Is Grass Planting Suitable for Orchard Sustainability in Xizang? Insights from the Ecosystem Services Valuation of a 4-Year Apple Orchard Grass Planting Practice
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment Design
2.3. Sampling and Determination
2.4. Construction of Ecosystem Services Value Evaluation Index System
- (1)
- Provisioning services (V1)
- (2)
- Regulating services (V2)
- (3)
- Supporting services (V3)
- (4)
- Total Ecosystem Service Value Calculation (V)
2.5. Statistical Analyses
3. Results
3.1. Economic Values of Provisioning Services
3.2. Economic Values of Regulating Services
3.3. Economic Values of Supporting Services
3.4. Total Economic Values of Ecosystem Services
4. Discussion
4.1. Perennial Grass Treatments Sharply Increased the Value of Provisioning Services
4.2. Perennial Grass Treatments Sharply Increased the Value of Regulating Services
4.3. Artificial Grass Treatments Lower the Value of Supporting Services
4.4. Artificial Grass Treatments Result in a Higher Net Value of Ecosystem Services
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, W.; Lü, Y.; Liu, Y.; Gao, W. Ecosystem service value of the Qinghai-Tibet Plateau significantly increased during 25 years. Ecosyst. Serv. 2020, 44, 101146. [Google Scholar] [CrossRef]
- Shang, Z.H.; Gibb, M.J.; Leiber, F.; Ismail, M.; Ding, L.M.; Guo, X.S.; Long, R.J. The sustainable development of grassland-livestock systems on the Tibetan plateau: Problems, strategies and prospects. Rangel. J. 2014, 36, 267–296. [Google Scholar] [CrossRef]
- Yan, L.; Kong, L.; Wang, L.; Zhang, L.; Hu, J.; Ouyang, Z. Grass-livestock balance under the joint influences of climate change, human activities and ecological protection on Tibetan Plateau. Ecol. Indic. 2024, 162, 112040. [Google Scholar] [CrossRef]
- Wang, F.; Tang, J.; Li, Z.; Xiang, J.; Wang, L.; Tian, L.; Jiang, L.; Luo, Y.; Hou, E.; Shao, X. Warming reduces the production of a major annual forage crop on the Tibetan Plateau. Sci. Total Environ. 2021, 798, 149211. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, M.; Fu, B.; Kemp, D.; Zhao, W.; Liu, G.; Han, G.; Wilkes, A.; Lu, X.; Chen, Y.; et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 2020, 65, 1405–1414. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Zeng, X.; Cui, Y.; Yu, W.; Ma, Q. How the development of barren land into orchards affects soil ecosystem in Tibet, China. Pedosphere 2022, 32, 616–628. [Google Scholar] [CrossRef]
- Bin, Y.; Chao, C. Evolution of a development model for fruit industry against background of rising labor cost: Intensive or extensive adjustment? Sustainability 2019, 11, 3864. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, K.; Zhang, J.; Li, D.F.; Zhang, Y.; Xiang, H.M. Grass cultivation alters soil organic carbon fractions in a subtropical orchard of southern China. Soil Tillage Res. 2018, 181, 110–116. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, R.; Fu, L.; Tao, S.; Bao, J. Effects of orchard grass on soil fertility and nutritional status of fruit trees in Korla fragrant pear orchard. Horticulturae 2023, 9, 903. [Google Scholar] [CrossRef]
- Delpuech, X.; Metay, A. Adapting cover crop soil coverage to soil depth to limit competition for water in a Mediterranean vineyard. Eur. J. Agron. 2018, 97, 60–69. [Google Scholar] [CrossRef]
- Xiang, Y.; Chang, S.X.; Shen, Y.; Chen, G.; Liu, Y.; Yao, B.; Xue, J.; Li, Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards: A synthesis across China. Appl. Soil Ecol. 2023, 182, 104720. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Kamran, M.; Chen, X.; Tan, H.; Long, M. Effects of grass inter-planting on soil nutrients, enzyme activity, and bacterial community diversity in an apple orchard. Front. Plant Sci. 2022, 13, 901143. [Google Scholar] [CrossRef]
- Ren, J.; Li, F.; Yin, C. Orchard grass safeguards sustainable development of fruit industry in China. J. Clean. Prod. 2023, 382, 135291. [Google Scholar] [CrossRef]
- Tagliavini, M.; Tonon, G.; Scandellari, F.; Quinones, A.; Palmieri, S.; Menarbin, G.; Gioacchini, P.; Masia, A. Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in an orchard. Agric. Ecosyst. Environ. 2007, 118, 191–200. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Chen, W.; Zhang, Y.; Wang, A.; Zheng, Y. Ecosystem service value evaluation of saline-alkali land development in the Yellow River Delta-the example of the Huanghe Island. Water 2023, 15, 477. [Google Scholar] [CrossRef]
- Zhao, G.; Shi, P.; Wu, J.; Xiong, D.; Zong, N.; Zhang, X. Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau. Ecol. Evol. 2017, 7, 7201–7212. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, J.; Wang, L.; Yu, C.; Shen, Z.; Shao, X. Morphological characteristics of water stress in mixed or unicast seeding of Vicia sativa and Secale cereal in Tibet. Pratacult. Sci. 2019, 36, 1826–1836. [Google Scholar]
- Mueller, K.E.; Tilman, D.; Fornara, D.A.; Hobbie, S.E. Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment. Ecology 2013, 94, 787–793. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Millennium-Ecosystem-Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Xia, C.; Liu, Z.; Suo, X.; Cao, S. Quantifying the net benefit of land use of fruit trees in China. Land Use Policy 2020, 90, 104276. [Google Scholar] [CrossRef]
- Mu, L.; Wang, C.; Xue, B.; Wang, H.; Li, S. Assessing the impact of water price reform on farmers’ willingness to pay for agricultural water in northwest China. J. Clean. Prod. 2019, 234, 1072–1081. [Google Scholar] [CrossRef]
- Lamarque, P.; Tappeiner, U.; Turner, C.; Steinbacher, M.; Bardgett, R.D.; Szukics, U.; Schermer, M.; Lavorel, S. Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Reg. Environ. Change 2011, 11, 791–804. [Google Scholar] [CrossRef]
- Paesel, H.K.; Schmitz, A.; Isselstein, J. Heterogeneity and diversity of orchard grassland vegetation in Central Germany: Role of tree stock, soil parameters and site management. Agrofor. Syst. 2017, 93, 825–836. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, Y.; Tan, X.; Chen, A.; Feng, J. Biological control of insect pests in apple orchards in China. Biol. Control 2014, 68, 47–56. [Google Scholar] [CrossRef]
- Tworkoski, T.J.; Glenn, D.M. Weed suppression by grasses for orchard floor management. Weed Technol. 2012, 26, 559–565. [Google Scholar] [CrossRef]
- Guo, X.; Song, T.; Deng, L.; Zhang, W.; Jiao, X. Effects of grass growing on soil fertility and productivity of orchards in China: A meta-analysis. Chin. J. Appl. Ecol. 2021, 32, 4021–4028. [Google Scholar]
- Wang, P.; Wang, Y.; Wu, Q.S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil Tillage Res. 2016, 155, 54–61. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, Y.; Palmer, E.; Zhang, Y. Intercropping of orchardgrass and alfalfa improves soil fertility, forage yield, feeding values and land use efficiency while limiting ruminal greenhouse gas emissions. Grass Forage Sci. 2023, 78, 275–287. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Yan, Z.; He, L.; Ma, S.; Feng, Y.; Su, H.; Chen, G.; Feng, Y.; Ji, C.; et al. Above- and belowground biomass allocation and its regulation by plant density in six common grassland species in China. J. Plant Res. 2022, 135, 41–53. [Google Scholar] [CrossRef]
- Herridge, D.F.; Giller, K.E.; Jensen, E.S.; Peoples, M.B. Quantifying country-to-global scale nitrogen fixation for grain legumes II. Coefficients, templates and estimates for soybean, groundnut and pulses. Plant Soil 2022, 474, 1–15. [Google Scholar] [CrossRef]
- Angermann, T.; Wallender, W.W.; Wilson, B.W.; Werner, I.; Hinton, D.E.; Oliver, M.N.; Zalom, F.G.; Henderson, J.D.; Oliveira, G.H.; Deanovic, L.A.; et al. Runoff from orchard floors—Micro-plot field experiments and modeling. J. Hydrol. 2002, 265, 178–194. [Google Scholar] [CrossRef]
- Vignozzi, N.; Agnelli, A.E.; Brandi, G.; Gagnarli, E.; Goggioli, D.; Lagomarsino, A.; Pellegrini, S.; Simoncini, S.; Simoni, S.; Valboa, G.; et al. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Appl. Soil Ecol. 2019, 134, 64–76. [Google Scholar] [CrossRef]
- Ma, D.; Yin, L.; Ju, W.; Li, X.; Liu, X.; Deng, X.; Wang, S. Meta-analysis of green manure effects on soil properties and crop yield in northern China. Field Crops Res. 2021, 266, 108146. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Zhao, X.; Wu, P.; Qi, Z.; Li, H. Effects of permanent ground cover on soil moisture in jujube orchards under sloping ground: A simulation study. Agric. Water Manag. 2014, 138, 68–77. [Google Scholar] [CrossRef]
- Zhuo, Z.; Li, H.; Zhou, B.; Wang, X.; Lin, X.; Wang, L.; Jiang, F.; Lin, J.; Huang, Y.; Zhang, Y. Effects of grass cultivation on the soil organic carbon of citrus orchard soil and their microbial mechanisms in red soil hilly areas. J. Soil Sci. Plant Nutr. 2025, 25, 4880–4896. [Google Scholar] [CrossRef]
- Moushani, S.; Kazemi, H.; Klug, H.; Asadi, M.E.; Soltani, A. Ecosystem service mapping in soybean agroecosystems. Ecol. Indic. 2021, 121, 107061. [Google Scholar] [CrossRef]
- Sheldrick, W.F.; Syers, J.K.; Lingard, J. Soil nutrient audits for China to estimate nutrient balances and output/input relationships. Agric. Ecosyst. Environ. 2003, 94, 341–354. [Google Scholar] [CrossRef]
- Wei, H.; Xiang, Y.; Liu, Y.; Zhang, J. Effects of sod cultivation on soil nutrients in orchards across China: A meta-analysis. Soil Tillage Res. 2017, 169, 16–24. [Google Scholar] [CrossRef]
- Lyu, H.; Li, Y.; Wang, Y.; Wang, P.; Shang, Y.; Yang, X.; Wang, F.; Yu, A. Drive soil nitrogen transformation and improve crop nitrogen absorption and utilization—A review of green manure applications. Front. Plant Sci. 2024, 14, 1305600. [Google Scholar] [CrossRef]
- Xie, Z.; Tu, S.; Shah, F.; Xu, C.; Chen, J.; Han, D.; Liu, G.; Li, H.; Muhammad, I.; Cao, W. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Field Crops Res. 2016, 188, 142–149. [Google Scholar] [CrossRef]
- Torok, P.; Deak, B.; Vida, E.; Valko, O.; Lengyel, S.; Tothmeresz, B. Restoring grassland biodiversity: Sowing low-diversity seed mixtures can lead to rapid favourable changes. Biol. Conserv. 2010, 143, 806–812. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Ruiz-Menjivar, J. The effect of crop diversity on agricultural eco-efficiency in China: A blessing or a curse? J. Clean. Prod. 2020, 276, 124243. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of crop diversity on agroecosystem function: Crop yield response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]


| Categories | Value Evaluation Based on Ecological Economics | |
|---|---|---|
| Provisioning services (V1, CNY/ha) | Fruit yield (V11, CNY/ha) | V11 = M11 × P11, M11 (t/ha) is the yield of apple. P11 (CNY/kg) is the price of apple. |
| Forage yield (V12, CNY/ha) | V12 = M12 × P12, M12 (t/ha) is the yield of forage. P12 (CNY/kg) is the price of forage. | |
| Cost of production (V13, CNY/ha) | V13 = ∑ Im × Pm, Im includes material costs, such as fertilizer, pesticides, seeds, and labor force. Pm represents the market price of m (orchard management costs, such as fertilization, seeds, and labor, Table S1). | |
| Regulating services (V2, CNY/ha) | Water conservation (V21, CNY/ha) | V21 = V21s + V21f, V21s (CNY/ha) and V21f (CNY/ha) are the value of water conservation by soil and forage, respectively. V21s = Ws× Pw, V21f = Wf × Pw, Ws (t/ha) is the amount of water held in 0–50 cm soil, which is calculated by the soil water content and soil bulk density. Wf (t/ha) is the amount of water hold in forage tissue, which is calculated by the difference between fresh and dry biomass of forage. Pw is agricultural irrigation water price at 0.4 CNY/t. |
| Carbon sequestration (V22, CNY/ha) | V22 = V22s + V22f, V22s (CNY/ha) and V22f (CNY/ha) is the value of carbon sequestration in soil and forage, respectively. V22s = Cs × Pc, V22f = Cf × Pc Cs (t/ha) is the change in soil sequestrated carbon in the 0–50 cm soil layer between two adjacent years, which is calculated based on the soil total carbon content and soil bulk density determined in each of the two adjacent years, respectively. Cf (t/ha) is the total carbon sequestrated in forage tissue. Pc is the afforestation cost for carbon fixation, at price of 1200 CNY/t. | |
| Oxygen production (V23, CNY/ha) | V23 = Cf × 2.67 × Po, According to the equation of photosynthesis, 2.67 g of oxygen (O2) are released for every 1 g of carbon (C) fixed. Po is the price of oxygen production at price of 1000 CNY/t. | |
| Supporting services (V3, CNY/ha) | Soil nutrient maintenance (V31, CNY/ha) | V31 = ANs × PN + APs × PP + AKs × PK, ANs (kg/ha), APs (kg/ha), and AKs (kg/ha) are the change in available N, P, and K storage in 0–50 cm soil layer between two adjacent years, which is calculated based on the soil available nutrients content and soil bulk density determined in each of the two adjacent years, respectively. PN, PP, and PK are chemical fertilizer price for N, P, and K, respectively (Table S1). |
| Biodiversity conservation (V32, CNY/ha) | The Shannon–Wiener index of plant diversity was calculated at the forage planting area. The Shannon–Wiener index was divided into seven level according to Liu. The value of biodiversity conservation was calculated based on the unit value of each level of the Shannon–Wiener index (Table S2) multiplied by the area of forage planting. | |
| Year | Index | NG | AL | AG | AL+G | PL | PG | PL+G |
|---|---|---|---|---|---|---|---|---|
| 2021 | Yield (t/ha) | 17.46 b | 18.68 a | 18.09 ab | 18.57 a | 18.42 a | 18.23 ab | 18.21 ab |
| Fruit weight (g/individual) | 211.45 a | 210.47 a | 213.42 a | 215.33 a | 214.17 a | 218.22 a | 220.17 a | |
| TSS (%) | 12.37 a | 12.44 a | 12.15 a | 12.35 a | 11.98 a | 12.08 a | 12.44 a | |
| Market price (CNY/kg) | 18.00 | 18.01 | 17.92 | 18.15 | 17.83 | 18.08 | 18.42 | |
| 2022 | Yield (t/ha) | 17.18 b | 18.05 ab | 17.85 b | 18.28 a | 18.77 a | 18.14 ab | 18.20 ab |
| Fruit weight (g/individual) | 208.04 b | 229.16 ab | 210.80 b | 234.22 a | 248.39 a | 243.68 a | 237.70 a | |
| TSS (%) | 10.97 b | 10.47 b | 11.40 b | 11.20 b | 9.27 b | 11.40 ab | 12.93 a | |
| Market price (CNY/kg) | 20.00 | 20.56 | 20.52 | 21.47 | 20.39 | 22.11 | 23.22 | |
| 2023 | Yield (t/ha) | 16.64 b | 17.82 ab | 16.92 b | 17.48 ab | 18.21 ab | 19.04 a | 19.02 a |
| Fruit weight (g/individual) | 209.88 b | 219.54 ab | 222.86 ab | 218.06 ab | 226.47 a | 231.72 a | 232.40 a | |
| TSS (%) | 11.70 ab | 12.13 ab | 12.50 a | 12.26 ab | 11.47 b | 12.39 a | 12.81 a | |
| Market price (CNY/kg) | 21.00 | 21.87 | 22.37 | 21.91 | 21.62 | 22.71 | 23.12 | |
| 2024 | Yield (t/ha) | 16.69 b | 17.50 b | 17.64 ab | 18.07 ab | 18.46 a | 18.70 a | 19.04 a |
| Fruit weight (g/individual) | 210.47 a | 213.14 a | 210.22 a | 214.87 a | 209.41 a | 213.47 a | 212.84 a | |
| TSS (%) | 11.87 a | 12.66 a | 12.08 a | 11.86 a | 11.88 a | 12.73 a | 12.44 a | |
| Market price (CNY/kg) | 21.00 | 21.83 | 21.17 | 21.21 | 20.96 | 21.91 | 21.62 |
| Year | Index | NG | AL | AG | AL+G | PL | PG | PL+G |
|---|---|---|---|---|---|---|---|---|
| 2021 | Yield (t/ha) | 3.16 b | 4.33 a | 4.11 ab | 4.44 a | 4.40 a | 4.79 a | 4.49 a |
| Crude protein (%) | 11.48 b | 15.14 a | 12.91 ab | 15.27 a | 14.32 a | 12.27 ab | 14.12 a | |
| Market price (CNY/kg) | 1.70 | 2.24 | 1.91 | 2.26 | 2.12 | 1.82 | 2.09 | |
| Water content (%) | 71.60 a | 68.00 a | 72.20 a | 69.20 a | 74.70 a | 73.70 a | 75.00 a | |
| Shannon–Wiener index | 1.14 ab | 0.98 ab | 1.14 ab | 1.32 a | 0.87 b | 0.68 b | 0.74 b | |
| Total C content (g/kg) | 40.66 a | 39.14 a | 39.16 a | 38.57 a | 42.20 a | 39.75 a | 41.60 a | |
| 2022 | Yield (t/ha) | 3.48 c | 4.53 b | 4.50 b | 4.68 b | 6.41 bc | 11.55 a | 9.10 a |
| Crude protein (%) | 11.73 bc | 17.04 a | 13.31 b | 14.47 b | 17.32 a | 10.47 c | 14.32 b | |
| Market price (CNY/kg) | 1.70 | 2.47 | 1.93 | 2.10 | 2.51 | 1.52 | 2.08 | |
| Water content (%) | 72.20 a | 67.30 a | 71.80 a | 69.50 a | 74.10 a | 74.70 a | 75.80 a | |
| Shannon–Wiener index | 1.39 ab | 0.82 b | 1.55 a | 1.52 a | 0.91 b | 0.46 c | 0.60 bc | |
| Total C content (g/kg) | 38.03 a | 37.97 a | 33.87 b | 38.27 a | 38.92 a | 37.84 a | 39.38 a | |
| 2023 | Yield (t/ha) | 3.73 d | 7.35 c | 4.88 d | 5.58 cd | 10.43 b | 15.35 a | 14.48 a |
| Crude protein (%) | 10.98 c | 16.64 ab | 13.51 b | 13.47 bc | 19.22 a | 11.27 c | 13.52 b | |
| Market price (CNY/kg) | 1.70 | 2.58 | 2.09 | 2.09 | 2.98 | 1.74 | 2.09 | |
| Water content (%) | 70.60 a | 67.20 a | 72.90 a | 69.80 a | 75.20 a | 73.20 a | 74.90 a | |
| Shannon–Wiener index | 1.28 b | 1.62 a | 1.05 b | 1.73a | 1.14 b | 0.11 c | 0.22 c | |
| Total C content (g/kg) | 40.35 a | 40.12 a | 41.99 a | 40.73 a | 42.12 a | 40.69 a | 41.79 a | |
| 2024 | Yield (t/ha) | 4.25 c | 6.67 bc | 4.62 c | 4.81 c | 8.99 b | 12.38 a | 12.44 a |
| Crude protein (%) | 11.24 b | 17.24 a | 12.51 b | 14.47 ab | 18.22 a | 11.47 b | 14.32 ab | |
| Market price (CNY/kg) | 1.70 | 2.61 | 1.89 | 2.19 | 2.76 | 1.73 | 2.17 | |
| Water content (%) | 70.60 a | 67.20 a | 71.30 a | 68.20 a | 75.50 a | 73.60 a | 75.90 a | |
| Shannon–Wiener index | 1.30 ab | 1.58 a | 1.34 ab | 1.65 a | 0.92 b | 0.18 c | 0.19 c | |
| Total C content (g/kg) | 33.79 a | 37.06 a | 37.63 a | 40.07 a | 36.54 a | 34.95 a | 36.59 a |
| Year | Index | NG | AL | AG | AL+G | PL | PG | PL+G |
|---|---|---|---|---|---|---|---|---|
| 2021 | Bulk density (g/cm3) | 1.24 a | 1.24 a | 1.25 a | 1.25 a | 1.26 a | 1.25 a | 1.26 a |
| AN (mg/kg) | 56.88 a | 53.10 a | 50.33 ab | 43.90 b | 49.78 ab | 47.75 ab | 48.75 ab | |
| AP (mg/kg) | 18.63 a | 18.33 a | 16.57 ab | 16.39 ab | 14.91 b | 16.84 ab | 19.60 a | |
| AK (mg/kg) | 131.50 a | 129.50 a | 125.50 a | 129.50 a | 132.00 a | 129.50 a | 128.67 a | |
| TC (g/kg) | 11.31 a | 11.40 a | 11.28 a | 11.34 a | 11.26 a | 11.28 a | 11.27 a | |
| Water content (%) | 12.70 a | 8.61 b | 11.53 ab | 11.98 a | 14.70 a | 9.41 ab | 10.55 ab | |
| 2022 | Bulk density (g/cm3) | 1.24 b | 1.26 ab | 1.27 ab | 1.28 a | 1.28 a | 1.28 a | 1.27 a |
| AN (mg/kg) | 52.15 a | 54.93 a | 42.00 b | 47.58 ab | 49.32 ab | 51.08 a | 57.48 a | |
| AP (mg/kg) | 21.07 a | 16.32 ab | 12.78 b | 15.88 ab | 12.99 b | 12.73 b | 13.26 b | |
| AK (mg/kg) | 128.45 a | 112.64 b | 121.22 a | 117.56 ab | 122.87 a | 111.97 b | 112.17 b | |
| TC (g/kg) | 11.29 ab | 11.24 ab | 11.19 b | 11.17 b | 11.37 a | 11.34 a | 11.48 a | |
| Water content (%) | 19.57 a | 19.29 a | 21.14 a | 20.08 a | 21.33 a | 16.81 a | 12.92 b | |
| 2023 | Bulk density (g/cm3) | 1.25 b | 1.26 b | 1.26 b | 1.27 ab | 1.30 a | 1.31 a | 1.31 a |
| AN (mg/kg) | 51.23 ab | 53.55 a | 47.55 b | 54.33 a | 56.75 a | 44.60 b | 52.38 ab | |
| AP (mg/kg) | 23.20 a | 21.22 ab | 19.96 b | 21.36 b | 22.42 a | 22.07 ab | 21.21 b | |
| AK (mg/kg) | 122.51 a | 100.13 ab | 104.13 ab | 99.28 b | 92.13 b | 94.89 b | 93.07 b | |
| TC (g/kg) | 11.35 b | 11.35 b | 11.41 ab | 11.64 a | 11.44 a | 11.48 a | 11.52 a | |
| Water content (%) | 21.66 a | 20.73 a | 19.07 a | 24.23 a | 21.08 a | 20.17 a | 20.03 a | |
| 2024 | Bulk density (g/cm3) | 1.26 b | 1.25 b | 1.27 ab | 1.32 a | 1.32 a | 1.33 a | 1.33 a |
| AN (mg/kg) | 48.18 a | 51.53 a | 48.17 a | 47.19 a | 46.38 a | 41.90 b | 45.68 ab | |
| AP (mg/kg) | 24.25 a | 19.82 a | 19.02 ab | 17.62 b | 17.15 b | 16.74 b | 17.35 b | |
| AK (mg/kg) | 115.42 a | 92.93 b | 95.69 b | 94.15 b | 93.09 b | 87.30 b | 86.88 b | |
| TC (g/kg) | 11.51 b | 11.78 ab | 11.73 ab | 11.81 a | 11.81 a | 12.07 a | 11.96 a | |
| Water content (%) | 20.58 a | 20.09 a | 18.13 a | 22.54 a | 20.58 a | 18.62 a | 19.60 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Jiang, Y.; Guan, J.; Ye, Y.; Shao, X.; Wu, Y. Is Grass Planting Suitable for Orchard Sustainability in Xizang? Insights from the Ecosystem Services Valuation of a 4-Year Apple Orchard Grass Planting Practice. Agronomy 2025, 15, 2463. https://doi.org/10.3390/agronomy15112463
Wang R, Jiang Y, Guan J, Ye Y, Shao X, Wu Y. Is Grass Planting Suitable for Orchard Sustainability in Xizang? Insights from the Ecosystem Services Valuation of a 4-Year Apple Orchard Grass Planting Practice. Agronomy. 2025; 15(11):2463. https://doi.org/10.3390/agronomy15112463
Chicago/Turabian StyleWang, Ruihong, Yanbin Jiang, Junhao Guan, Yanhui Ye, Xiaoming Shao, and Yupeng Wu. 2025. "Is Grass Planting Suitable for Orchard Sustainability in Xizang? Insights from the Ecosystem Services Valuation of a 4-Year Apple Orchard Grass Planting Practice" Agronomy 15, no. 11: 2463. https://doi.org/10.3390/agronomy15112463
APA StyleWang, R., Jiang, Y., Guan, J., Ye, Y., Shao, X., & Wu, Y. (2025). Is Grass Planting Suitable for Orchard Sustainability in Xizang? Insights from the Ecosystem Services Valuation of a 4-Year Apple Orchard Grass Planting Practice. Agronomy, 15(11), 2463. https://doi.org/10.3390/agronomy15112463

