 0.3 b |
T9 M. robertsii + A. indica | 40 | 14.2 ± 0.3 d | 42.8 ± 0.5 c | 57.1 ± 0.5 d | 85.7 ± 0.3 b |
T10 M. robertsii + M. oleifera | 40 | 57.1 ± 0.53 a | 71.4 ± 0.4 a | 85.7 ± 0.3 b | 85.7 ± 0.3 b |
T11 M. robertsii + P. americana | 40 | 57.1 ± 0.53 a | 57.1 ± 0.5 b | 100 ± 0.0 a | 100 ± 0.0 a |
T12 M. robertsii + P. dulcis | 40 | 42.8 ± 0.0 b | 71.4 ± 0.4 a | 71.4 ± 0.4 c | 100 ± 0.0 a |
T13 DW (absolute control) | 100 | 0 ± 0.0 e | 0 ± 0.0 e | 0 ± 0.0 f | 0 ± 0.0 d |
Treatments | Inoculated Insects | Time (h) | |||
---|---|---|---|---|---|
48 | 96 | 192 | 240 | ||
T1 B. bassiana + A. indica | 5 | 20 ± 0.3 e | 33.3 ± 0.4 e | 53.3 ± 0.4 ef | 66.6 ± 0.7 c |
T2 B. bassiana + A. indica | 3 | 23 ± 0.4 d | 38.4 ± 0.5 c | 84.6 ± 0.5 a | 100 a |
T3 B. bassiana + A. indica | 1 | 27.2 ± 0.3 b | 36.3 ± 0.4 d | 54.5 ± 0.6 de | 63.6 ± 0.7 c |
T4 B. bassiana + M. oleifera | 5 | 26.6 ± 0.4 c | 26.6 ± 0.4 g | 73.3 ± 0.4 b | 80 ± 0.1 b |
T5 B. bassiana + M. oleifera | 3 | 15.3 ± 0.4 f | 15.3 ± 0.4 i | 46.1 ± 0.2 fg | 61.5 ± 0.6 c |
T6 B. bassiana + M. oleifera | 1 | 0 ± 0 h | 9 ± 0.1 j | 36.3 ± 0.4 h | 45.4 ± 0.5 d |
T7 M. robertsii + P. americana | 5 | 33.3 ± 0.4 a | 66.6 ± 0.7 a | 74 ± 0.1 b | 80 ± 0.1 b |
T8 M. robertsii + P. americana | 3 | 15.3 ± 0.2 f | 30.7 ± 0.8 f | 38.4 ± 0.5 d | 46.1 ± 0.2 d |
T9 M. robertsii + P. americana | 1 | 0 ± 0 h | 18.1 ± 0.2 i | 36.3 ± 0.4 d | 36.3 ± 0.4 e |
T10 M. robertsii + P. dulcis | 5 | 33.3 ± 0.4 a | 46.6 ± 0.7 b | 66.6 ± 0.7 bc | 66.6 ± 0.7 c |
T11 M. robertsii + P. dulcis | 3 | 23 ± 0.1 d | 38.4 ± 0.5 c | 61.5 ± 0.6 bc | 61.5 ± 0.6 c |
T12 M. robertsii + P. dulcis | 1 | 9 ± 0.1 g | 9 ± 0.1 j | 18.1 ± 0.2 i | 36.3 ± 0.4 e |
T13 DW (absolute control) | 0 | 0 ± 0 h | 0 ± 0 h | 0 ± 0 h | 0 ± 0 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-García, K.; Aquino-Bolaños, T.; Ortiz-Hernández, Y.D.; Aquino-López, T. Laboratory Assessment of Plant Losses by Sphenarium purpurascens and Control with Entomopathogenic Fungi in Oil Emulsions. Agronomy 2025, 15, 690. https://doi.org/10.3390/agronomy15030690
Cruz-García K, Aquino-Bolaños T, Ortiz-Hernández YD, Aquino-López T. Laboratory Assessment of Plant Losses by Sphenarium purpurascens and Control with Entomopathogenic Fungi in Oil Emulsions. Agronomy. 2025; 15(3):690. https://doi.org/10.3390/agronomy15030690
Chicago/Turabian StyleCruz-García, Keyla, Teodulfo Aquino-Bolaños, Yolanda Donají Ortiz-Hernández, and Tlacaelel Aquino-López. 2025. "Laboratory Assessment of Plant Losses by Sphenarium purpurascens and Control with Entomopathogenic Fungi in Oil Emulsions" Agronomy 15, no. 3: 690. https://doi.org/10.3390/agronomy15030690
APA StyleCruz-García, K., Aquino-Bolaños, T., Ortiz-Hernández, Y. D., & Aquino-López, T. (2025). Laboratory Assessment of Plant Losses by Sphenarium purpurascens and Control with Entomopathogenic Fungi in Oil Emulsions. Agronomy, 15(3), 690. https://doi.org/10.3390/agronomy15030690