A Methodological Framework for Assessing the Potential Performance of Maize/Soybean Intercropping Under 2050 Climate Scenarios
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Meteorological and Soil Data
2.3. Machine Learning Model Selection and Cross-Validation
2.4. Scenario Analysis
- Scenario 1: 100% of national maize cropland is replaced with maize/soybean intercropping, while soybean cropland remains unchanged.
- Scenario 2: 50% of national maize cropland is replaced with maize/soybean intercropping, with the remaining 50% retained as maize monoculture, and soybean cropland unchanged.
- Scenario 3: 30% of national maize cropland is replaced with maize/soybean intercropping, with the remaining 70% retained as maize monoculture, and soybean cropland unchanged.
2.5. Statistical Analysis
3. Results
3.1. Impacts of 2050 Climate Change on Maize/Soybean LER
3.2. Scenario Analysis of National Maize and Soybean Self-Sufficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Schmitt, J.; Offermann, F.; Söder, M.; Frühauf, C.; Finger, R. Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy 2022, 112, 102359. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, J. Risk Transmission and Resilience of China’s Corn Import Trade Network. Foods 2025, 14, 1401. [Google Scholar] [CrossRef] [PubMed]
- Tyczewska, A.; Woźniak, E.; Gracz, J.; Kuczyński, J.; Twardowski, T. Towards food security: Current state and future prospects of agrobiotechnology. Trends Biotechnol. 2018, 36, 1219–1229. [Google Scholar] [CrossRef]
- Adams, M.W.; Ellingboe, A.H.; Rossman, E.C. Biological uniformity and disease epidemics. Bioscience 1971, 21, 1067–1070. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Biodiversity and Pest Management in Agroecosystems, 2nd ed.; Haworth Press: New York, NY, USA, 2004. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Willey, R.W. Intercropping—Its importance and research needs. 1. Competition and yield advantages. Field Crops Res. 1979, 2, 1–10. [Google Scholar]
- Vandermeer, J.H. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Yu, Y.; Stomph, T.J.; Makowski, D.; van der Werf, W. Temporal niche differentiation increases the land equivalent ratio of annual intercropping: A meta-analysis. Field Crops Res. 2015, 184, 133–144. [Google Scholar] [CrossRef]
- Martin-Guay, M.O.; Paquette, A.; Dupras, J.; Rivest, D. The new green revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H.; Zhang, F.; van der Werf, W. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Li, C.J.; Stomph, T.J.; Makowski, D.; Li, H.G.; Zhang, C.C.; Zhang, F.S.; van der Werf, W. The productive performance of intercropping. Proc. Natl. Acad. Sci. USA 2023, 120, e2201886120. [Google Scholar] [CrossRef]
- Boudreau, M.A. Diseases in intercropping systems. Annu. Rev. Phytopathol. 2013, 51, 499–519. [Google Scholar] [CrossRef]
- Zhang, C.C.; Dong, Y.; Tang, L.; Zheng, Y.; Makowski, D.; Yu, Y.; Zhang, F.S.; van der Werf, W. Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input: A meta-analysis. Eur. J. Plant Pathol. 2019, 154, 931–942. [Google Scholar] [CrossRef]
- Song, T.; Zhang, C.; Dong, Y.; Xu, Z.; Li, C.; Makowski, D.; Zhang, F.; van der Werf, W. Control of rice blast drives yield benefits from variety mixture in rice: A meta-analysis. Field Crops Res. 2025, 333, 110054. [Google Scholar] [CrossRef]
- Gu, C.F.; Bastiaans, L.; Anten, N.P.R.; Makowski, D.; van der Werf, W. Annual intercropping suppresses weeds: A meta-analysis. Agric. Ecosyst. Environ. 2021, 322, 107658. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. The efficiency of a durum wheat–winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 2010, 330, 19–35. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Z.; Hu, F.; Fan, H.; He, W.; Zhao, L.; Guo, C.; Bao, X.; Chai, Q.; Zhao, C. Maize and pea root interactions promote symbiotic nitrogen fixation, thereby accelerating nitrogen assimilation and partitioning in intercropped pea. Agronomy 2025, 15, 1615. [Google Scholar] [CrossRef]
- Cong, W.F.; Hoffland, E.; Li, L.; Six, J.; Sun, J.H.; Bao, X.G.; Zhang, F.-S.; van der Werf, W. Intercropping enhances soil carbon and nitrogen. Glob. Chang. Biol. 2015, 21, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Zan, Z.; Wang, C.; Zhao, S.; Kou, T.; Jiao, N. Effects of multi-year maize–peanut intercropping and phosphorus application on rhizosphere soil properties and root morphological and microbial community characteristics. Agronomy 2025, 15, 913. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Guideline on Maize–Soybean Strip Intercropping Technology; Ministry of Agriculture and Rural Affairs: Beijing, China, 2022. Available online: http://www.moa.gov.cn/gk/nszd_1/2020/202005/t20200507_6343208.htm (accessed on 1 September 2025).
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 14th Five-Year Plan for National Crop Development; Ministry of Agriculture and Rural Affairs: Beijing, China, 2021. Available online: http://www.moa.gov.cn/govpublic/ZZYGLS/202201/t20220113_6386808.htm (accessed on 1 September 2025).
- Yang, S.; Zhao, Y.; Xu, Y.; Cui, J.; Li, T.; Hu, Y.; Qian, X.; Li, Z.; Sui, P.; Chen, Y. Yield performance response to field configuration of maize and soybean intercropping in China: A meta-analysis. Field Crops Res. 2024, 306, 109235. [Google Scholar] [CrossRef]
- Guilpart, N.; Iizumi, T.; Makowski, D. Data-driven projections suggest large opportunities to improve Europe’s soybean self-sufficiency under climate change. Nat. Food 2022, 3, 255–265. [Google Scholar] [CrossRef]
- Luo, N.; Meng, Q.; Feng, P.; Qu, Z.; Yu, Y.; Liu, D.L.; Müller, C.; Wang, P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat. Commun. 2023, 14, 2637. [Google Scholar] [CrossRef]
- Rising, J.; Devineni, N. Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nat. Commun. 2020, 11, 4991. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhu, A.; Ali, T.; Zhang, Z.; Chen, X.; Wu, F.; Huang, J.; Davis, K.F. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature 2023, 616, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Jiang, F.; Zhang, S.; Zhang, Q.; Jiang, G.; Gao, B.; Cao, G.; Islam, M.U.I.; Cao, Z.; Zhao, X. Potential crop yield gains under intensive soybean/maize intercropping in China. Plant Soil 2025, 506, 275–290. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Batjes, N.H.; Ribeiro, E.; van Oostrum, A.; Leenaars, J.; Hengl, T.; de Jesus, J.M. WoSIS: Providing standardised soil profile data for the world. Earth Syst. Sci. Data 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, J.; Zhang, F.; Wu, T.; Shi, X.; Li, J.; Wei, M. BCC-CSM2-MR Model Output Prepared for CMIP6. 2018. Available online: https://www.wdc-climate.de/ui/entry?acronym=C6_4101192 (accessed on 1 September 2025).
- National Bureau of Statistics of China. China Statistical Yearbook 2025; China Statistics Press: Beijing, China, 2025. Available online: https://www.stats.gov.cn/english/ (accessed on 1 September 2025).
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3; United Nations: New York, NY, USA, 2022; Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 1 September 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Australia, 2023; Available online: https://www.R-project.org/ (accessed on 1 September 2025).
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Zhang, Y.; Sun, Z.; Wang, E.; Du, G.; Feng, C.; Zhang, W.; Xu, H.; Li, S.; Li, Q.; Zhang, L.; et al. Maize/soybean strip intercropping enhances crop yield in rain-fed agriculture under the warming climate: A modeling approach. Agron. Sustain. Dev. 2022, 42, 115. [Google Scholar] [CrossRef]
- Yu, J.; Rezaei, E.E.; Reckling, M.; Nendel, C. Winter wheat–soybean relay intercropping in conjunction with a shift in sowing dates as a climate change adaptation and mitigation strategy for crop production in Germany. Field Crops Res. 2025, 322, 109695. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, D.; Bai, H.; Tang, J.; Liu, D.L.; Qi, Y.; Shen, Y. The prediction of wheat yield in the North China Plain by coupling crop model with machine learning algorithms. Agriculture 2022, 13, 99. [Google Scholar] [CrossRef]
- Guo, J.; Fei, T.; Yang, X.; Lilburne, L.; Moot, D.; Martin, B.; Teixeira, E.; Yang, M. Can we use APSIM’s embedded expert knowledge to ‘train’ a machine learning model to identify, at high resolution, land suitable to grow lucerne (Medicago sativa L.) using simplified climate data? Eur. J. Agron. 2025, 171, 127815. [Google Scholar] [CrossRef]
- Meng, Q.; Hou, P.; Lobell, D.B.; Wang, H.; Cui, Z.; Zhang, F.; Chen, X. The benefits of recent warming for maize production in high latitude China. Clim. Chang. 2014, 122, 341–349. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Zhang, X.; Li, Z.; Sun, Y.; Gu, X.; Cai, H. A meta-learning method for recommending random forest model to simulate land use efficiency in maize-soybean intercropping. Comput. Electron. Agric. 2025, 239, 110961. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Yang, F.; Su, B.; Cui, L.; Bu, W.; Yang, W. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Res. 2018, 224, 91–101. [Google Scholar] [CrossRef]
- Zhou, L.; Su, L.; Zhao, H.; Zhao, T.; Zheng, Y.; Tang, L. Maize–soybean intercropping improves yield stability and sustainability in red soil under different phosphate application rates in southwest China. Agronomy 2024, 14, 1222. [Google Scholar] [CrossRef]
- Raseduzzaman, M.D.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Ha, T.M.; Voe, P.; Boulom, S.; Le, T.T.L.; Dao, C.D.; Yang, F.; Dang, X.P.; Hoang, T.T.H.; Abu Hatab, A.; Hansson, H. Factors associated with smallholders’ uptake of intercropping in Southeast Asia: A cross-country analysis of Vietnam, Laos, and Cambodia. Clim. Risk Manag. 2024, 45, 100646. [Google Scholar] [CrossRef]
- Knörzer, H.; Graeff-Hönninger, S.; Guo, B.; Wang, P.; Claupein, W. The Rediscovery of Intercropping in China: A Traditional Cropping System for Future Chinese Agriculture—A Review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Dordrecht, The Netherlands, 2009; Volume 2. [Google Scholar] [CrossRef]
- Yin, X.; Song, Z.; Shi, S.; Bai, Z.; Jiang, Y.; Zheng, A.; Huang, W.; Chen, N.; Chen, F. Developments and prospects of multiple cropping in China. Farming Syst. 2024, 2, 100083. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.Y.; Van Der Werf, W.; Iqbal, N.; Khan, I.; Khan, A.; Din, A.M.U.; Naeem, M.; Meraj, T.A.; Hassan, M.J.; et al. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur. 2020, 9, e199. [Google Scholar] [CrossRef]
- Dong, B.; Wang, Z.; Stomph, T.J.; Evers, J.B.; van der Putten, P.E.L.; van der Werf, W. Temporal complementarity drives nitrogen uptake in strip intercropping with or without legumes. Agron. Sustain. Dev. 2025, 45, 59. [Google Scholar] [CrossRef]
- Van Oort, P.A.J.; Gou, F.; Stomph, T.J.; van der Werf, W. Effects of strip width on yields in relay-strip intercropping: A simulation study. Eur. J. Agron. 2020, 112, 125936. [Google Scholar] [CrossRef]
- Gesch, R.W.; Berti, M.T.; Eberle, C.A.; Weyers, S.L. Relay cropping as an adaptive strategy to cope with climate change. Agron. J. 2023, 115, 1501–1518. [Google Scholar] [CrossRef]
- Liang, Z.; van der Werf, W.; Xu, Z.; Cheng, J.; Wang, C.; Cong, W.F.; Zhang, C.; Zhang, F.; Groot, J.C. Identifying exemplary sustainable cropping systems using a positive deviance approach: Wheat–maize double cropping in the North China Plain. Agric. Syst. 2022, 201, 103471. [Google Scholar] [CrossRef]
- Du, J.; Han, T.; Gai, J.; Yong, T.-W.; Sun, X.; Wang, X.-C.; Yang, F.; Liu, J.; Shu, K.; Liu, W.-G.; et al. Maize–soybean strip intercropping: Achieved a balance between high productivity and sustainability. J. Integr. Agric. 2018, 17, 747–754. [Google Scholar] [CrossRef]
- Kong, W.; Wei, M.; Khan, N.; Liang, J.; Han, D.; Zhang, H. Assessing sustainable future of import-independent domestic soybean production in China: Policy implications and projections for 2030. Front. Sustain. Food Syst. 2024, 8, 1387609. [Google Scholar] [CrossRef]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Bohra, A.; Yu, J.; Graner, A.; Zhang, Q.; Sorrells, M.E. Designing future crops: Genomics-assisted breeding comes of age. Trends Plant Sci. 2021, 26, 631–649. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; Qureshi, W.A. Evolution and Application of Precision Fertilizer: A Review. Agronomy 2025, 15, 1939. [Google Scholar] [CrossRef]
- Intercropping with robots. Nat. Plants 2025, 11, 1701. [CrossRef] [PubMed]
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Visser, J.; Lonhienne, T.G.A.; Schmidt, S. Past, present and future of organic nutrients. Plant Soil 2012, 359, 1–18. [Google Scholar] [CrossRef]
- Lindell, C.A.; Irish-Brown, A.; Rothwell, N.L.; Wallis, A.E. Pest and disease risk and management in high-density perennial crops: Current knowledge and areas of future research. Crop Prot. 2023, 165, 106150. [Google Scholar] [CrossRef]
- An, Z.; Yang, Y.; Yang, X.; Ma, W.; Jiang, W.; Li, Y.; Chen, G.; Zhang, W.; Zhuang, M.; Wang, C.; et al. Promoting sustainable smallholder farming via multistakeholder collaboration. Proc. Natl. Acad. Sci. USA 2024, 121, e2319519121. [Google Scholar] [CrossRef]




| Algorithms | Settings | RMSE | R2 | 
|---|---|---|---|
| RF | ntree = 500, mtry = 9 | 0.18 | 0.59 | 
| LASSO | alpha = 1 (LASSO), lambda = 0.000919 | 0.22 | 0.36 | 
| GLMNET | alpha = 0.5 (Elastic Net), lambda = 0.00176 | 0.22 | 0.38 | 
| MLR | Standard linear model (lm) | 0.43 | 0.10 | 
| ANN | size = 5, decay = 0.01, maxit = 1000 | 0.26 | 0.36 | 
| 2050 SSP1-2.6 Scenario | 2050 SSP2-4.5 Scenario | ||||||
|---|---|---|---|---|---|---|---|
| Current | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 1 | Scenario 2 | Scenario 3 | |
| China | 277.2 | 210.1 | 243.6 | 257.0 | 211.9 | 244.6 | 257.6 | 
| Anhui | 6.6 | 4.4 | 5.5 | 6.0 | 4.4 | 5.5 | 6.0 | 
| Beijing | 0.3 | 0.2 | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 
| Fujian | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 
| Gansu | 6.6 | 4.9 | 5.8 | 6.1 | 4.8 | 5.7 | 6.1 | 
| Guangdong | 0.6 | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.5 | 
| Guangxi | 2.8 | 1.7 | 2.3 | 2.5 | 1.7 | 2.3 | 2.5 | 
| Guizhou | 3.0 | 2.1 | 2.6 | 2.7 | 2.1 | 2.6 | 2.7 | 
| Hainan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Hebei | 20.9 | 15.3 | 18.1 | 19.3 | 15.3 | 18.1 | 19.2 | 
| Henan | 22.8 | 16.7 | 19.7 | 20.9 | 17.0 | 19.9 | 21.0 | 
| Heilongjiang | 40.4 | 32.9 | 36.6 | 38.1 | 33.3 | 36.9 | 38.3 | 
| Hubei | 3.1 | 2.0 | 2.5 | 2.8 | 2.0 | 2.6 | 2.8 | 
| Hunan | 2.3 | 1.4 | 1.8 | 2.0 | 1.4 | 1.8 | 2.0 | 
| Jilin | 32.6 | 24.9 | 28.8 | 30.3 | 25.9 | 29.3 | 30.6 | 
| Jiangsu | 3.0 | 2.0 | 2.5 | 2.7 | 2.1 | 2.5 | 2.7 | 
| Jiangxi | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 
| Liaoning | 19.6 | 15.5 | 17.5 | 18.4 | 15.3 | 17.5 | 18.3 | 
| Inner Mongolia | 31.0 | 23.7 | 27.4 | 28.8 | 23.9 | 27.5 | 28.9 | 
| Ningxia | 2.8 | 1.9 | 2.3 | 2.5 | 1.9 | 2.3 | 2.5 | 
| Qinghai | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 
| Shandong | 26.3 | 18.6 | 22.5 | 24.0 | 18.8 | 22.6 | 24.1 | 
| Shanxi | 10.2 | 7.8 | 9.0 | 9.5 | 7.7 | 9.0 | 9.5 | 
| Shaanxi | 6.2 | 4.6 | 5.4 | 5.7 | 4.6 | 5.4 | 5.7 | 
| Shanghai | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Sichuan | 10.5 | 8.4 | 9.5 | 9.9 | 8.4 | 9.4 | 9.8 | 
| Tianjin | 1.2 | 0.9 | 1.1 | 1.1 | 0.9 | 1.1 | 1.1 | 
| Xizang | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Xinjiang | 10.8 | 9.6 | 10.2 | 10.4 | 9.6 | 10.2 | 10.5 | 
| Yunnan | 10.3 | 7.7 | 9.0 | 9.5 | 7.7 | 9.0 | 9.5 | 
| Zhejiang | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 
| Chongqing | 2.6 | 1.8 | 2.2 | 2.3 | 1.8 | 2.2 | 2.3 | 
| 2050 SSP3-7.0 Scenario | 2050 SSP5-8.5 Scenario | ||||||
|---|---|---|---|---|---|---|---|
| Current | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 1 | Scenario 2 | Scenario 3 | |
| China | 277.2 | 245.3 | 261.2 | 267.6 | 247.1 | 262.1 | 268.1 | 
| Anhui | 6.6 | 4.8 | 5.7 | 6.1 | 5.1 | 5.9 | 6.2 | 
| Beijing | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 
| Fujian | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 
| Gansu | 6.6 | 5.6 | 6.1 | 6.3 | 5.6 | 6.1 | 6.3 | 
| Guangdong | 0.6 | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 | 
| Guangxi | 2.8 | 1.7 | 2.3 | 2.5 | 1.7 | 2.3 | 2.5 | 
| Guizhou | 3.0 | 2.4 | 2.7 | 2.8 | 2.4 | 2.7 | 2.8 | 
| Hainan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Hebei | 20.9 | 18.3 | 19.6 | 20.2 | 18.5 | 19.7 | 20.2 | 
| Henan | 22.8 | 19.4 | 21.1 | 21.7 | 20.3 | 21.5 | 22.0 | 
| Heilongjiang | 40.4 | 38.1 | 39.2 | 39.7 | 38.5 | 39.5 | 39.8 | 
| Hubei | 3.1 | 2.2 | 2.7 | 2.8 | 2.3 | 2.7 | 2.9 | 
| Hunan | 2.3 | 1.4 | 1.8 | 2.0 | 1.4 | 1.8 | 2.0 | 
| Jilin | 32.6 | 29.8 | 31.2 | 31.7 | 29.9 | 31.2 | 31.8 | 
| Jiangsu | 3.0 | 2.4 | 2.7 | 2.8 | 2.5 | 2.7 | 2.8 | 
| Jiangxi | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 
| Liaoning | 19.6 | 18.7 | 19.1 | 19.3 | 17.7 | 18.6 | 19.0 | 
| Inner Mongolia | 31.0 | 27.3 | 29.1 | 29.9 | 27.5 | 29.2 | 29.9 | 
| Ningxia | 2.8 | 2.2 | 2.5 | 2.6 | 2.2 | 2.5 | 2.6 | 
| Qinghai | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 
| Shandong | 26.3 | 22.1 | 24.2 | 25.1 | 23.1 | 24.7 | 25.3 | 
| Shanxi | 10.2 | 9.2 | 9.7 | 9.9 | 9.2 | 9.7 | 9.9 | 
| Shaanxi | 6.2 | 5.3 | 5.8 | 5.9 | 5.4 | 5.8 | 5.9 | 
| Shanghai | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Sichuan | 10.5 | 9.6 | 10.0 | 10.2 | 9.5 | 10.0 | 10.2 | 
| Tianjin | 1.2 | 1.1 | 1.2 | 1.2 | 1.0 | 1.1 | 1.2 | 
| Xizang | 0.0 | NA | NA | NA | NA | NA | NA | 
| Xinjiang | 10.8 | 11.7 | 11.2 | 11.1 | 11.7 | 11.2 | 11.1 | 
| Yunnan | 10.3 | 8.6 | 9.4 | 9.8 | 8.6 | 9.4 | 9.8 | 
| Zhejiang | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 
| Chongqing | 2.6 | 2.0 | 2.3 | 2.4 | 2.0 | 2.3 | 2.4 | 
| 2050 SSP1-2.6 Scenario | 2050 SSP2-4.5 Scenario | ||||||
|---|---|---|---|---|---|---|---|
| Current | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 1 | Scenario 2 | Scenario 3 | |
| China | 20.3 | 89.2 | 53.7 | 40.3 | 90.0 | 54.5 | 40.8 | 
| Anhui | 0.9 | 2.2 | 1.6 | 1.3 | 2.2 | 1.6 | 1.3 | 
| Beijing | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 
| Fujian | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 
| Gansu | 0.1 | 1.5 | 0.7 | 0.5 | 1.5 | 0.7 | 0.5 | 
| Guangdong | 0.1 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 
| Guangxi | 0.2 | 0.8 | 0.5 | 0.3 | 0.8 | 0.5 | 0.3 | 
| Guizhou | 0.3 | 0.8 | 0.5 | 0.4 | 0.8 | 0.5 | 0.4 | 
| Hainan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Hebei | 0.2 | 6.2 | 3.2 | 2.0 | 6.1 | 3.2 | 2.0 | 
| Henan | 0.8 | 7.5 | 4.2 | 2.8 | 7.6 | 4.2 | 2.9 | 
| Heilongjiang | 9.5 | 18.8 | 14.0 | 12.2 | 19.1 | 14.3 | 12.4 | 
| Hubei | 0.4 | 1.1 | 0.7 | 0.6 | 1.1 | 0.7 | 0.6 | 
| Hunan | 0.3 | 1.0 | 0.6 | 0.5 | 1.0 | 0.7 | 0.5 | 
| Jilin | 0.7 | 8.4 | 4.6 | 3.0 | 8.7 | 4.7 | 3.1 | 
| Jiangsu | 0.5 | 1.4 | 1.0 | 0.8 | 1.4 | 1.0 | 0.8 | 
| Jiangxi | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 
| Liaoning | 0.3 | 5.4 | 2.8 | 1.8 | 5.3 | 2.8 | 1.8 | 
| Inner Mongolia | 2.5 | 8.8 | 5.5 | 4.3 | 8.9 | 5.7 | 4.4 | 
| Ningxia | 0.0 | 0.4 | 0.2 | 0.1 | 0.4 | 0.2 | 0.1 | 
| Qinghai | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Shandong | 0.6 | 8.0 | 4.3 | 2.8 | 8.1 | 4.3 | 2.8 | 
| Shanxi | 0.2 | 2.5 | 1.4 | 0.9 | 2.5 | 1.3 | 0.9 | 
| Shaanxi | 0.3 | 1.8 | 1.1 | 0.8 | 1.8 | 1.1 | 0.8 | 
| Shanghai | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Sichuan | 1.1 | 3.9 | 2.2 | 1.7 | 3.9 | 2.2 | 1.7 | 
| Tianjin | 0.0 | 0.4 | 0.2 | 0.1 | 0.4 | 0.2 | 0.1 | 
| Xizang | 0.0 | NA | NA | NA | NA | NA | NA | 
| Xinjiang | 0.1 | 3.1 | 1.4 | 0.9 | 3.1 | 1.4 | 0.9 | 
| Yunnan | 0.3 | 3.2 | 1.7 | 1.2 | 3.2 | 1.7 | 1.2 | 
| Zhejiang | 0.2 | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.2 | 
| Chongqing | 0.2 | 0.9 | 0.5 | 0.4 | 0.9 | 0.5 | 0.4 | 
| 2050 SSP3-7.0 Scenario | 2050 SSP5-8.5 Scenario | ||||||
|---|---|---|---|---|---|---|---|
| Current | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 1 | Scenario 2 | Scenario 3 | |
| China | 20.3 | 101.3 | 59.9 | 44.1 | 101.3 | 60.0 | 44.1 | 
| Anhui | 0.9 | 2.3 | 1.6 | 1.4 | 2.4 | 1.7 | 1.4 | 
| Beijing | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 
| Fujian | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 
| Gansu | 0.1 | 1.8 | 0.8 | 0.5 | 1.8 | 0.8 | 0.5 | 
| Guangdong | 0.1 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 
| Guangxi | 0.2 | 0.8 | 0.5 | 0.3 | 0.8 | 0.5 | 0.3 | 
| Guizhou | 0.3 | 0.9 | 0.6 | 0.4 | 0.8 | 0.5 | 0.4 | 
| Hainan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Hebei | 0.2 | 7.3 | 3.8 | 2.4 | 7.3 | 3.8 | 2.3 | 
| Henan | 0.8 | 8.5 | 4.7 | 3.2 | 8.8 | 4.8 | 3.2 | 
| Heilongjiang | 9.5 | 20.4 | 14.9 | 12.8 | 20.4 | 14.9 | 12.8 | 
| Hubei | 0.4 | 1.2 | 0.8 | 0.6 | 1.3 | 0.8 | 0.6 | 
| Hunan | 0.3 | 1.0 | 0.7 | 0.5 | 1.0 | 0.7 | 0.5 | 
| Jilin | 0.7 | 9.9 | 5.3 | 3.5 | 9.8 | 5.3 | 3.4 | 
| Jiangsu | 0.5 | 1.6 | 1.1 | 0.9 | 1.6 | 1.1 | 0.9 | 
| Jiangxi | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 
| Liaoning | 0.3 | 6.4 | 3.3 | 2.1 | 6.3 | 3.3 | 2.1 | 
| Inner Mongolia | 2.5 | 9.9 | 6.1 | 4.6 | 9.7 | 6.0 | 4.6 | 
| Ningxia | 0.0 | 0.4 | 0.2 | 0.2 | 0.4 | 0.2 | 0.2 | 
| Qinghai | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Shandong | 0.6 | 9.4 | 5.0 | 3.2 | 9.6 | 5.1 | 3.3 | 
| Shanxi | 0.2 | 2.9 | 1.6 | 1.0 | 3.0 | 1.6 | 1.0 | 
| Shaanxi | 0.3 | 2.1 | 1.2 | 0.8 | 2.1 | 1.2 | 0.9 | 
| Shanghai | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 
| Sichuan | 1.1 | 4.4 | 2.4 | 1.9 | 4.4 | 2.4 | 1.9 | 
| Tianjin | 0.0 | 0.4 | 0.2 | 0.1 | 0.4 | 0.2 | 0.1 | 
| Xizang | 0.0 | NA | NA | NA | NA | NA | NA | 
| Xinjiang | 0.1 | 3.9 | 1.7 | 1.1 | 3.9 | 1.7 | 1.1 | 
| Yunnan | 0.3 | 3.5 | 1.9 | 1.3 | 3.5 | 1.9 | 1.3 | 
| Zhejiang | 0.2 | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.2 | 
| Chongqing | 0.2 | 0.9 | 0.6 | 0.4 | 0.9 | 0.6 | 0.4 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T.; Zhang, C. A Methodological Framework for Assessing the Potential Performance of Maize/Soybean Intercropping Under 2050 Climate Scenarios. Agronomy 2025, 15, 2496. https://doi.org/10.3390/agronomy15112496
Song T, Zhang C. A Methodological Framework for Assessing the Potential Performance of Maize/Soybean Intercropping Under 2050 Climate Scenarios. Agronomy. 2025; 15(11):2496. https://doi.org/10.3390/agronomy15112496
Chicago/Turabian StyleSong, Tao, and Chaochun Zhang. 2025. "A Methodological Framework for Assessing the Potential Performance of Maize/Soybean Intercropping Under 2050 Climate Scenarios" Agronomy 15, no. 11: 2496. https://doi.org/10.3390/agronomy15112496
APA StyleSong, T., & Zhang, C. (2025). A Methodological Framework for Assessing the Potential Performance of Maize/Soybean Intercropping Under 2050 Climate Scenarios. Agronomy, 15(11), 2496. https://doi.org/10.3390/agronomy15112496
 
        

 
       