Spatiotemporal Distribution Characteristics of Soil Organic Carbon and Its Influencing Factors in the Loess Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Data Collection
2.2.1. Soil Organic Carbon Density
2.2.2. Environmental Variables
2.3. Analytical Methods
2.3.1. Random Forest Model
2.3.2. Soil Organic Carbon Storage Calculation
2.3.3. Data Analysis
2.3.4. Data Processing
3. Results and Analysis
3.1. Spatial Distribution Characteristics of SOCD
3.2. Temporal Change Characteristics of SOCD
3.3. Analysis of SOCD Influencing Factors
4. Discussion
4.1. Spatiotemporal Distribution Characteristics of SOCD
4.2. Driving Factors of SOCD
4.3. Generalizability and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef]
- Zhao, F.B.; Wu, Y.P.; Hui, J.Y.; Sivakumar, B.; Meng, X.Y.; Liu, S.G. Projected Soil Organic Carbon Loss in Response to Climate Warming and Soil Water Content in a Loess Watershed. Carbon Balance Manag. 2021, 16, 24. [Google Scholar] [CrossRef]
- Ding, W.H.; Chang, N.J.; Zhang, G.L.; Kang, J.H.; Yi, X.P.; Zhang, J.; Zhang, J.F.; Wang, L.G.; Li, H. Soil Organic Carbon Changes in China’s Croplands: A Newly Estimation Based on DNDC Model. Sci. Total Environ. 2023, 905, 167107. [Google Scholar] [CrossRef]
- Li, J.L.; Hu, N.; Qi, Y.X.; Zhao, W.Z.; Dong, Q.Q. Spatial and Temporal Variations in Soil Organic Carbon in Northwestern China Via Comparisons of Different Methods. Remote Sens. 2025, 17, 420. [Google Scholar]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil Organic Carbon Storage as a Key Function of Soils—A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar]
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; Van Oost, K.; Casanova Pinto, M.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Zagal Venegas, E.; et al. Soil Carbon Storage Controlled by Interactions between Geochemistry and Climate. Nat. Geosci. 2015, 8, 780–783. [Google Scholar] [CrossRef]
- Wang, B.; Gray, J.M.; Waters, C.M.; Anwar, M.R.; Orgill, S.E.; Cowie, A.L.; Feng, P.; Liu, D.L. Modelling and Mapping Soil Organic Carbon Stocks under Future Climate Change in South-Eastern Australia. Geoderma 2022, 405, 115442. [Google Scholar] [CrossRef]
- Yang, R.M.; Zhang, G.L.; Liu, F.; Lu, Y.Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.G.; Li, D.C. Comparison of Boosted Regression Tree and Random Forest Models for Mapping Topsoil Organic Carbon Concentration in an Alpine Ecosystem. Ecol. Indic. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Zhu, M.; Feng, Q.; Qin, Y.Y.; Cao, J.J.; Zhang, M.X.; Liu, W.; Deo, R.C.; Zhang, C.Q.; Li, R.L.; Li, B.F. The Role of Topography in Shaping the Spatial Patterns of Soil Organic Carbon. CATENA 2019, 176, 296–305. [Google Scholar] [CrossRef]
- Ge, N.N.; Wei, X.R.; Wang, X.; Liu, X.T.; Shao, M.A.; Jia, X.X.; Li, X.Z.; Zhang, Q.Y. Soil Texture Determines the Distribution of Aggregate-Associated Carbon, Nitrogen and Phosphorous under Two Contrasting Land Use Types in The Loess Plateau. CATENA 2019, 172, 148–157. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Li, L.; Bai, Z. Analysis of Desertification and the Driving Factors over the Loess Plateau. Geocarto Int. 2023, 38, 2290175. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Y.S.; Wang, Y.Q.; Wei, X.R.; Wang, Y.F.; Cui, B.L.; Zhou, W.J. Natural Vegetation Restoration is More Beneficial to Soil Surface Organic and Inorganic Carbon Sequestration than Tree Plantation on The Loess Plateau of China. Sci. Total Environ. 2014, 485–486, 615–623. [Google Scholar]
- Yang, Y.; Zhang, P.P.; Song, Y.; Li, Z.M.; Zhou, Y.Y.; Sun, H.; Qiao, J.; Wang, Y.Q.; An, S.S. The Structure and Development of Loess Critical Zone and its Soil Carbon Cycle. Carbon Neutrality 2024, 3, 1. [Google Scholar] [CrossRef]
- Zhao, B.H.; Li, Z.B.; Li, P.; Xu, G.C.; Gao, H.D.; Cheng, Y.T.; Chang, E.H.; Yuan, S.L.; Zhang, Y.; Feng, Z.H. Spatial Distribution of Soil Organic Carbon and its Influencing Factors under the Condition of Ecological Construction in a Hilly-Gully Watershed of the Loess Plateau, China. Geoderma 2017, 296, 10–17. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.C.; Zhang, J.L.; Li, S.J. Spatial Variability of Soil Organic Carbon in a Watershed on the Loess Plateau. Pedosphere 2009, 19, 486–495. [Google Scholar] [CrossRef]
- Liu, G.H.; Zhao, Z.H. Analysis of Carbon Storage and its Contributing Factors—A Case Study in the Loess Plateau (China). Energies 2018, 11, 1596. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.Y.; Bauer-Marschallinger, B.; et al. Soilgrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar]
- Chen, J.; Biswas, A.; Su, H.; Cao, J.; Hong, S.; Wang, H.; Dong, X. Quantifying changes in soil organic carbon density from 1982 to 2020 in Chinese grasslands using a random forest model. Front. Plant Sci. 2023, 14, 1076902. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Du, Z.P.; Li, X.Y.; Bao, Z.Y.; Zhao, N.; Yue, T.X. Incorporation of High Accuracy Surface Modeling into Machine Learning to Improve Soil Organic Matter Mapping. Ecol. Indic. 2021, 129, 107975. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.X.; Zhang, P.P.; Wu, F.; Wang, Y.Q.; Xu, C.; Zhang, L.K.; An, S.S.; Kuzyakov, Y. Large-Scale Ecosystem Carbon Stocks and Their Driving Factors across Loess Plateau. Carbon Neutrality 2023, 2, 5. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Deng, L.; Wu, G.L.; Wang, K.B.; Shangguan, Z.P. Large-Scale Soil Organic Carbon Mapping Based on Multivariate Modelling: The Case of Grasslands on the Loess Plateau. Land Degrad. Dev. 2018, 29, 26–37. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Jia, X.X.; Shao, M.A. Loess Thickness Variations Across the Loess Plateau of China. Surv. Geophys. 2018, 39, 715–727. [Google Scholar] [CrossRef]
- Xu, L.; He, N.P.; Yu, G.R. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4, 90–96. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, G.L. Chinese Soil Taxonomy: Central and Western China Volume; Science Press: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Su, W.; Guo, X.B.; Chu, Y.; Fan, B.; Ji, H.F.; Lan, Z.D.; Li, G.Z.; Li, X.J.; Luo, Y.Q.; Re, P.K.Y.; et al. A dataset of soil organic carbon density of typical ecosystems in the arid areas of Northwest China from 2005 to 2020. China Sci. Data 2024, 9, 56–69. (In Chinese) [Google Scholar]
- Yang, X.T.; Bai, X.; Yao, W.Q.; Li, P.F.; Hu, J.F.; Kang, L. Spatioemporal Dynamics and Driving Forces of Soil Organic Carbon Changes in an Arid Coal Mining Area of China Investigated Based on Remote Sensing Techniques. Ecol. Indic. 2024, 158, 111453. [Google Scholar] [CrossRef]
- Xu, L.; He, N.P.; Yu, G.R.; Wen, D.; Gao, Y.; He, H.L. Differences in Pedotransfer Functions of Bulk Density Lead to High Uncertainty in Soil Organic Carbon Estimation at Regional Scales: Evidence from Chinese Terrestrial Ecosystems. J. Geophys. Res. Biogeosci. 2015, 120, 1567–1575. [Google Scholar] [CrossRef]
- Yu, D.S.; Shi, X.Z.; Wang, H.J.; Sun, W.X.; Warner, E.D.; Liu, Q.H. National Scale Analysis of Soil Organic Carbon Storage in China Based on Chinese Soil Taxonomy. Pedosphere 2007, 17, 11–18. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.R.; He, N.P.; Wang, Q.F.; Gao, Y.; Wen, D.; Li, S.G.; Niu, S.L.; Ge, J.P. Carbon Storage in China’s Terrestrial Ecosystems: A Synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Zhang, X.C.; Pang, G.W.; Han, F.P. The Estimation of Soil Organic Carbon Distribution and Storage in a Small Catchment Area of the Loess Plateau. CATENA 2013, 101, 11–16. [Google Scholar] [CrossRef]
- Prăvălie, R.; Nita, I.A.; Patriche, C.; Niculiță, M.; Birsan, M.V.; Roșca, B.; Bandoc, G. Global Changes in Soil Organic Carbon and Implications for Land Degradation Neutrality and Climate Stability. Environ. Res. 2021, 201, 111580. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Fabregat-Palau, J.; Ershadi, A.; Finkel, M.; Rigol, A.; Vidal, M.; Grathwohl, P. Modeling PFAS Sorption in Soils Using Machine Learning. Environ. Sci. Technol. 2025, 59, 7678–7687. [Google Scholar] [CrossRef]
- Li, M.Y.; Shangguan, Z.P.; Deng, L. Spatial Distribution of Ecosystem Carbon Storage and its Influencing Factors on the Loess Plateau. Acta Ecol. Sin. 2021, 41, 6786–6799. (In Chinese) [Google Scholar]
- Wu, J.Z.; Deng, L.; Kuzyakov, Y.; Huang, Y.Y.; Song, X.D.; Nie, M.; Deng, J.M.; Zhao, P.; Liao, Y.; Dong, L.B.; et al. Soil Organic and Inorganic Carbon Pools in the Loess Plateau: New Estimation, Change and Trade-Offs. Global Planet. Chang. 2025, 253, 104951. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, Z.P.; Gao, J.L.; Lugato, E.; Ren, Y.Q.; Shao, M.A.; Wei, X.R. The Grain for Green Project Eliminated the Effect of Soil Erosion on Organic Carbon on China’s Loess Plateau between 1980 and 2008. Agric. Ecosyst. Environ. 2021, 322, 107636. [Google Scholar] [CrossRef]
- Sommer, R.; Bossio, D. Dynamics and Climate Change Mitigation Potential of Soil Organic Carbon Sequestration. Environ. Manag. 2014, 144, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Li, W.W.; Liang, Y.K.; Zamanian, K.; Zhao, X.N. Renaturation on the Loess Plateau: Significant Increase in Soil Organic Carbon under Different Soil Types Over Two Decades. Int. Soil Water Conserv. Res. 2025; in press. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Chen, Y.; Lian, J.; Luo, Y.; Niu, Y.; Gong, X. Spatial Pattern of Soil Organic Carbon and Total Nitrogen, and Analysis of Related Factors in an Agro-Pastoral Zone in Northern China. PLoS ONE 2018, 13, e0197451. [Google Scholar] [CrossRef]
- Liu, Y.L.; Shangguan, Z.P.; Deng, L. Vegetation Type and Soil Moisture Drive Variations in Leaf Litter Decomposition Following Secondary Forest Succession. Forests 2021, 12, 1195. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves Among the Most Carbon-rich Forests in the Tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Song, L.Y.; Li, M.Y.; Xu, H.; Guo, Y.; Wang, Z.; Li, Y.C.; Wu, X.J.; Feng, L.C.; Chen, J.; Lu, X.; et al. Spatiotemporal Variation and Driving Factors of Vegetation Net Primary Productivity in a Typical Karst Area in China from 2000 to 2010. Ecol. Indic. 2021, 132, 108280. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.B.; Han, J.C.; Yan, J.W.; Liu, W.B.; Wei, Y.; Lu, N.; Sun, Y.Y. Impacts of Chinese Grain for Green Program and Climate Change on Vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.H.; Ren, C.J.; Wang, C.K.; Delgado-Baquerizo, M.; Luo, Y.Q.; Luo, Z.K.; Du, Z.G.; Zhu, B.; Yang, Y.H.; Jiao, S.; et al. Global Turnover of Soil Mineral-Associated and Particulate Organic Carbon. Nat. Commun. 2024, 15, 5329. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.B.; Fan, J.W.; Li, J.W.; Zhang, Y.; Liu, Y.L.; Wu, J.Z.; Li, A.; Shangguan, Z.P.; Deng, L. Forests Have a Higher Soil C Sequestration Benefit Due to Lower C Mineralization Efficiency: Evidence from the Central Loess Plateau Case. Agric. Ecosyst. Environ. 2022, 339, 108144. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Kleber, M.; Fendorf, S. Are Oxygen Limitations under Recognized Regulators of Organic Carbon Turnover in Upland Soils? Biogeochemistry 2016, 127, 157–171. [Google Scholar] [CrossRef]
- Witzgall, K.; Vidal, A.; Schubert, D.I.; Höschen, C.; Schweizer, S.A.; Buegger, F.; Pouteau, V.; Chenu, C.; Mueller, C.W. Particulate Organic Matter as a Functional Soil Component for Persistent Soil Organic Carbon. Nat. Commun. 2021, 12, 4115. [Google Scholar] [CrossRef]
- Li, H.W.; Wu, Y.P.; Liu, S.G.; Zhao, W.Z.; Xiao, J.F.; Winowiecki, L.A.; Vågen, T.G.; Xu, J.C.; Yin, X.W.; Wang, F.; et al. The Grain-for-Green Project Offsets Warming-Induced Soil Organic Carbon Loss and Increases Soil Carbon Stock in Chinese Loess Plateau. Sci. Total Environ. 2022, 837, 155469. [Google Scholar] [CrossRef]
- Li, J.Q.; Nie, M.; Pendall, E.; Reich, P.B.; Pei, J.M.; Noh, N.J.; Zhu, T.; Li, B.; Fang, C.M. Biogeographic Variation in Temperature Sensitivity of Decomposition in Forest Soils. Glob. Change Biol. 2020, 26, 1873–1885. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhou, L.H.; He, X.J.; Wei, P.; Lin, D.M.; Qian, S.H.; Zhao, L.; Luo, M.; Yin, X.H.; Zeng, L.; et al. Effects of Elevation Gradient on Soil Carbon and Nitrogen in a Typical Karst Region of Chongqing, Southwest China. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006742. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, W.; Liu, H.B. Environmental Variables Controlling Soil Organic Carbon in Top- and Sub-Soils in Karst Region of Southwestern China. Ecol. Indic. 2018, 90, 624–632. [Google Scholar] [CrossRef]
- Liu, Z.J.; Si, J.H.; Jia, B.; Zhou, D.M.; Zhu, X.L.; Ndayambaza, B.; Bai, X.; Wang, B.Y. Soil Organic Carbon Distribution and Multi-Scale Drivers in Semi-Arid Alpine Regions: Implications for Carbon Storage Function Stability. Environ. Manag. 2025, 393, 126989. [Google Scholar] [CrossRef] [PubMed]
- Novara, A.; Gristina, L.; Sala, G.; Galati, A.; Crescimanno, M.; Cerdà, A.; Badalamenti, E.; La Mantia, T. Agricultural Land Abandonment in Mediterranean Environment Provides Ecosystem Services via Soil Carbon Sequestration. Sci. Total Environ. 2017, 576, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Spohn, M.; Bagchi, S.; Biederman, L.A.; Borer, E.T.; Bråthen, K.A.; Bugalho, M.N.; Caldeira, M.C.; Catford, J.A.; Collins, S.L.; Eisenhauer, N.; et al. The Positive Effect of Plant Diversity on Soil Carbon Depends on Climate. Nat. Commun. 2023, 14, 6624. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, K.; Li, J.; Shangguan, Z.; Deng, L. Mixed Plantations Have More Soil Carbon Sequestration Benefits than Pure Plantations in China. For. Ecol. Manag. 2023, 529, 120654. [Google Scholar] [CrossRef]
- Liu, Y.F.; Liu, Y.; Shi, Z.H.; López-Vicente, M.; Wu, G.L. Effectiveness of Re-vegetated Forest and Grassland on Soil Erosion Control in the Semi-arid Loess Plateau. CATENA 2020, 195, 104787. [Google Scholar] [CrossRef]
- Bradford, M.A.; Wieder, W.R.; Bonan, G.B.; Fierer, N.; Raymond, P.A.; Crowther, T.W. Managing Uncertainty in Soil Carbon Feedbacks to Climate Change. Nat. Clim. Chang. 2016, 6, 751–758. [Google Scholar] [CrossRef]
Factor | Abbreviation | Unit | Source | |
---|---|---|---|---|
Climate | Mean Annual Precipitation | MAP | mm | PERSIANN-CDR a |
Mean Annual Temperature | MAT | °C | TerraClimate a | |
Vegetation | Net Primary Productivity | NPP | kg C·m−2 | MODIS (MOD17A3HGF.061) a |
Normalized Difference Vegetation Index | NDVI | MODIS (MOD13Q1) a | ||
Land Use and Land Cover | LULC | MODIS (MCD12Q1) b | ||
Topography | Digital Elevation Model | DEM | m | SRTM 90 m c |
Slope | Slope | Derived from SRTM 90 m | ||
Aspect | Aspect | Derived from SRTM 90 m | ||
Topographic Wetness Index | TWI | Derived from SRTM 90 m | ||
Soil Properties | Soil Type | Soil Type | Resource and Environmental Science Data Platform d | |
Clay Content | Clay Content | g·kg−1 | OpenLandMap | |
Silt Content | Silt Content | g·kg−1 | OpenLandMap | |
Sand Content | Sand Content | g·kg−1 | OpenLandMap | |
Bulk Density | BD | g·cm−3 | OpenLandMap |
WRB Soil Classification | SOCS 2005 (Pg) | SOCS 2010 (Pg) | SOCS 2015 (Pg) | SOCS 2020 (Pg) |
---|---|---|---|---|
CM | 2.16 | 2.22 | 2.28 | 2.32 |
FL/LP/RG/Rocks | 0.819 | 0.858 | 0.875 | 0.891 |
KS/CH/PH | 0.692 | 0.783 | 0.836 | 0.860 |
AR/Dunes | 0.289 | 0.266 | 0.251 | 0.237 |
DU/CL/GY/SC | 0.289 | 0.280 | 0.277 | 0.276 |
LV/AL | 0.257 | 0.272 | 0.281 | 0.289 |
AT | 0.215 | 0.214 | 0.214 | 0.215 |
CR | 0.0725 | 0.0825 | 0.0866 | 0.0898 |
Other Minor Types | 0.0495 | 0.0491 | 0.0487 | 0.0484 |
Total | 4.84 | 5.03 | 5.15 | 5.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Dong, M.; Wang, X.; Chen, D.; Zhang, Y.; Liu, X.; Yang, K.; Luo, H. Spatiotemporal Distribution Characteristics of Soil Organic Carbon and Its Influencing Factors in the Loess Plateau. Agronomy 2025, 15, 2260. https://doi.org/10.3390/agronomy15102260
Zhu Y, Dong M, Wang X, Chen D, Zhang Y, Liu X, Yang K, Luo H. Spatiotemporal Distribution Characteristics of Soil Organic Carbon and Its Influencing Factors in the Loess Plateau. Agronomy. 2025; 15(10):2260. https://doi.org/10.3390/agronomy15102260
Chicago/Turabian StyleZhu, Yan, Mei Dong, Xinwei Wang, Dongkai Chen, Yichao Zhang, Xin Liu, Ke Yang, and Han Luo. 2025. "Spatiotemporal Distribution Characteristics of Soil Organic Carbon and Its Influencing Factors in the Loess Plateau" Agronomy 15, no. 10: 2260. https://doi.org/10.3390/agronomy15102260
APA StyleZhu, Y., Dong, M., Wang, X., Chen, D., Zhang, Y., Liu, X., Yang, K., & Luo, H. (2025). Spatiotemporal Distribution Characteristics of Soil Organic Carbon and Its Influencing Factors in the Loess Plateau. Agronomy, 15(10), 2260. https://doi.org/10.3390/agronomy15102260