Identification of Subtle Differences in the Physiological Quality of Commercial Soybean Seed Lots Using Shotgun Proteomics During Germination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physiological Characterization of Soybean Seed Lots
2.1.1. Germination and Vigor Tests
2.1.2. Characterization of the Imbibition Curve During Germination
2.2. Proteomics in Soybean Seeds
2.2.1. Obtaining the Treatments
2.2.2. Superficial Seed Disinfestation and Excision of the Embryonic Axis with Part of the Vascular Region
2.2.3. Protein Extraction
2.2.4. Protein Quantification and SDS-PAGE
2.2.5. Gel-Free Mass Spectrometry
2.2.6. Protein Identification
2.3. Statistical Analysis and Identification of Differentially Abundant Proteins
3. Results
3.1. Physiological Characterization Identifies a Subtle Variation in the Physiological Quality of Soybean Seed Lots
3.2. The Tetrazolium Test Confirms a Subtle Difference in the Physiological Quality of Seed Lots
3.3. The Imbibition Curve During Germination Shows a Three-Phase Pattern for Different Soybean Seed Lots
3.4. A Proteomic Analysis of Different Seed Lots’ Germination with a Subtle Variation in the Physiological Quality of Soybean Seeds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, E.-H.; Kim, S.-L.; Kim, S.-H.; Chung, I.-M. Comparison of Isoflavones and Anthocyanins in Soybean [Glycine max (L.) Merrill] Seeds of Different Planting Dates. J. Agric. Food Chem. 2012, 60, 10196–10202. [Google Scholar] [CrossRef] [PubMed]
- Marcos Filho, J. Fisiologia de Sementes de Plantas Cultivadas; Abrates: Londrina, Brazil, 2005. [Google Scholar]
- Oliveira, K.R.; Sampaio, F.R.; Siqueira, G.S.; Galvão, Í.M.; Bennett, S.J.; Gratão, P.L.; Barbosa, R.M. Physiological quality of soybean seeds grown under different low altitude field environments and storage time. Plant Soil Environ. 2021, 67, 92–98. [Google Scholar] [CrossRef]
- Ebone, L.A.; Caverzan, A.; Tagliari, A.; Chiomento, J.L.T.; Silveira, D.C.; Chavarria, G. Soybean seed vigor: Uniformity and growth as key factors to improve yield. Agronomy 2020, 10, 545. [Google Scholar] [CrossRef]
- Marcos-Filho, J. Seed vigor testing: An overview of the past, present and future perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef]
- Caverzan, A.; Giacomin, R.; Müller, M.; Biazus, C.; Lângaro, N.C.; Chavarria, G. How does seed vigor affect soybean yield components? Agron. J. 2018, 110, 1318–1327. [Google Scholar] [CrossRef]
- Rajjou, I.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed Germination and Vigor. Annu. Rev. Plant Biol. 2012, 63, 507–540. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Liu, X.; Li, L.; Zhao, H.; Liu, S.; Yu, X.; Shen, Y.; Zhou, Y.; Zhu, Y.; Shu, Y.; et al. Quantitative proteomic, physiological and biochemical analysis of cotyledon, embryo, leaf and pod reveals the effects of high temperature and humidity stress on seed vigor formation in soybean. BMC Plant Biol. 2020, 20, 127. [Google Scholar] [CrossRef]
- Min, C.W.; Kim, Y.J.; Gupta, R.; Kim, S.W.; Han, W.Y.; Ko, J.M.; Kang, H.W.; Yoon, W.B.; Choung, M.G.; Kim, Y.C.; et al. High-throughput proteome analysis reveals changes of primary metabolism and energy production under artificial aging treatment in Glycine max seeds. Appl. Biol. Chem. 2016, 59, 841–853. [Google Scholar] [CrossRef]
- Min, C.W.; Lee, S.H.; Cheon, Y.E.; Han, W.Y.; Ko, J.M.; Kang, H.W.; Kim, Y.C.; Agrawal, G.K.; Rakwal, R.; Gupta, R.; et al. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. J. Proteom. 2017, 169, 125–135. [Google Scholar] [CrossRef] [PubMed]
- International Seed Testing Association. International Rules for Seed Testing: Rules 1993, Adopted at the Twenty-Third International Seed Testing Congress, Argentina 1992, to Become Effective on 1 July 1993; International Seed Testing Association: Zurich, Switzerland, 1999; ISBN 3906549275. [Google Scholar]
- Ministério da Agricultura. Regras para Análise de Sementes; Ministério da Agricultura: Brasília, Brazil, 2009. [Google Scholar]
- Krzyzanowski, F.C.; Nakagawa, J.; Neto, J.B.F.; Vieira, R.D. Testes de vigor baseados no desempenho das plântulas. In Vigor Sementes Conceitos e Testes; Abrates: Londrina, Brazil, 1999; Volume 2, pp. 1–21. [Google Scholar]
- Maguire, J.D. Speed of germination-Aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Marcos Filho, J. Testes de vigor: Importância e utilização In Vigor Sementes Conceitos e Testes; Krzyzanowski, F.C., Vieira, R.D., França Neto, J.B., Eds.; Abrates: Londrina, Brazil, 1999; p. 1. [Google Scholar]
- França Neto, J.D.B.; Krzyzanowski, F.C.; Da Costa, N.P. The Tetrazolium Test for Soybean Seeds; Embrapa Soja-Documentos (INFOTECA-E); Embrapa: Londrina, Brazil, 1998. [Google Scholar]
- Henning, A.A. Guia Prático para Identificação de Fungos Mais Frequentes em Sementes de Soja; Embrapa Soja: Londrina, Brazil, 2015; ISBN 857035441X. [Google Scholar]
- Pirovani, C.P.; Carvalho, H.A.S.; Machado, R.C.R.; Gomes, D.S.; Alvim, F.C.; Pomella, A.W.V.; Gramacho, K.P.; Cascardo, J.C.d.M.; Pereira, G.A.G.; Micheli, F. Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches’ broom disease. Electrophoresis 2008, 29, 2391–2401. [Google Scholar] [CrossRef] [PubMed]
- Villén, J.; Gygi, S.P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 2008, 3, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination-still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Han, C.; Yin, X.; He, D.; Yang, P. Analysis of Proteome Profile in Germinating Soybean Seed, and Its Comparison with Rice Showing the Styles of Reserves Mobilization in Different Crops. PLoS ONE 2013, 8, e56947. [Google Scholar] [CrossRef]
- Chen, M.-H.; Lin, Y.; Hsieh, J.; Kuang, L.; Chow, T.; Lee, P.; Hsing, Y. Two Genes Encoding GmPM, A Soybean Seed Maturation Protein. J. Genet. Mol. Biol. 2002, 13, 177–187. [Google Scholar]
- Naoto, S.; Loïc, R.; North, H.M. Lost in translation: Physiological roles of stored mRNAs in seed germination. Plants 2020, 9, 347. [Google Scholar] [CrossRef] [PubMed]
- Harnowo, D.; Prayogo, Y. The role of PME and ADH enzymes in seed deterioration and its implication for producing high quality soybean seed. IOP Conf. Ser. Earth Environ. Sci. 2023, 1246, 012021. [Google Scholar] [CrossRef]
- Carvalho, E.R.; Carvalho Penido, A.; Kelli Rocha, D.; Vilela Reis, L.; Ferreira dos Santos, S.; dos Santos, H.O. Monitoramento fisiológico e enzimático de sementes tratadas de cultivares de soja durante o armazenamento. Rev. Bras. De Ciências Agrárias 2022, 17, e2077. [Google Scholar] [CrossRef]
- Vertucci, C.W.; Leopold, C. Oxidative processes in soybean and pea seeds. Plant Physiol. 1987, 84, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, J.A.; Gadotti, G.I.; Pinheiro, R.D.M.; Silva, R.N.O.D.; Oliveira, F.K.D.; Moraes, D.M.D. Vigor and anaerobic metabolism of soybean seeds evaluated by ethanol test. J. Seed Sci. 2023, 45, e202345007. [Google Scholar] [CrossRef]
- Chaengsakul, C.; Onwimol, D.; Kongsil, P.; Suwannarat, S. Ethanol production and mitochondrial-related gene expression of maize (Zea mays) seed during storage. J. Integr. Agric. 2019, 18, 2435–2445. [Google Scholar] [CrossRef]
- Ornellas, F.L.S.; de Sousa, A.O.; Pirovani, C.P.; do Nascimento Araújo, M.; da Costa, D.S.; Dantas, B.F.; Barbosa, R.M. Gene expression, biochemical and physiological activities in evaluating melon seed vigor through ethanol release. Sci. Hortic. 2020, 261, 108884. [Google Scholar] [CrossRef]
Lot | WC | GE | FC | GSI | TFM | TDM | RL | SL |
---|---|---|---|---|---|---|---|---|
----------- % ------------ | - | ----- g ----- | --- mm--- | |||||
B | 12.1 | 88 a | 87.5 a | 14.3 a | 17.6 b | 2.51 bc | 119.7 a | 198.3 a |
D | 11.9 | 89 a | 86 a | 14.2 a | 17.3 b | 2.46 bc | 118.05 a | 207.4 a |
E | 11.8 | 87 a | 83.5 a | 13.8 a | 15.4 c | 2.41 c | 104.65 a | 181.4 a |
G | 11.5 | 76 b | 64 b | 11.2 b | 17.2 b | 2.56 b | 83.40 a | 170.4 a |
H | 11.5 | 94 a | 92.5 a | 15.1 a | 22.5 a | 3.51 a | 120.7 a | 212.55 a |
CV (%) | - | 5.58 | 7.86 | 6.89 | 4.09 | 2.33 | 16.71 | 10.61 |
Lote | SE | EVI | WCAA | AA |
---|---|---|---|---|
% | - | ----------- % ----------- | ||
B | 97 a | 23.8 ab | 21.7 | 63 a |
D | 95 a | 24.4 a | 20.7 | 39 b |
E | 91 a | 22.4 b | 20.9 | 41 b |
G | 79 b | 18.5 c | 20.6 | 9 c |
H | 91 a | 23.9 ab | 24.1 | 57 a |
CV (%) | 3.5 | 3.9 | - | 11.8 |
More Abundant | Phase I (0.5 h) | Phase II (20 h) | Phase III (51 h) |
---|---|---|---|
B (Higher Quality) | Ribosomal proteins (C6SW56; C6T0A7; I1MLX4; C6SWX1) | Ubiquitin-like domain-containing protein (40S ribosome) | Ribosomal protein L30 ferredoxin-like fold domain-containing protein |
Ubiquinol oxidase (EC 1.10.3.11) | |||
Histone H4 | |||
E (Lower Quality) | SMP domain-containing protein (LEA D34) | NADPH-dependent aldehyde reductase 1, chloroplastic—for homology | 2S seed storage albumin protein |
Oleosin | Cupin type-1 domain-containing protein | ||
Alcohol dehydrogenase | |||
Nucleoside diphosphate kinase | |||
Glucose-6-phosphate isomerase | |||
UTP-glucose-1-phosphate uridylyltransferase | |||
Seed maturation protein PM31 | |||
Heat shock 70 kDa protein | |||
Annexin | |||
Ribosomal proteins (C6TMB5; I1LMS5; C6SWX1) | |||
Translational elongation (C6TNT2; I1MJ86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampaio, F.R.; Mora-Ocampo, I.Y.; Silva, F.D.A.; Oliveira, K.R.; Pirovani, C.P.; Barbosa, R.M. Identification of Subtle Differences in the Physiological Quality of Commercial Soybean Seed Lots Using Shotgun Proteomics During Germination. Agronomy 2025, 15, 609. https://doi.org/10.3390/agronomy15030609
Sampaio FR, Mora-Ocampo IY, Silva FDA, Oliveira KR, Pirovani CP, Barbosa RM. Identification of Subtle Differences in the Physiological Quality of Commercial Soybean Seed Lots Using Shotgun Proteomics During Germination. Agronomy. 2025; 15(3):609. https://doi.org/10.3390/agronomy15030609
Chicago/Turabian StyleSampaio, Fellipe Ramos, Irma Yuliana Mora-Ocampo, Fredy Davi Albuquerque Silva, Kevein Ruas Oliveira, Carlos Priminho Pirovani, and Rafael Marani Barbosa. 2025. "Identification of Subtle Differences in the Physiological Quality of Commercial Soybean Seed Lots Using Shotgun Proteomics During Germination" Agronomy 15, no. 3: 609. https://doi.org/10.3390/agronomy15030609
APA StyleSampaio, F. R., Mora-Ocampo, I. Y., Silva, F. D. A., Oliveira, K. R., Pirovani, C. P., & Barbosa, R. M. (2025). Identification of Subtle Differences in the Physiological Quality of Commercial Soybean Seed Lots Using Shotgun Proteomics During Germination. Agronomy, 15(3), 609. https://doi.org/10.3390/agronomy15030609