Integrated Transcriptome and Phytohormone Analysis Reveal the Central Role of Auxin in Early Salt Stress Response of Pomegranate Roots
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Salt Treatment
2.2. Physiological Indicator Measurement
2.3. Transcriptome Analysis
2.3.1. Sample Collection and RNA Extraction
2.3.2. RT-qPCR Analysis
2.4. Hormone Content Measurement
2.5. Data Analysis
3. Results
3.1. Physiological Responses of Pomegranate Roots to Salinity Stress
3.2. Analysis of Transcriptome Profile in Response to Salinity Stress
3.2.1. Global Analysis of RNA-Seq Data
3.2.2. Identification of DEGs Among Different Comparison Combinations
3.2.3. GO Annotation Analysis of DEGs Among Different Treatments
3.2.4. KEGG Enrichment Analysis of DEGs Among Different Treatments
3.2.5. Analysis of Key Genes Involved in Auxin Biosynthesis and Signal Transduction
3.2.6. Verification of the Key Gene Expressions Under Salinity Stress
3.3. Analysis of Phytohormone Contents in Response to Salinity Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shokri, N.; Hassani, A.; Sahimi, M. Multi-scale soil salinization dynamics from global to pore scale: A review. Rev. Geophys. 2024, 62, e2023RG000804. [Google Scholar] [CrossRef]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Liu, Y.F.; Yang, Q.W.; Pei, X.J.; Li, J.J.; Wang, S.C.; Huang, Z.F.; Han, W.; Zheng, T.L. Spatial distribution of soil salinization under the influence of human activities in arid areas, China. J. Arid Land 2024, 16, 1344–1364. [Google Scholar] [CrossRef]
- Ahmed, M.; Tóth, Z.; Decsi, K. The impact of salinity on crop yields and the confrontational behavior of transcriptional regulators, nanoparticles, and antioxidant defensive mechanisms under stressful conditions: A review. Int. J. Mol. Sci. 2024, 25, 2654. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, P.K. Soil salinity and food security in India. Front. Sustain. Food Syst. 2020, 4, 533781. [Google Scholar] [CrossRef]
- Kaleem, F.; Shabir, G.; Aslam, K.; Rasul, S.; Manzoor, H.; Shah, S.M.; Khan, A.R. An overview of the genetics of plant response to salt stress: Present status and the way forward. Appl. Biochem. Biotechnol. 2018, 186, 306–334. [Google Scholar] [CrossRef]
- Khemakhem, M.; Zarroug, Y.; Jabou, K.; Selmi, S.; Bouzouita, N. Physicochemical characterization of oil, antioxidant poten-tial, and phenolic profile of seeds isolated from Tunisian pomegranate (Punica granatum L.) cultivars. J. Food Sci. 2021, 86, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Seresht, E.S.; Karimi, H.R.; Malekzadeh, K.; Mirdehghan, S.H.; Mirik, A.A.M.; Jomeyazdiyan, M.S. evaluation of morphological and physiological traits as indicators of drought tolerance in twelve pomegranate cultivars (Punica granatum L.). Russ. J. Plant Physiol. 2025, 72, 131. [Google Scholar] [CrossRef]
- Liu, C.Y.; Zhao, Y.J.; Zhao, X.Q.; Wang, J.P.; Gu, M.M.; Yuan, Z.H. Transcriptomic profiling of pomegranate provides insights into salt tolerance. Agronomy 2020, 10, 44. [Google Scholar] [CrossRef]
- Liu, C.Y.; Zhao, X.Q.; Yan, J.X.; Yuan, Z.H.; Gu, M.M. Effects of salt stress on growth, photosynthesis, and mineral nutrients of 18 pomegranate (Punica granatum) cultivars. Agronomy 2020, 10, 27. [Google Scholar] [CrossRef]
- Theerawitaya, C.; Tisarum, R.; Samphumphuang, T.; Takabe, T.; Cha-um, S. Expression levels of the Na+/K+ transporter OsHKT2;1 and vacuolar Na+/H+ exchanger OsNHX1, Na enrichment, maintaining the photosynthetic abilities and growth performances of indica rice seedlings under salt stress. Physiol. Mol. Biol. Plants 2020, 26, 513–523. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Zhang, J.; Wang, C.; Han, K.N.; Hu, L.X.; Niu, T.H.; Yang, Y.; Chang, Y.L.; Xie, J.M. Exogenous proline enhances systemic defense against salt stress in celery by regulating photosystem, phenolic compounds, and antioxidant system. Plants 2023, 12, 928. [Google Scholar] [CrossRef]
- Che, Y.H.; Yao, T.T.; Wang, H.R.; Wang, Z.H.; Zhang, H.B.; Sun, G.Y.; Zhang, H.H. Potassium ion regulates hormone, Ca2+ and H2O2 signal transduction and antioxidant activities to improve salt stress resistance in tobacco. Plant Physiol. Biochem. 2022, 186, 40–51. [Google Scholar] [CrossRef]
- Zhou, H.P.; Shi, H.F.; Yang, Y.Q.; Feng, X.X.; Chen, X.; Xiao, F.; Lin, H.H.; Guo, Y. Insights into plant salt stress signaling and tolerance. J. Genet. Genomics 2024, 51, 16–34. [Google Scholar] [CrossRef]
- Yu, Z.P.; Duan, X.B.; Luo, L.; Dai, S.J.; Ding, Z.J.; Xia, G.M. How Plant hormones mediate salt stress responses. Trends Plant Sci. 2020, 25, 1117–1130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Dang, H.; Nan, S.Y.; Yu, C.H.; Li, Y.J.; Du, S.H.; Yang, X.Y.; Zheng, T.C.; Wang, S.J. PagHSF4 mediates the biosynthesis of jasmonic acid and plant hormone signal transduction to regulate the growth and development as well as salt stress tol-erance of poplar. Ind. Crop. Prod. 2025, 234, 121582. [Google Scholar] [CrossRef]
- Wu, Y.H.; Wang, T.; Wang, K.; Liang, Q.Y.; Bai, Z.Y.; Liu, Q.L.; Pan, Y.Z.; Jiang, B.B.; Zhang, L. Comparative analysis of the chrysanthemum leaf transcript profiling in response to salt stress. PLoS ONE 2016, 11, e0159721. [Google Scholar] [CrossRef]
- Guan, L.; Haider, M.S.; Khan, N.; Nasim, M.; Jiu, S.T.; Fiaz, M.; Zhu, X.D.; Zhang, K.K.; Fang, J.G. Transcriptome sequence analysis elaborates a complex defensive mechanism of grapevine (Vitis vinifera L.) in response to salt stress. Int. J. Mol. Sci. 2018, 19, 4019. [Google Scholar] [CrossRef]
- Ho, W.W.H.; Hill, C.B.; Doblin, M.S.; Shelden, M.C.; van de Meene, A.; Rupasinghe, T.; Bacic, A.; Roessner, U. Integrative multi-omics analyses of barley rootzones under salinity stress reveal two distinctive salt tolerance mechanisms. Plant Commun. 2020, 1, 100031. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Wang, X.B.; Wu, Q.K.; Xing, S.T.; Zhao, F.; Yu, Y.Y. Morphological, physiological and transcriptomic analyses reveal potential candidate genes responsible for salt stress in Rosa rugosa. Ornam. Plant Res. 2023, 3, 21. [Google Scholar] [CrossRef]
- Tang, H.X.; Wang, C.Z.; Mei, J.; Feng, L.J.; Wu, Q.K.; Yin, Y.L. Transcriptome Analysis revealed the response mechanism of pomegranate to salt stress. Agronomy 2024, 14, 2261. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Han, C.; Liu, Z.M.; Yu, F.Y.; Wu, Q.K. 24-Epibrassinolide and methyl jasmonate promoted seed development of styrax tonkinensis and affected seed chemical compositions, especially seed lipid metabolism. J. Plant Growth Regul. 2023, 42, 2162–2175. [Google Scholar] [CrossRef]
- Luo, X.; Li, H.X.; Wu, Z.K.; Yao, W.; Zhao, P.; Cao, D.; Yu, H.Y.; Li, K.D.; Poudel, K.; Zhao, D.G.; et al. The pomegranate (Punica granatum L.) draft genome dissects genetic divergence between soft- and hard-seeded cultivars. Plant Biotechnol. J. 2019, 18, 955–968. [Google Scholar] [CrossRef]
- Wu, Q.K.; Zhao, X.; Chen, C.; Zhang, Z.H.; Yu, F.Y. Metabolite profiling and classification of developing Styrax tonkinensis kernels. Metabolites 2020, 10, 21. [Google Scholar] [CrossRef]
- Fu, H.Q.; Yang, Y.Q. How plants tolerate salt stress. Curr. Issues Mol. Biol. 2023, 45, 5914–5934. [Google Scholar] [CrossRef]
- Joshi, S.; Nath, J.; Singh, A.K.; Pareek, A.; Joshi, R. Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiol. Plant. 2022, 174, e13702. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B.R. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genomics 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.B.; Yang, H.; Du, T.S. Osmotic adjustment of tomato under mild soil salinity can enhance drought resistance. Environ. Exp. Bot. 2022, 202, 105004. [Google Scholar] [CrossRef]
- Jiang, D.; Lu, B.; Liu, L.T.; Duan, W.J.; Meng, Y.J.; Li, J.; Zhang, K.; Sun, H.C.; Zhang, Y.J.; Dong, H.Z.; et al. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biol. 2021, 21, 331. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Verma, D.; Jalmi, S.K.; Bhagat, P.K.; Verma, N.; Sinha, A.K. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J. 2020, 287, 2560–2576. [Google Scholar] [CrossRef]
- Yu, S.J.; Yang, L.Y.; Gao, K.X.; Zhou, J.C.; Lan, X.; Xie, J.; Zhong, C.M. Dioscorea composita WRKY5 positively regulates AtSOD1 and AtABF2 to enhance drought and salt tolerances. Plant Cell Reports 2023, 42, 1365–1378. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Nai, G.; Yan, H.K.; Sun, P.; Bao, J.Y.; Li, Z.L.; Chen, G.P.; Zhang, J.R.; Wang, J.P.; Ma, L.; et al. The mechanism of micrografting with salt-tolerant rootstock in improving the salt tolerance of scion in Vitis vinifera. Physiol. Plant. 2025, 177, e70403. [Google Scholar] [CrossRef] [PubMed]
- Rius-Garcia, X.; Videgain-Marco, M.; Casanova-Gascón, J.; Acuña-Rello, L.; Martín-Ramos, P. Comparative analysis of salt tolerance in five commercial Prunus rootstocks. J. Sci. Food Agric. 2025. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.H.; Zhou, M.; Yao, J.; Li, Q.S.; Zhang, Y.Y. Phenotypic and methylome responses to salt stress in Arabidopsis thaliana natural accessions. Front. Plant Sci. 2022, 13, 841154. [Google Scholar] [CrossRef]
- Yu, L.; Ma, J.C.; Niu, Z.M.; Bai, X.T.; Lei, W.L.; Shao, X.M.; Chen, N.N.; Zhou, F.F.; Wan, D.S. Tissue-specific transcriptome analysis reveals multiple responses to salt stress in Populus euphratica seedlings. Genes 2017, 8, 372. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Kong, X.H.; Wang, X.W.; Si, A.J.; Zhao, F.X.; Huang, Q.; Yu, Y.; Chen, Z.W. Time-course transcriptomics analysis reveals molecular mechanisms of salt-tolerant and salt-sensitive cotton cultivars in response to salt stress. Int. J. Mol. Sci. 2025, 26, 329. [Google Scholar] [CrossRef]
- Zhang, X.N.; Liu, L.J.; Chen, B.W.; Qin, Z.H.; Xiao, Y.F.; Zhang, Y.; Yao, R.L.; Liu, H.L.; Yang, H. Progress in understanding the physiological and molecular responses of populus to salt stress. Int. J. Mol. Sci. 2019, 20, 1312. [Google Scholar] [CrossRef]
- Jin, D.S.; Xu, Y.C.; Iqbal, A.; Liu, Y.Q.; Zhang, Y.G.; Lin, Y.Z.; Tang, L.Q.; Wang, X.H.; Wang, J.J.; Huang, M.S.; et al. Comparative transcriptome and hormonal analysis reveals the mechanisms of salt tolerance in rice. Int. J. Mol. Sci. 2025, 26, 6660. [Google Scholar] [CrossRef]
- Liu, X.Y.; Shang, C.Y.; Duan, P.Y.; Yang, J.Y.; Wang, J.B.; Sui, D.; Chen, G.; Li, X.J.; Li, G.B.; Hu, S.S.; et al. The SlWRKY42-SlMYC2 module synergistically enhances tomato saline-alkali tolerance by activating the jasmonic acid signaling and spermidine biosynthesis pathway. J. Exp. Bot. 2025, 67, 1254–1273. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Q.; Song, S.; Guo, Y.; Tian, Z.Y.; Shang, Y.Y.; Ding, Y.H.; Li, X.Y.; Zhao, L.Z.; Zhang, H.X. Overexpression of auxin synthesis gene PagYUC6a in poplar (Populus alba P. glandulosa) enhances salt tolerance. Int. J. Biol. Macromol. 2025, 311, 143712. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.S.; Zhuang, S.Y.; Zhang, W.W. Advances in plant auxin biology: Synthesis, metabolism, signaling, interaction with other hormones, and roles under abiotic stress. Plants 2024, 13, 2523. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Zhang, M.H.; Ye, J.W.; Du, J.C.; Jiang, Y.J.; Hu, Y.R. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 2025, 35, 1110–1113. [Google Scholar] [CrossRef]
- Li, H.H.; Zhou, T.; Chong, X.R.; Lu, X.Q.; Li, Y.L.; Zheng, B.S.; Wang, X.L.; Chen, H. Transcriptome and expression analysis of genes related to regulatory mechanisms in holly (Ilex dabieshanensis) under cold stress. Forests 2022, 13, 2150. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Tian, A.N.; Yamamoto, M.; Kitashiba, H. A significant correlation between ABA-induced seed-germination delay and salt tolerance of seedling in Brassica napus. Plant. Prod. Sci. 2024, 27, 253–264. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhu, G.L.; Zhou, G.S.; Song, X.D.; Ibrahim, M.E.H.; Salih, E.G.I.; Hussain, S.; Younas, M.U. Pivotal role of phytohormones and their responsive genes in plant growth and their signaling and transduction pathway under salt stress in cotton. Int. J. Mol. Sci. 2022, 23, 7339. [Google Scholar] [CrossRef]
- Jin, Z.X.; Lv, X.N.; Sun, Y.S.; Fan, Z.B.; Xiang, G.Q.; Yao, Y.X. Comprehensive discovery of salt-responsive alternative splicing events based on Iso-Seq and RNA-seq in grapevine roots. Environ. Exp. Bot. 2021, 192, 104645. [Google Scholar] [CrossRef]






| Sample | Clean Reads | Q20/% | Q30/% | GC Content/% | Mapping Rate/% |
|---|---|---|---|---|---|
| C0h | 28,322,854 | 97.05 | 92.12 | 46.31 | 96.14 |
| L6h | 28,909,256 | 97.16 | 92.42 | 47.59 | 93.68 |
| L12h | 25,092,085 | 97.31 | 92.74 | 49.93 | 95.00 |
| L24h | 28,933,695 | 97.12 | 92.33 | 49.05 | 94.07 |
| H6h | 29,527,121 | 97.40 | 92.87 | 46.99 | 95.80 |
| H12h | 30,247,134 | 96.86 | 91.78 | 49.45 | 94.85 |
| H24h | 31,273,905 | 96.68 | 91.48 | 49.23 | 95.21 |
| Mean | 28,900,864 | 97.08 | 92.25 | 48.36 | 94.97 |
| SD | 3,438,460 | 0.34 | 0.68 | 1.61 | 0.94 |
| Hormone | C0h | L6h | L12h | L24h | H6h | H12h | H24h |
|---|---|---|---|---|---|---|---|
| IAA | 1.38 ± 0.02 c | 2.36 ± 0.23 bc | 2.86 ± 0.01 ab | 1.89 ± 0.06 c | 4.17 ± 0.21 a | 3.19 ± 0.21 ab | 2.36 ± 0.24 bc |
| ABA | 15.81 ± 0.17 a | 4.25 ± 0.19 d | 5.90 ± 0.05 cd | 7.61 ± 0.20 c | 16.11 ± 0.43 a | 10.84 ± 0.29 b | 14.29 ± 0.27 a |
| JA | 80.52 ± 2.61 c | 36.12 ± 1.30 d | 64.51 ± 1.01 c | 78.84 ± 5.35 c | 88.11 ± 0.64 c | 168.50 ± 2.46 b | 184.12 ± 9.37 a |
| TZ | 1.28 ± 0.11 bc | 0.48 ± 0.03 cd | 2.38 ± 0.18 a | 1.12 ± 0.13 c | 1.89 ± 0.17 ab | 0.28 ± 0.03 d | 1.24 ± 0.05 bc |
| GA1 | 13.13 ± 0.25 b | 10.29 ± 0.51 c | 11.45 ± 0.26 c | 20.96 ± 0.86 a | 8.95 ± 0.32 c | 10.56 ± 0.53 c | 21.15 ± 1.80 a |
| GA3 | 1.34 ± 0.01 c | 1.73 ± 0.04 a | 1.43 ± 0.02 c | 3.13 ± 0.10 a | 1.05 ± 0.04 d | 1.07 ± 0.08 d | 2.92 ± 0.12 a |
| SA | 263.99 ± 4.91 a | 214.99 ± 4.57 b | 254.25 ± 1.20 a | 109.38 ± 9.99 d | 183.63 ± 4.61 c | 237.85 ± 7.49 ab | 122.59 ± 2.95 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Ji, H.; Kong, Y.; Liu, J.; Wu, Q.; Yin, Y. Integrated Transcriptome and Phytohormone Analysis Reveal the Central Role of Auxin in Early Salt Stress Response of Pomegranate Roots. Agronomy 2025, 15, 2735. https://doi.org/10.3390/agronomy15122735
Tang H, Ji H, Kong Y, Liu J, Wu Q, Yin Y. Integrated Transcriptome and Phytohormone Analysis Reveal the Central Role of Auxin in Early Salt Stress Response of Pomegranate Roots. Agronomy. 2025; 15(12):2735. https://doi.org/10.3390/agronomy15122735
Chicago/Turabian StyleTang, Haixia, Huaikun Ji, Yanqiu Kong, Jia Liu, Qikui Wu, and Yanlei Yin. 2025. "Integrated Transcriptome and Phytohormone Analysis Reveal the Central Role of Auxin in Early Salt Stress Response of Pomegranate Roots" Agronomy 15, no. 12: 2735. https://doi.org/10.3390/agronomy15122735
APA StyleTang, H., Ji, H., Kong, Y., Liu, J., Wu, Q., & Yin, Y. (2025). Integrated Transcriptome and Phytohormone Analysis Reveal the Central Role of Auxin in Early Salt Stress Response of Pomegranate Roots. Agronomy, 15(12), 2735. https://doi.org/10.3390/agronomy15122735

