The Renaissance of Polyamines: New Roles in Crop Yield and Quality Properties in Freshly Fruit
Abstract
:1. Introduction
2. History of Polyamines Discovery
3. Polyamine Biosynthesis
4. Dietary Polyamines and Health
5. Effects of Preharvest Application of Polyamines on Fruit Crop Performance
5.1. Effects of Polyamines on Overcoming Stressful Environmental Factors
5.2. Flowering and Fruit Set
5.3. Fruit Growth
5.4. Fruit Yield
5.5. Fruit Ripening and Quality
5.6. Fruit Disorders
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michael, A.J. Polyamine function in archaea and bacteria. J. Bio. Chem. 2018, 293, 18693–18701. [Google Scholar] [CrossRef]
- Pegg, A.E. Introduction to the Thematic Minireview Series: Sixty plus years of polyamine research. J. Biol. Chem. 2018, 293, 18681–18692. [Google Scholar] [CrossRef]
- Jangra, A.; Chaturvedi, S.; Kumar, N.; Singh, H.; Sharma, V.; Thakur, M.; Tiwari, S.; Chhokar, V. Polyamines: The gleam of next-generation plant growth regulators for growth, development, stress mitigation, and hormonal crosstalk in plants—A systematic review. J. Plant Growth Regul. 2023, 42, 5167–5191. [Google Scholar] [CrossRef]
- Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2019, 9, 1945. [Google Scholar] [CrossRef]
- Blázquez, M.A. Polyamines: Their role in plant development and stress. Annu. Rev. Plant Biol. 2024, 75, 95–117. [Google Scholar] [CrossRef]
- Bachrach, U. The early history of polyamine research. Plant Physiol. Biochem. 2010, 48, 490–495. [Google Scholar] [CrossRef]
- Takahashi, T.; Tong, W. Regulation and diversity of polyamine biosynthesis in plants. In Polyamines, 2nd ed.; Kusano, T., Suzuki, H., Eds.; Springer: Tokyo, Japan, 2015; pp. 27–44. [Google Scholar] [CrossRef]
- Bajguz, A.; Piotrowska-Niczyporuk, A. Biosynthetic pathways of hormones in plants. Metabolites 2023, 13, 884. [Google Scholar] [CrossRef]
- Fortes, A.M.; Agudelo-Romero, P. Polyamine metabolism in climacteric and non-climacteric fruit ripening. In Polyamines. Methods in Molecular Biology, 2nd ed.; Alcázar, R., Tiburcio, A., Eds.; Humana Press: New York, NY, USA, 2018; Volume 1694, pp. 433–447. [Google Scholar] [CrossRef]
- Tiburcio, A.F.; Alcazar, R. Potential applications of polyamines in agriculture and plant biotechnology. In Polyamines. Methods and Protocols., 2nd ed.; Tiburcio, A.F., Alcazar, R., Eds.; Humana Press: New York, NY, USA, 2018; Volume 1694, pp. 489–508. [Google Scholar]
- Podlešáková, K.; Ugena, L.; Spíchal, L.; Doležal, K.; De Diego, N. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotech. 2019, 48, 53–65. [Google Scholar] [CrossRef]
- Wang, W.; Paschalidis, K.; Feng, J.C.; Song, J.; Liu, J.H. Polyamine catabolism in plants: A universal process with diverse functions. Front. Plant Sci. 2019, 10, 561. [Google Scholar] [CrossRef]
- Kasahara, N.; Teratani, T.; Yokota, S.; Sakuma, Y.; Sasanuma, H.; Fujimoto, Y.; Ijichi, T.; Urahashi, T.; Yoshitomi, H.; Kitayama, J.; et al. Dietary polyamines promote intestinal adaptation in an experimental model of short bowel syndrome. Sci Rep. 2024, 14, 4605. [Google Scholar] [CrossRef]
- Muñoz-Esparza, N.C.; Latorre-Moratalla, M.L.; Comas-Basté, O.; Toro-Funes, N.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Polyamines in food. Front. Nutr. 2019, 6, 108. [Google Scholar] [CrossRef] [PubMed]
- Bardócz, S. Polyamines in food and their consequences for food quality and human health. Trends Food Sci. Technol. 1995, 6, 341–346. [Google Scholar] [CrossRef]
- Ruiz-Cano, D.; Pérez-Llamas, F.; Zamora, S. Polyamines, implications for infant health. Arch. Argent. Pediatr. 2012, 110, 244–250. [Google Scholar] [CrossRef]
- Eisenberg, T.; Knauer, H.; Schauer, A.; Büttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009, 11, 1305–1314. [Google Scholar] [CrossRef]
- Casero, R.A.; Murray Stewart, T.; Pegg, A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer. 2018, 18, 681–695. [Google Scholar] [CrossRef]
- Hirano, R.; Shirasawa, H.; Kurihara, S. Health-promoting effects of dietary polyamines. Med. Sci. 2021, 9, 8. [Google Scholar] [CrossRef]
- Sánchez, M.; Suárez, L.; Banda, G.; Barreiro-Alonso, E.; Rodríguez-Uña, I.; Rubín, J.M.; Cantabrana, B. Age-associated polyamines in peripheral blood cells and plasma in 20 to 70 years of age subjects. Amino Acids 2023, 55, 789–798. [Google Scholar] [CrossRef]
- Holbert, C.E.; Casero, R.A.; Stewart, T.M. Polyamines: The pivotal amines in influencing the tumor microenvironment. Discov. Oncol. 2024, 15, 173. [Google Scholar] [CrossRef]
- Eliassen, K.A.; Ragnhild, R.; Risøen, U.; Rønning, H.F. Dietary polyamines. Food Chem. 2002, 78, 273–280. [Google Scholar] [CrossRef]
- Kalač, P.; Křıžek, M.; Pelikánová, T.; Langová, M.; Veškrna, O. Contents of polyamines in selected foods. Food Chem. 2005, 90, 561–564. [Google Scholar] [CrossRef]
- Moret, S.; Smela, D.; Populin, T.; Conte, L. A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem. 2005, 89, 355–361. [Google Scholar] [CrossRef]
- Cipolla, B.G.; Havouis, R.; Moulinoux, J.P. Polyamine contents in current foods: A basis for polyamine reduced diet and a study of its long-term observance and tolerance in prostate carcinoma patients. Amino Acids 2007, 33, 203–212. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food and Agriculture: Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Malik, N.A.A.; Kumar, I.S.; Nadarajah, K. Elicitor and receptor molecules: Orchestrators of plant defense and immunity. Int. J. Mol. Sci. 2020, 21, 963. [Google Scholar] [CrossRef] [PubMed]
- Godínez-Mendoza, P.L.; Rico-Chávez, A.K.; Ferrusquía-Jimenez, N.I.; Carbajal-Valenzuela, I.A.; Villagómez-Aranda, A.L.; Torres-Pacheco, I.; Guevara-González, R.G. Science of the total environment plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. Sci. Total Environ. 2023, 894, 164883. [Google Scholar] [CrossRef] [PubMed]
- Melo-Sabogal, D.V.; Contreras-Medina, L.M. Elicitors and biostimulants to mitigate water stress in vegetables. Horticulturae 2024, 10, 837. [Google Scholar] [CrossRef]
- Kaur-Shawney, R.; Tiburcio, A.F.; Altabella, T.; Galston, A.W. Polyamines in plants: An overview. J. Cell Mol. Biol. 2003, 2, 1–12. [Google Scholar]
- Sequera-Mutiozabal, M.; Antoniou, C.; Tiburcio, A.F.; Alcázar, R.; Fotopoulos, V. Polyamines: Emerging hubs promoting drought and salt stress tolerance in plants. Curr. Mol. Biol. Rep. 2017, 3, 28–36. [Google Scholar] [CrossRef]
- Amiri, H.; Banakar, M.H.; Hassan Gavyar, P.H. Polyamines: New plant growth regulators promoting salt stress tolerance in plants. J. Plant Growth Regul. 2024, 43, 4923–4940. [Google Scholar] [CrossRef]
- Roy, T.; Pal, N.; Das, N. Regulation of the polyamine pool in plants: Metabolic implications and stress mitigation, with emphasis on microbial influence. Physiol. Mol. Plant Pathol. 2024, 132, 102317. [Google Scholar] [CrossRef]
- Yang, H.; Fang, Y.; Liang, Z.; Qin, T.; Liu, J.H.; Liu, T. Polyamines: Pleiotropic molecules regulating plant development and enhancing crop yield and quality. Plant Biotechnol. J. 2024, 22, 3194–3201. [Google Scholar] [CrossRef]
- Asija, S.; Seth, T.; Umar, S.; Gupta, R. Polyamines and their crosstalk with phytohormones in the regulation of plant defense responses. J. Plant Growth Regul. 2023, 42, 5224–5246. [Google Scholar] [CrossRef]
- Liu, X.D.; Zeng, Y.Y.; Zhang, X.Y.; Tian, X.Q.; Hasan, M.M.; Yao, G.Q.; Fang, X.Z. Polyamines inhibit abscisic acid-induced stomatal closure by scavenging hydrogen peroxide. Physiol. Plant. 2023, 175, e13903. [Google Scholar] [CrossRef] [PubMed]
- Navakoudis, E.; Kotzabasis, K. Polyamines: A bioenergetic smart switch for plant protection and development. J. Plant Physiol. 2022, 270, 153618. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Pareek, S.; Sagar, N.A.; Valero, D.; Serrano, M. Modulatory effects of exogenously applied polyamines on postharvest physiology, antioxidant system and shelf life of fruits: A review. Int. J. Mol. Sci. 2017, 18, 1789. [Google Scholar] [CrossRef]
- Fortes, A.M.; Agudelo-Romero, P.; Pimentel, D.; Alkan, N. Transcriptional modulation of polyamine metabolism in fruit species under abiotic and biotic stress. Front. Plant Sci. 2019, 10, 816. [Google Scholar] [CrossRef]
- Kaur, Y.; Das, N. Roles of polyamines in growth and development of the solanaceous crops under normal and stressful conditions. J. Plant Growth Regul. 2023, 42, 4989–5010. [Google Scholar] [CrossRef]
- Zahid, G.; Iftikhar, S.; Shimira, F.; Ahmad, H.M.; Aka Kaçar, Y. An overview and recent progress of plant growth regulators (PGRs) in the mitigation of abiotic stresses in fruits: A review. Sci. Hortic. 2023, 309, 111621. [Google Scholar] [CrossRef]
- Chakraborty, A.; Chaudhury, R.; Dutta, S.; Basak, M.; Dey, S.; Schäffner, A.R.; Das, M. Role of metabolites in flower development and discovery of compounds controlling flowering time. Plant Physiol. Biochem. 2022, 190, 109–118. [Google Scholar] [CrossRef]
- Agustí, M. Preharvest factors affecting postharvest quality of citrus fruit. In Postharvest Diseases and Disorders Control of Citrus Fruit, 2nd ed.; Schirra, M., Ed.; Research Singpost: Trivandrum, India, 1999; pp. 1–34. [Google Scholar]
- Alburquerque, N.; Egea, J.; Burgos, L.; Martínez-Romero, D.; Valero, D.; Serrano, M. The influence of polyamines on apricot ovary development and fruit set. Ann. Appl. Biol. 2006, 149, 27–33. [Google Scholar] [CrossRef]
- De Dios, P.; Matilla, A.J.; Gallardo, M. Flower fertilization and fruit development prompt changes in free polyamines and ethylene in damson plum (Prunus insititia L.). J. Plant Physiol. 2006, 163, 86–97. [Google Scholar] [CrossRef]
- Gupta, S.; Novák, O.; Kulkarni, M.G.; Doležalova, I.; Van Staden, J.; Doležal, K. Unleashing the potential of biostimulants in stimulating pollen germination and tube growth. J. Plant Growth Regul. 2024, 43, 3392–3423. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, X.; Yan, J.; Fan, L.; Rong, C.; Mo, C.; Zhang, M. Effect of exogenous spermidine on floral induction, endogenous polyamine and hormone production, and expression of related genes in ‘Fuji’ apple (Malus domestica Borkh.). Sci. Rep. 2019, 9, 12777. [Google Scholar] [CrossRef] [PubMed]
- Rezaeian, Z.; Haghighi, M.; Kappel, N. The effect of spermidine and methionine application thorough two biosynthetic paths on flowering of early and late flowering genotypes of eggplant (Solanum melongena L.). Sci. Hortic. 2022, 306, 111459. [Google Scholar] [CrossRef]
- Karabiyik, Ş. Putrescine affects fruit yield and quality by promoting effective pollination period in Citrus limon. Appl. Fruit Sci. 2024, 66, 559–567. [Google Scholar] [CrossRef]
- Valero, D.; Serrano, M. Postharvest Biology and Technology for Preserving Fruit Quality, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2010; p. 287. [Google Scholar] [CrossRef]
- Bons, H.K.; Kaur, M. Role of plant growth regulators in improving fruit set, quality and yield of fruit crops: A review. J. Hortic. Sci. Biotechnol. 2019, 95, 137–146. [Google Scholar] [CrossRef]
- Talaat, N.B.; Nesiem, M.R.A.; Gadalla, E.G.; Ali, S.F. Putrescine, in combination with gibberellic acid and salicylic acid, improves date palm fruit quality via triggering protein and carbohydrate accumulation and enhancing mineral, amino acid, sugar, and phytohormone acquisition. J. Plant Growth Regul. 2023, 1–17. [Google Scholar] [CrossRef]
- Hadjipieri, M.; Georgiadou, E.C.; Drogoudi, P.; Fotopoulos, V.; Manganaris, G.A. The efficacy of acetylsalicylic acid, spermidine and calcium preharvest foliar spray applications on yield efficiency, incidence of physiological disorders and shelf-life performance of loquat fruit. Sci. Hortic. 2021, 289, 110439. [Google Scholar] [CrossRef]
- Sayyad-Amin, P.; Davarynejad, G.H.; Abedy, B. The effect of polyamines and SICS on the compatibility, fertility and yield indices of apple cv. Golden Delicious. Adv. Hortic. Sci. 2018, 32, 213–219. [Google Scholar] [CrossRef]
- Tavakoli, K.; Rahemi, M. Effect of polyamines, 2, 4-D, isopropyl ester and naphthalene acetamide on improving fruit yield and quality of date (Phoenix dactylifera L.). Int. J. Hortic. Sci. Technol. 2014, 1, 163–169. [Google Scholar] [CrossRef]
- Ali, E.A.; Sarrwy, S.M.A.; Hassan, H.S.A. Improving Canino apricot trees productivity by foliar spraying with polyamines. J. Appl. Sci. Res. 2010, 6, 1359–1365. [Google Scholar]
- Ali, I.; Abbasi, N.A.; Hafiz, I.A. Physiological response and quality attributes of peach fruit cv. Flordaking as affected by different treatments of calcium chloride, putrescine and salicylic acid. Pak. J. Agric. 2014, 51, 33–39. [Google Scholar]
- Almutairi, K.F.; Górnik, K.; Ayoub, A.; Abada, H.S.; Mosa, W.F.A. Performance of mango trees under the spraying of some biostimulants. Sustainability 2023, 15, 15543. [Google Scholar] [CrossRef]
- Ghahremani, Z.; Alizadeh, B.; Barzegar, T.; Nikbakth, J.; Ranjbar, M.E.; Nezamdoost, D. The mechanism of enhancing drought tolerance threshold of pepper plant treated with putrescine and salicylic acid. Plant Stress 2023, 9, 100199. [Google Scholar] [CrossRef]
- Asghari, M.; Ahmadi, F.; Hajitagilou, R. Mitigating the adverse effects of deficit fertigation on strawberry yield, quality and phytochemical compounds by salicylic acid and putrescine treatments. J. Berry Res. 2021, 11, 119–132. [Google Scholar] [CrossRef]
- Hagagg, L.F.; Abd-Alhamid, N.; Hassan, H.S.; Hassan, A.M.; Geanidy, E.A. Influence of foliar application with putrescine, salicylic, and ascorbic acid on the productivity and physical and chemical fruit properties of picual olive trees. Bull. Nat. Res. Cent. 2020, 44, 87. [Google Scholar] [CrossRef]
- Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small amines with large effects on plant abiotic stress tolerance. Cells 2020, 9, 2373. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Islam, M.S.; Hossain, A.; Iqbal, M.A.; Mubeen, M.; Waleed, M.; Reginato, M.; Battaglia, M.; Ahmed, S.; Rehman, A.; et al. Phytohormones as growth regulators during abiotic stress tolerance in plants. Front. Agron. 2022, 4, 765068. [Google Scholar] [CrossRef]
- Liu, M.; Pirrello, J.; Chervin, C.; Roustan, J.P.; Bouzayen, M. Ethylene control of fruit ripening: Revisiting the complex network of transcriptional regulation. Plant Physiol. 2015, 169, 2380–2390. [Google Scholar] [CrossRef]
- Alonso-Salinas, R.; López-Miranda, S.; Pérez-López, A.J.; Acosta-Motos, J.R. Strategies to delay ethylene-mediated ripening in climacteric fruits: Implications for shelflife extension and postharvest quality. Horticulturae 2024, 10, 840. [Google Scholar] [CrossRef]
- Perotti, M.F.; Posé, D.; Martin-Pizarro, C. Non-climacteric fruit development and ripening regulation. The Phytohormones Show. J. Exp. Bot. 2023, 74, 6237–6253. [Google Scholar] [CrossRef]
- Gao, F.; Li, J.; Li, W.; Shi, S.; Song, S.; Shen, Y.; Guo, J. Abscisic acid and polyamines coordinately regulate strawberry drought responses. Plant Stress 2024, 11, 100387. [Google Scholar] [CrossRef]
- Bianchetti, R.; Ali, A.; Gururani, M. Abscisic acid and ethylene coordinating fruit ripening under abiotic stress. Plant Sci. 2024, 349, 112243. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Singh, R.; Kaur, H.; Kumar, A.; Vashishth, A.; Shadwan, M.; Sing Tuli, H. Plant growth regulator-mediated response under abiotic stress: A review. J. App. Biol. Biotechnol. 2024, 12, 13–21. [Google Scholar] [CrossRef]
- Kou, X.; Feng, Y.; Yuan, S.; Zhao, X.; Wu, C.; Wang, C.; Xue, Z. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: A review. Plant Mol. Biol. 2021, 107, 477–497. [Google Scholar] [CrossRef]
- Guo, J.; Wang, S.; Yu, X.; Dong, R.; Li, Y.; Mei, X.; Shen, Y. Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. Plant Physiol. 2018, 177, 339–351. [Google Scholar] [CrossRef]
- Killiny, N.; Nehela, Y. Citrus polyamines: Structure, biosynthesis, and physiological functions. Plants 2020, 9, 426. [Google Scholar] [CrossRef]
- Serrano, M.; Zapata, P.J.; Martínez-Romero, D.; Díaz-Mula, H.M.; Valero, D. Polyamines as an ecofriendly postharvest tool to maintain fruit quality. In Eco-Friendly Technology for Postharvest Produce Quality; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 219–242. [Google Scholar] [CrossRef]
- Serrano, M.; Valero, D. Application of polyamines to maintain functional properties in stored fruits. In Polyamines. Methods in Molecular Biology, 2nd ed.; Alcázar, R., Tiburcio, A., Eds.; Humana Press: New York, NY, USA, 2018; pp. 449–458. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Garrido-Auñón, F.; Puente-Moreno, J.; Díaz-Mula, M.H.; Serrano, M.; Valero, D. The effects of preharvest treatments on the postharvest storage quality of different horticultural products. In Sustainable Postharvest Technologies for Fruits and Vegetables, 2nd ed.; Ali, S., Mir, S.A., Dar, B.N., Ejaz, S., Eds.; CRC Press: Oxford, UK, 2024; Volume 29, pp. 442–456. [Google Scholar]
- Sayyad-Amin, P.; Davarynejad, G.; Abedi, B.; Ameri, A. The effects of putrescine and salicylic acid on postharvest traits of pear (Pyrus communis L. ‘Williams’). Erwerbs-Obstbau 2022, 64, 753–757. [Google Scholar] [CrossRef]
- Piñero, M.C.; Otálora, G.; Collado, J.; López-Marín, J.; Del Amor, F.M. Foliar application of putrescine before a short-term heat stress improves the quality of melon fruits (Cucumis melo L.). J. Sci. Food Agric. 2021, 101, 1428–1435. [Google Scholar] [CrossRef]
- Rao, G.S.K.; Krishna, V.S.; Srinivasulu, B.; Sivaram, G.T.; Padmaja, V.; Arunodhayam, K. Effect of foliar sprays of different chemicals and plant growth regulators on quality attributes of papaya (Carica papaya L.) cv. Arka Surya. J. Pharm. Innov. 2023, 12, 4201–4208. [Google Scholar]
- Mirdehghan, S.H.; Rahimi, S. Pre-harvest application of polyamines enhances antioxidants and table grape (Vitis vinifera L.) quality during postharvest period. Food Chem. 2016, 196, 1040–1047. [Google Scholar] [CrossRef]
- Singh, V.; Jawandha, S.K.; Gill, P.P.S.; Singh, D. Preharvest putrescine application extends the shelf life and maintains the pear fruit quality. Int. J. Fruit Sci. 2022, 22, 514–524. [Google Scholar] [CrossRef]
- Hussain, Z.; Singh, Z. Involvement of polyamines in creasing of sweet orange Citrus sinensis (L.) Osbeck fruit. Sci. Hortic. 2015, 190, 203–210. [Google Scholar] [CrossRef]
- Ruiz-Aracil, M.C.; Valverde, J.M.; Beltrá, A.; Carrión-Antolí, A.; Lorente-Mento, J.M.; Nicolás-Almansa, M.; Guillén, F. Putrescine increases frost tolerance and effectively mitigates sweet cherry (Prunus avium L.) cracking: A study of four different growing cycles. Agronomy 2024, 14, 23. [Google Scholar] [CrossRef]
Food Category | PUT | SPD | SPM | Reference |
---|---|---|---|---|
Fruits | nd−1554 | 6.9–98 | nd−25 | [22] |
Vegetables | 5.7–794 | 6.9–398 | nd−52 | [22] |
Legumes | nd−525 | 1.0–1425 | nd−341 | [23] |
Nuts and oilseeds | 34–488 | 41–383 | 63–165 | [24] |
Fresh Meat | 1.1−47 | 1−92 | 1−342 | [14] |
Cheese | 2.3–704 | 2.8–2437 | nd−722 | [25] |
Dates | Control | 0.01 mM PUT | 0.1 mM PUT | 0.01 mM SPD | 1 mM SPD |
---|---|---|---|---|---|
28 May | 50.06 ± 2.44 | 32.58 ± 3.30 | 40.31 ± 1.25 | 38.28 ± 2.24 | 31.50 ± 2.11 |
28 June | 49.05 ± 2.46 | 32.48 ± 3.03 | 38.35 ± 2.45 | 39.64 ± 1.43 | 30.99 ± 2.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puente-Moreno, J.; Garrido-Auñón, F.; García-Pastor, M.E.; Valero, D.; Serrano, M. The Renaissance of Polyamines: New Roles in Crop Yield and Quality Properties in Freshly Fruit. Agronomy 2025, 15, 201. https://doi.org/10.3390/agronomy15010201
Puente-Moreno J, Garrido-Auñón F, García-Pastor ME, Valero D, Serrano M. The Renaissance of Polyamines: New Roles in Crop Yield and Quality Properties in Freshly Fruit. Agronomy. 2025; 15(1):201. https://doi.org/10.3390/agronomy15010201
Chicago/Turabian StylePuente-Moreno, Jenifer, Fernando Garrido-Auñón, María E. García-Pastor, Daniel Valero, and María Serrano. 2025. "The Renaissance of Polyamines: New Roles in Crop Yield and Quality Properties in Freshly Fruit" Agronomy 15, no. 1: 201. https://doi.org/10.3390/agronomy15010201
APA StylePuente-Moreno, J., Garrido-Auñón, F., García-Pastor, M. E., Valero, D., & Serrano, M. (2025). The Renaissance of Polyamines: New Roles in Crop Yield and Quality Properties in Freshly Fruit. Agronomy, 15(1), 201. https://doi.org/10.3390/agronomy15010201