Determination of Soil Micronutrient Critical Values Using Mehlich 3 Extractant for Principal Field Crops
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Analysis
2.3. Database Construction
2.4. Statistics and Calculations
3. Results and Discussion
3.1. Soil and Plant Sample Characterization
3.2. Yield Description
3.3. Influence of Soil Properties on Critical Values
3.4. Calculation of SCVs Using Regression Models Method
3.5. Calculation of SCVs Using the High-Yield Method
3.6. Comparison of SCVs with Literature Values
| Element | Author | Crop | Soil Property | SCV (mg kg−1) |
|---|---|---|---|---|
| B | Haefele et al. 2024 [25] | cereals | x | <1.0 |
| Seth et al. 2018 [45] | x | pH 5.1 | 0.40 | |
| pH 6.2 | 0.65 | |||
| Zbiral 2016 [26] | x | light soils | <0.55 | |
| medium soils | <0.70 | |||
| heavy soils | <0.85 | |||
| Cu | Haefele et al. 2024 [25] | cereals | x | <0.5 |
| Zbiral 2016 [26] | cereals | x | <0.2 | |
| others | x | <1.6 | ||
| Espinoza et al. 2018 [46] | x | x | <1.0 | |
| Fe | Haefele et al. 2024 [25] | cereals | <60 | |
| Zbiral 2016 [26] | x | all soils | <60 | |
| Mn | Haefele et al. 2024 [25] | cereals | x | <60 |
| Zbiral 2016 [26] | x | all soils | <45.0 | |
| Espinoza et al. 2018 [46] | x | x | <40 | |
| Zn | Haefele et al. 2024 [25] | cereals | x | <1.0 |
| Cuesta et al. 2021 [48] | maize | x | <1.97 | |
| Murdock and Howe 2001 [47] | x | P-25 mg kg−1: | ||
| pH 6.0–6.4 | 0.55–0.90 | |||
| pH 7.3–7.6 | 1.60–2.00 | |||
| P-250 mg kg−1: | ||||
| pH 6.0–6.4 | 1.40–1.80 | |||
| pH 7.3–7.6 | 2.50–2.80 | |||
| Espinoza et al. 2018 [46] | x | x | <1.6 | |
| Seth et al. 2018 [45] | x | pH 5.1 | 2.15 | |
| pH 6.2 | 1.27 | |||
| Slaton et al. 2002 [42] | x | pH 6.2 | 1.3 | |
| pH 7.0 | 3.5 | |||
| pH 7.8 | 4.2 | |||
| Zbiral 2016 [26] | x | all soils | <2.2 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of Nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012; pp. 191–248. [Google Scholar]
- Cakmak, I. Enrichment of Cereal Grains with Zinc: Agronomic or Genetic Biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Filippi, D.; Gatiboni, L.; Crozier, C.; Osmond, D.; Hardy, D. Effect of Model Choice on Critical Soil Test Value of Phosphorus for Corn in Long-Term Trials in North Carolina. Soil Sci. Soc. Am. J. 2025, 89, e70104. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Slaton, N.A.; Correndo, A.A.; Pearce, A.W.; Bolster, C.H.; Osmond, D.L.; Spargo, J.T. Models and Sufficiency Interpretation for Estimating Critical Soil Test Values for the Fertilizer Recommendation Support Tool. Soil Sci. Soc. Am. J. 2024, 88, 1419–1437. [Google Scholar] [CrossRef]
- Alloway, B.J. (Ed.) Micronutrient Deficiencies in Global Crop Production; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mandi, S.; Nayak, S.; Shivay, Y.S.; Singh, B.R. Soil Organic Matter: Bioavailability and Biofortification of Essential Micronutrients. In Soil Organic Matter and Feeding the Future; Springer: Singapore, 2021; pp. 203–234. [Google Scholar]
- Covelo, E.F.; Vega, F.A.; Andrade, M.L. Competitive Sorption and Desorption of Heavy Metals by Individual Soil Components. J. Hazard. Mater. 2007, 140, 308–315. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Clark, R.B. Micronutrients in Crop Production. Adv. Agron. 2002, 77, 185–268. [Google Scholar]
- Wang, S.; Xu, L.; Hao, M. Impacts of Long-Term Micronutrient Fertilizer Application on Soil Properties and Micronutrient Availability. Int. J. Environ. Res. Public Health 2022, 19, 16358. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Zarcinas, B.A.; Stevens, D.P.; Cook, N. Soil Testing for Heavy Metals. Commun. Soil Sci. Plant Anal. 2000, 31, 1661–1700. [Google Scholar] [CrossRef]
- Trierweiler, J.F.; Lindsay, W.L. EDTA-ammonium carbonate soil test for zinc. Soil Sci. Soc. Am. J. 1969, 33, 49–54. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Stanislawska-Glubiak, E. Comparison of 1 M HCl and Mehlich 3 for Assessment of the Micronutrient Status of Polish Soils in the Context of Winter Wheat Nutritional Demands. Commun. Soil Sci. Plant Anal. 2015, 46, 1263–1277. [Google Scholar] [CrossRef]
- Mehlich, A. Determination of P, Ca, Mg, K, Na, and NH4; North Carolina Soil Test Division (Mimeo 1953): Raleigh, NC, USA, 1953. [Google Scholar]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Antonangelo, J.A.; Souza, J.L.B.; Whitaker, A.; Arnall, B.; Zhang, H. Evaluation of Mehlich-3 as a Multi-Element Extractant of Micronutrients and Sulfur in a Soil–Ryegrass System Amended with Varying Biochar Rates from Two Feedstocks. Land 2022, 11, 1979. [Google Scholar] [CrossRef]
- Bortolon, L.; Gianello, C. Multielement Extraction from Southern Brazilian Soils. Commun. Soil Sci. Plant Anal. 2012, 43, 1615–1624. [Google Scholar] [CrossRef]
- Brennan, D.; Coulter, B.; Mullen, G.; Courtney, R. Evaluation of Mehlich 3 for Extraction of Copper and Zinc from Irish Grassland Soils and for Prediction of Herbage Content. Commun. Soil Sci. Plant Anal. 2008, 39, 1943–1962. [Google Scholar] [CrossRef]
- Cancela, R.C.; de Abreu, C.A.; Paz-González, A. DTPA and Mehlich-3 Micronutrient Extractability in Natural Soils. Commun. Soil Sci. Plant Anal. 2002, 33, 2879–2893. [Google Scholar] [CrossRef]
- Liu, J.; Liao, Z.; Hu, C.; Qiu, W.; Sun, X.; Tan, Q. Relationship between Mehlich-3, ASI and Routine Methods of Soil Available Nutrients Analysis for Paddy Soils in China. J. Food Agric. Environ. 2011, 9, 516–520. [Google Scholar]
- Ostatek-Boczynski, Z.; Lee-Steere, P. Evaluation of Mehlich 3 as a Universal Nutrient Extractant for Australian Sugarcane Soils. Commun. Soil Sci. Plant Anal. 2012, 43, 623–630. [Google Scholar] [CrossRef]
- Rodriguez-Suarez, J.A.; Arias, M.; Lopez, E.; Soto, B. Comparison of Multi-Element to Single-Element Extractants for Macro- and Micronutrients in Acid Soils from Spain. Commun. Soil Sci. Plant Anal. 2008, 39, 231–240. [Google Scholar] [CrossRef]
- Sobral, L.F.; Smyth, J.T.; Fageria, N.K.; Stone, L.F. Comparison of Copper, Manganese, and Zinc Extraction with Mehlich 1, Mehlich 3, and DTPA Solutions for Soils of the Brazilian Coastal Tablelands. Commun. Soil Sci. Plant Anal. 2013, 44, 2507–2513. [Google Scholar] [CrossRef]
- Haefele, S.M.; Mossa, A.W.; Gashu, D.; Nalivata, P.C.; Broadley, M.R.; McGrath, S.P.; Thomas, C.L. Mehlich 3 as an Indicator of Grain Nutrient Concentration for Five Cereals in Sub-Saharan Africa. Field Crops Res. 2024, 307, 109243. [Google Scholar] [CrossRef]
- Zbíral, J. Determination of Plant-Available Micronutrients by the Mehlich 3 Soil Extractant—A Proposal of Critical Values. Plant Soil Environ. 2016, 62, 527–531. [Google Scholar] [CrossRef]
- Pommerrenig, B.; Junker, A.; Abreu, I.; Bieber, A.; Fuge, J.; Willner, E.; Bienert, M.D.; Altmann, T.; Bienert, G.P. Identification of Rapeseed (Brassica napus) Cultivars with a High Tolerance to Boron-Deficient Conditions. Front. Plant Sci. 2018, 9, 1142. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, H.; Shi, L.; Xu, F. Physiological and Genetic Responses to Boron Deficiency in Brassica napus: A Review. Soil Sci. Plant Nutr. 2014, 60, 304–313. [Google Scholar] [CrossRef]
- Sharma, P.N.; Chatterjee, C.; Sharma, C.P.; Agarwala, S.C. Zinc Deficiency and Anther Development in Maize. Plant Cell Physiol. 1987, 28, 11–18. [Google Scholar] [CrossRef]
- Suganya, A.; Saravanan, A.; Manivannan, N. Role of Zinc Nutrition for Increasing Zinc Availability, Uptake, Yield, and Quality of Maize (Zea mays L.) Grains: An Overview. Commun. Soil Sci. Plant Anal. 2020, 51, 2001–2021. [Google Scholar] [CrossRef]
- Karamanos, R.E.; Goh, T.B.; Harapiak, J.T. Determining Wheat Responses to Copper in Prairie Soils. Can. J. Soil Sci. 2003, 83, 213–221. [Google Scholar] [CrossRef]
- Brennan, R.F. Long-Term Residual Value of Copper Fertiliser for Production of Wheat Grain. Aust. J. Exp. Agric. 2006, 46, 77–83. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Stanislawska-Glubiak, E.; Lipinski, W. Opracowanie liczb granicznych niedoboru mikroelementów w glebie oznaczanych przy użyciu ekstrahenta Mehlich 3 dla polskich warunków glebowych. Część I. Pszenica. Soil Sci. Annu. 2019, 70, 314–323. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Stanislawska-Glubiak, E.; Lipinski, W. New Limit Values of Micronutrient Deficiency in Soil Determined Using 1 M HCl Extractant for Wheat and Rapeseed. Soil Sci. Annu. 2020, 71, 205–214. [Google Scholar] [CrossRef]
- PN-R 04014:1991; Agrochemical Plant Analyse. Methods of Mineralization of Plant Material for Determination of Macro- and Microelements. Polish Committee for Standardization: Warsaw, Poland, 1991.
- ISO 10390:2005; Soil Quality—Determination of pH. International Standardization Organization: Geneva, Switzerland, 2005.
- PN-ISO 14235:2003; Soil Quality: Determination of Organic Carbon in Soil by Sulfochromic Oxidation. Polish Committee for Standardization: Warsaw, Poland, 2003.
- Korzeniowska, J.; Stanislawska-Glubiak, E. Evaluation of the Egner–Riehm DL and Mehlich 3 Tests for the Determination of Phosphorus: The Influence of Soil Properties on Extraction Efficiency and Test Conversion. Agronomy 2024, 14, 2921. [Google Scholar] [CrossRef]
- Bergmann, W. Nutritional Disorders of Plants—Development, Visual and Analytical Diagnosis; Gustav Fischer Verlag: Jena, Germany; Stuttgart, Germany; New York, NY, USA, 1992. [Google Scholar]
- Korzeniowska, J.; Stanislawska-Glubiak, E. Differences in the Concentration of Micronutrients in Young Shoots of Numerous Cultivars of Wheat, Maize and Oilseed Rape. Agronomy 2022, 12, 2639. [Google Scholar] [CrossRef]
- Stanislawska-Glubiak, E.; Korzeniowska, J.; Lipinski, W. Opracowanie liczb granicznych niedoboru mikroelementów w glebie oznaczanych przy użyciu ekstrahenta Mehlich 3 dla polskich warunków glebowych. Czesc II. Rzepak. Soil Sci. Annu. 2019, 70, 324–330. [Google Scholar]
- Slaton, N.A.; Wilson, C.E.; Norman, R.J.; Gbur, E.E. Development of a Critical Mehlich 3 Soil Zinc Concentration for Rice in Arkansas. Commun. Soil Sci. Plant Anal. 2002, 33, 2759–2770. [Google Scholar] [CrossRef]
- Cramer, J.S. Mean and Variance of R2 in Small and Moderate Samples. J. Econom. 1987, 35, 253–266. [Google Scholar] [CrossRef]
- Zaarour, N.; Melachrinoudis, E. What’s in a Coefficient? The “Not So Simple” Interpretation of R2 for Relatively Small Sample Sizes. J. Educ. Train. Stud. 2019, 7, 27. [Google Scholar] [CrossRef]
- Seth, A.; Sarkar, D.; Masto, R.E.; Batabyal, K.; Saha, S.; Murmu, S.; Das, R.; Padhan, D.; Mandal, B. Critical Limits of Mehlich 3 Extractable Phosphorus, Potassium, Sulfur, Boron and Zinc in Soils for Nutrition of Rice (Oryza sativa L.). J. Soil Sci. Plant Nutr. 2018, 18, 512–523. [Google Scholar]
- Espinoza, L.; Slaton, N.; Mozaffari, M. Understanding the Numbers on Your Soil Test Report. Agric. Nat. Resour. 2018, FSA-2118, 1–4. Available online: https://www.uaex.uada.edu/publications/PDF/FSA-2118.pdf (accessed on 20 October 2025).
- Murdock, L.W.; Howe, P.L. Zinc Fertilizer Rates and Mehlich III Soil Test Levels for Corn. Agron. Notes 2001, 33, 1–7. Available online: http://uknowledge.uky.edu/pss_notes/8 (accessed on 20 October 2025).
- Cuesta, N.M.; Wyngaard, N.; Saínz-Rozas, H.; Reussi-Calvo, N.; Carciochi, W.; Eyherabide, M.; Colazo, J.C.; Barraco, M.; Guertal, E.A.; Barbieri, P. Determining Mehlich-3 and DTPA Extractable Soil Zinc Optimum Economic Threshold for Maize. Soil Use Manag. 2021, 37, 736–748. [Google Scholar] [CrossRef]


| Soil Feature | Wheat (n = 1921) | Rapeseed (n = 1944) | Maize (n = 916) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SE | Range | Mean | SE | Range | Mean | SE | Range | |
| pH in KCl | 6.20 a | 0.21 | 3.70–8.20 | 6.10 a | 0.02 | 3.80–8.20 | 6.10 a | 0.03 | 3.80–8.20 |
| Sand 2.00–0.05 mm,% | 53.1 a | 0.52 | 1.00–92.3 | 58.0 a | 0.47 | 3.00–94.9 | 54.5 a | 0.60 | 0.02–97.2 |
| Silt 0.05–0.002 mm, % | 43.2 b | 0.49 | 7.60–99.8 | 38.4 a | 0.43 | 5.10–89.0 | 41.4 ab | 0.75 | 6.60–94.8 |
| Clay < 0.002 mm, % | 3.70 ab | 0.05 | 0.10–46.5 | 3.60 a | 0.05 | 0.00–14.5 | 4.10 b | 0.11 | 0.10–32.7 |
| Fraction < 0.02 mm, % | 24.7 a | 0.27 | 3.90–70.4 | 23.7 a | 0.27 | 2.60–72.0 | 25.4 a | 0.51 | 2.60–95.6 |
| Corg, % | 1.30 a | 0.01 | 0.05–9.80 | 1.25 a | 0.01 | 0.29–4.78 | 1.20 a | 0.02 | 0.10–6.30 |
| PM3, mg kg−1 | 172 a | 2.60 | 12.0–1150 | 175 a | 2.90 | 4.00–1290 | 178 a | 4.30 | 5.0–1780 |
| Micronutrient | Wheat (n = 1921) | Rapeseed (n = 1944) | Maize (n = 916) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SE | Range | Mean | SE | Range | Mean | SE | Range | |
| B | 0.60 a | 0.01 | 0.01–3.84 | 0.88 b | 0.02 | 0.01–6.24 | 1.00 c | 0.03 | 0.01–7.50 |
| Cu | 2.20 a | 0.03 | 0.05–12.6 | 2.30 a | 0.03 | 0.10–9.70 | 2.40 a | 0.06 | 0.09–13.4 |
| Fe | 339 a | 2.91 | 36.1–934 | 418 b | 8.90 | 46.0–3454 | 321 a | 3.35 | 48.0–684 |
| Mn | 87.2 a | 0.86 | 7.10–270 | 88.4 a | 0.96 | 10.1–97 | 84.4 a | 1.34 | 8.10–364 |
| Zn | 7.60 a | 0.13 | 0.70–45.0 | 7.30 a | 0.12 | 0.50–56.3 | 7.90 a | 0.21 | 0.02–56.3 |
| Micronutrient | Wheat (n = 1921) | Rapeseed (n = 1944) | Maize (n = 916) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SE | Range | Mean | SE | Range | Mean | SE | Range | |
| B | 4.22 a | 0.07 | 0.12–24.5 | 39.5 c | 0.50 | 7.6–172 | 10.7 b | 0.19 | 1.87–41.4 |
| Cu | 5.29 a | 0.07 | 0.60–33.2 | 6.30 b | 0.06 | 1.9–34.4 | 7.00 c | 0.11 | 0.97–35.1 |
| Fe | 122 a | 2.01 | 12.5–699 | 170 b | 2.48 | 22.5–988 | 268 c | 5.76 | 23.0–998 |
| Mn | 42.6 a | 0.61 | 3.75–171 | 57.9 b | 0.79 | 10.7–292 | 73.4 c | 1.66 | 13.0–349 |
| Zn | 27.1 a | 0.27 | 3.0–117 | 54.0 c | 0.35 | 7.8–173 | 47.1 b | 0.85 | 10.1–188 |
| Wheat Grain | Rapeseed Seeds | Maize Grain | ||||||
|---|---|---|---|---|---|---|---|---|
| Yield (t ha−1) | Number of Fields | Contribution of Fields (%) | Yield (t ha−1) | Number of Fields | Contribution of Fields (%) | Yield (t ha−1) | Number of Fields | Contribution of Fields (%) |
| ≤3.9 | 126 | 7 | ≤1.9 | 24 | 1 | ≤1.9 | 8 | 1 |
| 4.0–4.9 | 255 | 14 | 2.0–2.9 | 264 | 14 | 2.0–3.9 | 36 | 4 |
| 5.0–5.9 | 374 | 21 | 3.0–3.9 | 901 | 46 | 4.0–5.9 | 89 | 10 |
| 6.0–6.9 | 427 | 24 | 4.0–4.9 | 714 | 37 | 6.0–7.9 | 226 | 25 |
| 7.0–7.9 | 308 | 17 | 5.0–5.9 | 40 | 2 | 8.0–9.9 | 311 | 34 |
| 8.0–8.9 | 205 | 12 | ≥6.0 | 1 | 0 | 10.0–11.9 | 186 | 20 |
| ≥9.0 | 65 | 4 | Σ | 1944 | 100 | 12–13.9 | 52 | 6 |
| Σ | 1760 1 | 100 | ≥14.0 | 8 | 1 | |||
| Σ | 916 | 100 | ||||||
| Plant | Mip/Mis 1 | pH | Silt 0.05–0.002 mm | Fraction <0.02 mm | Clay <0.002 mm | Corg | PM3 |
|---|---|---|---|---|---|---|---|
| wheat | Bp/Bs | −0.27 *** | 0.08 *** | ns | ns | −0.10 *** | −0.04 * |
| Cup/Cus | −0.09 *** | −0.14 *** | −0.08 *** | −0.06 ** | −0.10 *** | ns | |
| Fep/Fes | 0.14 *** | 0.10 *** | 0.21 *** | 0.19 *** | 0.05 * | −0.14 *** | |
| Mnp/Mns | −0.37 *** | −0.07 *** | −0.10 *** | −0.08 *** | ns | ns | |
| Znp/Zns | −0.29 *** | −0.11 *** | ns | 0.07 ** | −0.08 *** | −0.22 *** | |
| rapeseed | Bp/Bs | −0.08 *** | −0.05 * | −0.06 ** | −0.05 * | −0.08 *** | ns |
| Cup/Cus | ns | 0.08 *** | ns | 0.05 * | −0.15 *** | −0.14 *** | |
| Fep/Fes | 0.20 *** | 0.16 *** | 0.17 *** | 0.20 *** | ns | −0.12 *** | |
| Mnp/Mns | −0.24 *** | −0.21 *** | −0.19 *** | −0.16 *** | ns | ns | |
| Znp/Zns | −0.07 ** | 0.07 ** | 0.09 *** | 0.12 *** | −0.12 *** | −0.24 *** | |
| maize | Bp/Bs | −0.18 *** | −0.15 *** | −0.14 *** | −0.11 *** | −0.08 * | ns |
| Cup/Cus | −0.12 *** | −0.14 *** | −0.12 *** | −0.08 * | −0.15 *** | ns | |
| Fep/Fes | 0.12 *** | 0.30 *** | 0.31 *** | 0.29 *** | 0.06 * | −0.25 *** | |
| Mnp/Mns | −0.44 *** | −0.25 *** | −0.23 *** | −0.16 *** | −0.06 *** | −0.44 * | |
| Znp/Zns | 0.19 ** | −0.04 ** | −0.05 ** | −0.07 ** | 0.17 ** | 0.30 ** |
| Model | Equation | r2% |
|---|---|---|
| Linear | Bp/Bs = 101.08 − 13.04 × pH | 7.40 *** |
| Exponential | Bp/Bs = exp(5.82 − 0.58 × pH) | 23.99 *** |
| Reciprocal-Y | No significant model | - |
| Reciprocal-X | Bp/Bs = −57.74 + 471.21/pH | 8.74 *** |
| Logarithmic | Bp/Bs = 164.89 – 79.82 × ln(pH) | 8.09 *** |
| Multiplicative | Bp/Bs = exp(8.41 − 3.40 × ln(pH)) | 24.41 *** |
| Square root-X | Bp/Bs = 181.09 − 64.79 × sqrt(pH) | 7.74 *** |
| Square root-Y | Bp/Bs = (10.83 − 1.16 × pH)2 | 16.74 *** |
| Element | Wheat | Rapeseed | Maize BBCH 14–15 1 |
|---|---|---|---|
| BBCH 30–31 1 | |||
| B | 2.7 | 25 | 6.7 |
| Cu | 4.0 | 4.8 | 4.8 |
| Fe | 80 | 105 | 140 |
| Mn | 25 | 37 | 40 |
| Zn | 20 | 43 | 28 |
| Plant | Element | Equation | r2,% |
|---|---|---|---|
| Wheat | B | Bp/Bs = exp(8.41 − 3.40 × ln(pH)) | 24.41 *** |
| Cu | Cup/Cus = 2.69 × Corg−0.298 | 3.19 *** | |
| Fe | Fep/Fes = 0.609 × PM3−0.236 | 5.14 *** | |
| Mn | Mnp/Mns = exp(2.78 − 1.98 × ln(pH)) | 21.43 *** | |
| Zn | Znp/Zns = 8.60 × PM3−0.290 | 6.61 *** | |
| Rapeseed | B | Bp/Bs = 1/(0.006 + 0.017 × Corg) | 11.3 *** |
| Cu | Cup/Cus = 1/(0.177 + 0.184 × Corg) | 12.1 *** | |
| Fe | No significant model | ||
| Mn | Mnp/Mns = 7.45 × pH−1.36 | 9.4 *** | |
| Zn | Znp/Zns = exp(2.48 − 0.016 × PM3) | 9.2 *** | |
| Maize | B | Bp/Bs = exp(3.335 − 0.0260 × Fr < 0.02) | 11.9 *** |
| Cu | Cup/Cus = 3.37 × Corg−0.351 | 5.8 *** | |
| Fe | Fep/Fes = 1.68 × PM3−0.316 | 10.8 *** | |
| Mn | Mnp/Mns = 62.42 × pH−2.408 | 24.0 *** | |
| Zn | Znp/Zns = 1/(0.128 + 0.004 × PM3) | 9.6 *** |
| Method | Soil pH | |||
|---|---|---|---|---|
| ≤5.5 | 5.6–6.5 | 6.6–7.2 | ≥7.3 | |
| Regression equations | 0.10 | 0.30 | 0.40 | 0.60 |
| High yields | 0.10 | 0.20 | 0.40 | 0.50 |
| Mean (regression + high yields) | 0.10 | 0.25 | 0.40 | 0.55 |
| Element | Soil Feature | Low Concentration mg kg−1 |
|---|---|---|
| B | pH | |
| ≤5.5 | <0.10 | |
| 5.6–6.5 | <0.25 | |
| 6.6–7.2 | <0.40 | |
| ≥7.3 | <0.55 | |
| Cu | Corg (%) | |
| ≤1.0 | <1.4 | |
| 1.1–1.5 | <1.6 | |
| 1.6–2.0 | <1.8 | |
| ≥2.1 | <2.2 | |
| Fe | PM3 (mg kg−1) | |
| ≤100 | <190 | |
| 101–200 | <240 | |
| ≥201 | <280 | |
| Mn | pH | |
| ≤5.5 | <30 | |
| 5.6–6.5 | <45 | |
| 6.6–7.2 | <60 | |
| ≥7.3 | <75 | |
| Zn | PM3 (mg kg−1) | |
| ≤100 | <3.0 | |
| 101–200 | <3.5 | |
| 201–300 | <4.5 | |
| ≥301 | <6.0 |
| Element | Soil Feature | Low Concentration mg kg−1 |
|---|---|---|
| B | Corg (%) | |
| ≤1.0 | <0.30 | |
| 1.1–1.5 | <0.50 | |
| 1.6–2.0 | <0.70 | |
| ≥2.1 | <0.90 | |
| Cu | Corg (%) | |
| ≤1.5 | <1.0 | |
| ≥1.6 | <2.0 | |
| Fe | x | |
| all soils | <200 | |
| Mn | pH | |
| ≤5.5 | <30 | |
| ≥5.6 | <50 | |
| Zn | PM3 (mg kg−1) | |
| ≤100 | <2.5 | |
| 101–200 | <3.0 | |
| 201–300 | <4.0 | |
| ≥301 | <5.5 |
| Element | Soil Feature | Low Concentration mg kg−1 |
|---|---|---|
| B | Fraction < 0.02 mm (%) | |
| ≤20 | <0.20 | |
| 21–35 | <0.40 | |
| ≥36 | <0.80 | |
| Cu | Corg (%) | |
| ≤1.0 | <1.0 | |
| 1.1–2.0 | <1.3 | |
| ≥2.1 | <1.6 | |
| Fe | PM3 (mg kg−1) | |
| ≤100 | <160 | |
| 101–200 | <230 | |
| ≥201 | <270 | |
| Mn | pH | |
| ≤5.5 | <35 | |
| ≥5.6 | <55 | |
| Zn | PM3 (mg kg−1) | |
| ≤100 | <3.0 | |
| 101–200 | <4.0 | |
| 201–300 | <5.0 | |
| ≥301 | <7.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzeniowska, J.; Stanislawska-Glubiak, E.; Lipinski, W. Determination of Soil Micronutrient Critical Values Using Mehlich 3 Extractant for Principal Field Crops. Agronomy 2025, 15, 2661. https://doi.org/10.3390/agronomy15112661
Korzeniowska J, Stanislawska-Glubiak E, Lipinski W. Determination of Soil Micronutrient Critical Values Using Mehlich 3 Extractant for Principal Field Crops. Agronomy. 2025; 15(11):2661. https://doi.org/10.3390/agronomy15112661
Chicago/Turabian StyleKorzeniowska, Jolanta, Ewa Stanislawska-Glubiak, and Wojciech Lipinski. 2025. "Determination of Soil Micronutrient Critical Values Using Mehlich 3 Extractant for Principal Field Crops" Agronomy 15, no. 11: 2661. https://doi.org/10.3390/agronomy15112661
APA StyleKorzeniowska, J., Stanislawska-Glubiak, E., & Lipinski, W. (2025). Determination of Soil Micronutrient Critical Values Using Mehlich 3 Extractant for Principal Field Crops. Agronomy, 15(11), 2661. https://doi.org/10.3390/agronomy15112661

