Antioxidant Activity and Phenolic Compound of Rosemary Under Artificial LED Lights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Extraction
2.2. DPPH Radical Scavenging Assay
2.3. ABTS Radical Scavenging Assay
2.4. Total Phenolic Content
2.5. Total Flavonoid Content
2.6. Analysis of Phenolic Compounds
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Growth of Rosemary Treated with LED Lights
3.2. Effect of LED Lights on the ROS Scavenging Activity in Rosemary
3.3. Comparative Analyses of Total Phenolic and Flavonoid Contents Varying with Types of LED Light
3.4. Comparative Analysis of Phenolic Compounds in Rosemary Plants Treated with Different LED Lights
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation. Front. Plant Sci. 2022, 13, 860157. [Google Scholar] [CrossRef]
- Santana de Oliveira, M.; Vostinaru, O.; Rigano, D.; de Aguiar Andrade, E.H. Bioactive compounds present in essential oils: Advances and pharmacological applications. Front. Pharmacol. 2023, 14, 1130097. [Google Scholar] [CrossRef]
- Hammer, M.; Junghanns, W. Rosmarinus officinalis L.: Rosemary. In Medicinal, Aromatic and Stimulant Plants; Springer: Berlin/Heidelberg, Germany, 2020; pp. 501–521. [Google Scholar]
- González-Minero, F.J.; Bravo-Díaz, L.; Ayala-Gómez, A. Rosmarinus officinalis L. (Rosemary): An ancient plant with uses in personal healthcare and cosmetics. Cosmetics 2020, 7, 77. [Google Scholar] [CrossRef]
- Rahbardar, M.G.; Hosseinzadeh, H. Toxicity and safety of rosemary (Rosmarinus officinalis): A comprehensive review. Naunyn-Schm Arch. Pharm. 2024, 398, 9–23. [Google Scholar] [CrossRef]
- De Oliveira, J.R.; Camargo, S.E.A.; De Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 2019, 26, 5. [Google Scholar] [CrossRef]
- Kabubii, Z.N.; Mbaria, J.M.; Mathiu, P.M.; Wanjohi, J.M.; Nyaboga, E.N. Diet supplementation with rosemary (Rosmarinus officinalis L.) leaf powder exhibits an antidiabetic property in streptozotocin-induced diabetic male wistar rats. Diabetol. 2024, 5, 12–25. [Google Scholar] [CrossRef]
- Kudo, S.; Mutisya, E.; Nagao, M. Population aging: An emerging research agenda for sustainable development. Soc. Sci. 2015, 4, 940–966. [Google Scholar] [CrossRef]
- Yang, J.; Luo, J.; Tian, X.; Zhao, Y.; Li, Y.; Wu, X. Progress in understanding oxidative stress, aging, and aging-related diseases. Antioxidants 2024, 13, 394. [Google Scholar] [CrossRef]
- Iliadis, S.; Papanikolaou, N.A. Reactive oxygen species mechanisms that regulate protein–protein interactions in cancer. Inter. J. Mol. Sci. 2024, 25, 9255. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Fut. J. Pharm. Sci. 2021, 7, 25. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic acids of plant origin—A review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Liu, J.; Van Iersel, M.W. Photosynthetic physiology of blue, green, and red light: Light intensity effects and underlying mechanisms. Front. Plant Sci. 2021, 12, 619987. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Zou, H.; Qiu, L.; Zheng, Y.; Yang, D.; Wang, Y. Effects of light on secondary metabolite biosynthesis in medicinal plants. Fron Plant Sci. 2021, 12, 781236. [Google Scholar] [CrossRef]
- Kalpoutzakis, E.; Chatzimitakos, T.; Athanasiadis, V.; Mitakou, S.; Aligiannis, N.; Bozinou, E.; Gortzi, O.; Skaltsounis, L.A.; Lalas, S.I. Determination of the total phenolics content and antioxidant activity of extracts from parts of plants from the greek island of crete. Plants 2023, 12, 1092. [Google Scholar] [CrossRef]
- Mansoori, A.; Singh, N.; Dubey, S.K.; Thakur, T.K.; Alkan, N.; Das, S.N.; Kumar, A. Phytochemical characterization and assessment of crude extracts from Lantana camara L. for antioxidant and antimicrobial activity. Front. Agro 2020, 2, 582268. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Pappas, V.M.; Palaiogiannis, D.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Pulsed electric field-based extraction of total polyphenols from Sideritis raiseri using hydroethanolic mixtures. Oxygen 2022, 2, 91–98. [Google Scholar] [CrossRef]
- Ayele, D.T.; Akele, M.; Melese, A. Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chem. 2022, 16, 30. [Google Scholar] [CrossRef]
- Seo, J.M.; Arasu, M.V.; Kim, Y.B.; Park, S.U.; Kim, S.J. Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts. Food Chem. 2015, 177, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, X.; Zhang, S.; Zhang, Y.; Chen, L.; Zheng, W.; Xue, X. Effects of light quality on growth, nutritional characteristics, and antioxidant properties of winter wheat seedlings (Triticum aestivum L.). Front. Plant Sci. 2022, 13, 978468. [Google Scholar] [CrossRef]
- Raiciu, A.D.; Livadariu, O.; Maximilian, C.; Crețu, A.M. The assessment of the effect induced by LED-s irradiation on garlic sprouts (Allium sativum L.). Roman. Biotechnol. Lett. 2018, 23, 14187–14191. [Google Scholar]
- Choi, H.G.; Moon, B.Y.; Kang, N.J. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Sci. Hort. 2015, 189, 22–31. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Hu, T.; Zhang, S.; Zhang, Y.; Zhao, T.; Yu, H.; Kang, Y. The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. J. Funct. Foods 2016, 25, 459–465. [Google Scholar] [CrossRef]
- Raiciu, D.; Livadariu, O.; Maximilian, C.; Bira, A. The evaluation of the effect of LED-s irradiation on wheat sprouts (Triticum aestivum L.). Roman. Biotechnol. Lett. 2020, 25, 1615–1620. [Google Scholar] [CrossRef]
- Gam, D.T.; Khoi, P.H.; Ngoc, P.B.; Linh, L.K.; Hung, N.K.; Anh, P.T.L.; Thu, N.T.; Hein, N.T.T.; Khanh, T.D.; Ha, C.H. LED Lights promote growth and flavonoid accumulation of Anoectochilus roxburghii and are linked to the enhanced expression of several related genes. Plants 2020, 9, 1344. [Google Scholar] [CrossRef] [PubMed]
- Cuong, D.M.; Ha, T.W.; Park, C.H.; Kim, N.S.; Ye, H.J.; Chun, S.W.; Kim, C.S.; Park, S.U. Effects of LED lights on expression of genes involved in phenylpropanoid biosynthesis and accumulation of phenylpropanoids in wheat sprout. Agronomy 2019, 9, 307. [Google Scholar] [CrossRef]
- Lobiuc, A.; Vasilache, V.; Pintilie, O.; Stoleru, T.; Burducea, M.; Oroian, M.; Zamfirache, M.M. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. Microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef]
Compound | Light Type | Amount (µg/mL) | Compound | Light Type | Amount (µg/mL) |
---|---|---|---|---|---|
Protocatechuic acid | W | 5.75 ± 0.45 a | Gallic acid | W | 19.52 ± 0.31 c |
R | 2.22 ± 0.08 b | R | 27.68 ± 1.09 a | ||
G | 5.34 ± 0.85 ab | G | 15.27 ± 0.23 d | ||
B | 7.34 ± 3.21 a | B | 25.48 ± 0.18 b | ||
Caffeic acid | W | 53.19 ± 2.74 c | Rosmarinic acid | W | 187.36 ± 0.63 d |
R | 79.89 ± 1.10 a | R | 366.71 ± 1.14 a | ||
G | 63.72 ± 3.90 b | G | 295.70 ± 1.64 b | ||
B | 60.22 ± 0.93 b | B | 261.24 ± 13.62 c | ||
p-Coumaric acid | W | 4.52 ± 0.16 a | Ferulic acid | W | 1.69 ± 0.02 a |
R | 4.49 ± 0.05 a | R | 1.79 ± 0.07 a | ||
G | 2.12 ± 0.17 c | G | 1.70 ± 0.09 a | ||
B | 3.27 ± 0.10 b | B | 1.54 ± 0.10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Seo, J.W.; Ham, D.Y.; Choi, H.J.; Kim, M.J.; Na, J.K.; Kim, S.K.; Seong, E.S. Antioxidant Activity and Phenolic Compound of Rosemary Under Artificial LED Lights. Agronomy 2025, 15, 636. https://doi.org/10.3390/agronomy15030636
Park J, Seo JW, Ham DY, Choi HJ, Kim MJ, Na JK, Kim SK, Seong ES. Antioxidant Activity and Phenolic Compound of Rosemary Under Artificial LED Lights. Agronomy. 2025; 15(3):636. https://doi.org/10.3390/agronomy15030636
Chicago/Turabian StylePark, Jiu, Ji Won Seo, Da Ye Ham, Hong Ju Choi, Myong Jo Kim, Jong Kuk Na, Soo Kyung Kim, and Eun Soo Seong. 2025. "Antioxidant Activity and Phenolic Compound of Rosemary Under Artificial LED Lights" Agronomy 15, no. 3: 636. https://doi.org/10.3390/agronomy15030636
APA StylePark, J., Seo, J. W., Ham, D. Y., Choi, H. J., Kim, M. J., Na, J. K., Kim, S. K., & Seong, E. S. (2025). Antioxidant Activity and Phenolic Compound of Rosemary Under Artificial LED Lights. Agronomy, 15(3), 636. https://doi.org/10.3390/agronomy15030636