Effects of Short-Term Intercropping of Forage Crops on Soil Microbial Communities in Ziziphus jujuba cv. “Lingwuchangzao” Orchards in Northwest China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Field
2.2. Experimental Design
2.3. Soil Sampling
2.4. Physicochemical Properties of Soil
2.5. Isolation of DNA, Library Preparation, and Metagenome Analysis Through Sequencing
2.6. Bioinformatics and Statistical Analyses
3. Results
3.1. Effects of Intercropping of Forage Crops on Soil Physicochemical Properties
3.2. Effects of Intercropping of Forage Crops on Soil Bacterial and Fungal Community Diversity in Different Layers in a Z. jujuba cv. “Lingwuchangzao” Orchard
3.3. Distribution of Bacterial and Fungal Populations in Different Soil Layers of a Z. jujuba cv. “Lingwuchangzao” Orchard Under Intercropping with Different Forage Crops
3.4. Inter-Relationships Between Bacterial and Fungal Communities in Different Soil Layers of a Z. jujuba cv. “Lingwuchangzao” Orchard Under Intercropping with Different Forage Crops
3.5. Factors Shaping Bacterial and Fungal Communities in Soil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Qin, X.; Tan, Y.; Du, Y.; Tudi, Y.; Yang, Y.; Ping, X. Impact of grass cover on the soil physicochemical properties in China’s orchards: A meta-analysis. Agrofor. Syst. 2024, 98, 1745–1758. [Google Scholar] [CrossRef]
- Ma, X.; Liao, J.; Zhao, J. A meta-analysis of the effects on soil quality in XinJiang (China) orchards after grass cultivation. Appl. Ecol. Environ. Res. 2023, 21, 1891–1902. [Google Scholar] [CrossRef]
- Tang, W.; Yang, H.; Wang, W.; Wang, C.; Pang, Y.; Chen, D.; Hu, X. Effects of living grass mulch on soil properties and assessment of soil quality in Chinese apple orchards: A meta-analysis. Agronomy 2022, 12, 1974. [Google Scholar] [CrossRef]
- Ma, X.; Liao, J.; Zhao, J. Experiment and meta-analysis on the effects of grass cultivation in the orchard on fruit yield and quality. Food Sci. Technol. 2022, 43, e95122. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, D.; Lei, Y.; Lozano-Torres, J.L.; Deng, Y.; Xu, J.; Hu, L. Cover crop rotation suppresses root-knot nematode infection by shaping soil microbiota. New Phytol. 2024, 245, 363–377. [Google Scholar] [CrossRef]
- Ren, J.; Li, F.; Yin, C. Orchard grass safeguards sustainable development of fruit industry in China. J. Clean. Prod. 2023, 382, 135291. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, K.; Zhang, J.; Li, D.; Zhang, Y.; Xiang, H. Grass cultivation alters soil organic carbon fractions in a subtropical orchard of southern China. Soil. Tillage Res. 2018, 181, 110–116. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, R.; Fu, L.; Tao, S.; Bao, J. Effects of orchard grass on soil fertility and nutritional status of fruit trees in Korla fragrant pear orchard. Horticulturae 2023, 9, 903. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Kamran, M.; Chen, X.; Tan, H.; Long, M. Effects of grass inter-planting on soil nutrients, enzyme activity, and bacterial community diversity in an apple orchard. Front. Plant. Sci. 2022, 13, 901143. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, W.; Goodwin, P.H.; Wang, Y.; Zheng, S.-J.; Li, X. Effect of cover crop on soil fertility and bacterial diversity in a banana plantation in southwestern China. Soil. Tillage Res. 2024, 240, 106092. [Google Scholar] [CrossRef]
- Xiang, Y.; Chang, S.X.; Shen, Y.; Chen, G.; Liu, Y.; Yao, B.; Xue, J.; Li, Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards: A synthesis across China. Appl. Soil. Ecol. 2023, 182, 104720. [Google Scholar] [CrossRef]
- Muhammad, I.; Wang, J.; Sainju, U.M.; Zhang, S.; Zhao, F.; Khan, A. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma 2021, 381, 114696. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Úrbez-Torres, J.R.; Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 2016, 36, 48. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Chen, X.; Tan, H.; Jin, X.; Lu, Q.; He, S.; Long, M. Cover cropping increases soil fungal-bacterial community diversity and network complexity in apple orchards on the Loess Plateau, China. Front. Environ. Sci. 2022, 10, 916288. [Google Scholar] [CrossRef]
- Wei, Z.; Zeng, Q.; Tan, W. Cover cropping impacts soil microbial communities and functions in mango orchards. Agriculture 2021, 11, 343. [Google Scholar] [CrossRef]
- Wang, N.; Li, L.; Gou, M.; Jian, Z.; Hu, J.; Chen, H.; Xiao, W.; Liu, C. Living grass mulching improves soil enzyme activities through enhanced available nutrients in citrus orchards in subtropical China. Front. Plant. Sci. 2022, 13, 1053009. [Google Scholar] [CrossRef]
- Fu, H.; Chen, H.; Ma, Q.; Han, K.; Wu, S.; Wu, L. Effect of planting and mowing cover crops as livestock feed on soil quality and pear production. Front. Plant. Sci. 2023, 13, 1105308. [Google Scholar] [CrossRef] [PubMed]
- Tu, A.; Xie, S.; Zheng, H.; Li, H.; Li, Y.; Mo, M. Long-term effects of living grass mulching on soil and water conservation and fruit yield of citrus orchard in south China. Agric. Water Manag. 2021, 252, 106897. [Google Scholar] [CrossRef]
- Fu, H.; Chen, H.; Ma, Q.; Chen, B.; Wang, F.; Wu, L. Planting and mowing cover crops as livestock feed to synergistically optimize soil properties, economic profit, and environmental burden on pear orchards in the Yangtze River Basin. J. Sci. Food Agric. 2023, 103, 6680–6688. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, T.; Wei, W.; Shen, L.; Wang, X.; Tuertia, T.; Li, L.; Zhang, W. In arid regions, forage mulching between fruit trees rows enhances fruit tree light and lowers soil salinity. Agriculture 2022, 12, 1895. [Google Scholar] [CrossRef]
- Monteiro, A.; Lopes, C.M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ. 2007, 121, 336–342. [Google Scholar] [CrossRef]
- Linares, J.; Scholberg, J.; Graetz, D.; Boote, K.; McSorley, R.; Chase, C. Effects of perennial peanut and common bermudagrass on nitrogen and water uptake of young citrus trees. J. Plant Nutr. 2010, 33, 200–218. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, D.; Wang, Z.; Song, L.; Cao, B. Fruit morphology measurements of jujube cultivar ‘Lingwu Changzao’(Ziziphus jujuba Mill. cv. Lingwuchangzao) during fruit development. Horticulturae 2021, 7, 26. [Google Scholar] [CrossRef]
- Wang, X.; Cao, B.; Zou, J.; Chen, W. Composition and environmental interpretation of the weed communities in the main planting base of jujube (Ziziphus jujuba Mill. cv.‘LingwuChangzao’), Ningxia province of China. Peer J. 2022, 10, e13583. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, L.; Han, Y.; Cao, B.; Song, L. Effects of elevated temperature and drought stress on fruit coloration in the jujube variety ‘Lingwuchangzao’(Ziziphus jujube cv. Lingwuchangzao). Sci. Hortic. 2020, 274, 109667. [Google Scholar] [CrossRef]
- Wang, X.; Cao, B.; Zou, J.; Xu, A.; Feng, X. Intercropping Gramineae Herbage in Semiarid Jujube Cultivar ‘LingwuChangzao’(Ziziphus jujuba Mill. cv. LingwuChangzao) Orchard Improves Productivity, Plant Nutritional Quality, and Soil Quality. Horticulturae 2022, 8, 834. [Google Scholar] [CrossRef]
- Atucha, A.; Merwin, I.A.; Brown, M.G. Long-term effects of four groundcover management systems in an apple orchard. Hort. Sci. 2011, 46, 1176–1183. [Google Scholar] [CrossRef]
- Bunce, J.A. Long-term growth of alfalfa and orchard grass plots at elevated carbon dioxide. J. Biogeogr. 1995, 22, 341–348. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; Agriculture Publication: Beijing, China, 2000; pp. 355–356. [Google Scholar]
- Guo, M.; Wu, F.; Hao, G.; Qi, Q.; Li, R.; Li, N.; Wei, L.; Chai, T. Bacillus subtilis improves immunity and disease resistance in rabbits. Front. Immunol. 2017, 8, 354. [Google Scholar] [CrossRef] [PubMed]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’hara, R.; Simpson, G.; Solymos, P.; Stevens, M.; Wagner, H. Vegan: Community Ecology Package, R Package Version 2.5-7; R Project for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Dung, T.V.; Ngoc, N.P.; Dang, L.V.; Hung, N.N. Impact of cover crop and mulching on soil physical properties and soil nutrients in a citrus orchard. PeerJ 2022, 10, e14170. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; de Torres, M.A.R.-R.; Márquez-García, J.; Moreno-García, M.; Carbonell-Bojollo, R.M. Legumes used as cover crops to reduce fertilisation problems improving soil nitrate in an organic orchard. Eur. J. Agron. 2018, 95, 1–13. [Google Scholar] [CrossRef]
- Capri, C.; Gatti, M.; Fiorini, A.; Ardenti, F.; Tabaglio, V.; Poni, S. A comparative study of fifteen cover crop species for orchard soil management: Water uptake, root density traits and soil aggregate stability. Sci. Rep. 2023, 13, 721. [Google Scholar] [CrossRef] [PubMed]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef]
- Roncero, M.I.G.; Hera, C.; Ruiz-Rubio, M.; Maceira, F.I.G.; Madrid, M.P.; Caracuel, Z.; Calero, F.; Delgado-Jarana, J.; Roldán-Rodrıguez, R.; Martınez-Rocha, A.L. Fusarium as a model for studying virulence in soilborne plant pathogens. Physiol. Mol. Plant Pathol. 2003, 62, 87–98. [Google Scholar] [CrossRef]
- Wachowska, U.; Irzykowski, W.; Jędryczka, M.; Stasiulewicz-Paluch, A.D.; Głowacka, K. Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol Sci. Technol. 2013, 23, 1110–1122. [Google Scholar] [CrossRef]
- Soltani, A.-A.; Khavazi, K.; Asadi-Rahmani, H.; Alikhani, H.-A.; Omidvari, M.; Dahaji, P.A. Evaluation of biological control traits in some isolates of fluorescent Pseudomonads and Flavobacterium. J. Agric. Sci. 2012, 4, 164. [Google Scholar] [CrossRef]
- Shobha, G.; Kumudini, B. Antagonistic effect of the newly isolated PGPR Bacillus spp. on Fusarium oxysporum. Int. J. Appl. Sci. Eng. Res. 2012, 1, 463–474. [Google Scholar]
- Khalifa, M.W.; Rouag, N.; Bouhadida, M. Evaluation of the antagonistic effect of Pseudomonas rhizobacteria on Fusarium wilt of chickpea. Agriculture 2022, 12, 429. [Google Scholar] [CrossRef]
- Ozimek, E.; Hanaka, A. Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture 2020, 11, 7. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Zhao, Z.; Li, Y.; Yu, H.; Wang, Y.; Zhang, J.; Han, Y. The changes of chemical molecular components in soil organic matter are associated with fungus Mortierella capitata K. Soil. Tillage Res. 2023, 227, 105598. [Google Scholar] [CrossRef]
Indicator | 0–20 cm Soil Layer | 20–40 cm Soil Layer | ||||||
---|---|---|---|---|---|---|---|---|
CK | LP | TR | VV | CK | LP | TR | VV | |
SOC (g/kg) | 9.59 ± 0.42 ab | 8.81 ± 0.22 b | 10.60 ± 0.69 a | 9.86 ± 0.61 ab | 6.87 ± 0.27 b | 5.94 ± 0.25 b | 11.73 ± 1.09 a | 6.93 ± 0.32 b |
TN (g/kg) | 1.07 ± 0.05 ab | 0.94 ± 0.02 b | 1.14 ± 0.07 a | 1.0 ± 0.04 b | 0.73 ± 0.02 b | 0.63 ± 0.03 b | 1.16 ± 0.09 a | 0.70 ± 0.03 b |
AN (mg/kg) | 82.2 ± 3.90 a | 58.24 ± 3.46 c | 78.28 ± 5.10 ab | 67.72 ± 4.72 bc | 46.38 ± 2.33 b | 30.8 ± 3.11 c | 67.16 ± 4.41 a | 48.92 ± 3.77 b |
TP (g/kg) | 1.08 ± 0.07 a | 0.94 ± 0.10 ab | 0.80 ± 0.09 b | 0.98 ± 0.17 a | 0.95 ± 0.08 a | 0.83 ± 0.14 b | 0.87 ± 0.03 ab | 0.83 ± 0.05 b |
AP (mg/kg) | 64.6 ± 9.61 a | 31.92 ± 6.12 b | 55.06 ± 5.34 a | 28.22 ± 3.88 b | 28.54 ± 10.7 b | 5.12 ± 0.77 c | 80.12 ± 12.90 a | 9.66 ± 3.35 c |
TK (g/kg) | 20.02 ± 0.76 a | 19.76 ± 0.18 a | 19.42 ± 0.23 a | 19.76 ± 0.12 a | 18.70 ± 2.20 a | 18.48 ± 0.15 a | 18.86 ± 0.26 a | 19.26 ± 0.52 a |
AK (mg/kg) | 290.8 ± 24.81 a | 155.2 ± 5.23 c | 199.4 ± 6.0 bc | 213.8 ± 25.41 b | 162.4 ± 10.3 a | 81.2 ± 9.14 c | 143 ± 4.04 ab | 121.8 ± 20.19 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Bai, M.; Gou, Y.; Chang, T.; Wei, J.; Quan, Y.; Gan, X.; Lin, Y.; Lu, S.; Shi, X.; et al. Effects of Short-Term Intercropping of Forage Crops on Soil Microbial Communities in Ziziphus jujuba cv. “Lingwuchangzao” Orchards in Northwest China. Agronomy 2025, 15, 319. https://doi.org/10.3390/agronomy15020319
Zhang H, Bai M, Gou Y, Chang T, Wei J, Quan Y, Gan X, Lin Y, Lu S, Shi X, et al. Effects of Short-Term Intercropping of Forage Crops on Soil Microbial Communities in Ziziphus jujuba cv. “Lingwuchangzao” Orchards in Northwest China. Agronomy. 2025; 15(2):319. https://doi.org/10.3390/agronomy15020319
Chicago/Turabian StyleZhang, Hong, Mingsheng Bai, Yufei Gou, Tianyu Chang, Jiayuan Wei, Yanan Quan, Xiuwen Gan, Ying Lin, Shiyun Lu, Xiaodong Shi, and et al. 2025. "Effects of Short-Term Intercropping of Forage Crops on Soil Microbial Communities in Ziziphus jujuba cv. “Lingwuchangzao” Orchards in Northwest China" Agronomy 15, no. 2: 319. https://doi.org/10.3390/agronomy15020319
APA StyleZhang, H., Bai, M., Gou, Y., Chang, T., Wei, J., Quan, Y., Gan, X., Lin, Y., Lu, S., Shi, X., Zhang, X., Li, J., Wei, T., Zhou, J., & Liu, J. (2025). Effects of Short-Term Intercropping of Forage Crops on Soil Microbial Communities in Ziziphus jujuba cv. “Lingwuchangzao” Orchards in Northwest China. Agronomy, 15(2), 319. https://doi.org/10.3390/agronomy15020319