Physiological Response and Comprehensive Evaluation of Cold-Resistant Peach Varieties to Low-Temperature Stress
Abstract
:1. Introduction
2. Material and Methods
2.1. Overview of the Experimental Site
2.2. Plant Materials
2.3. Test Methods
2.4. Statistical Analysis
3. Results
3.1. REC and LT50 Under Various Low-Temperature Induction Conditions
3.2. Changes in Lipid Membrane Peroxides (H2O2, MDA) Content
3.3. Changes of SS, SP, and Contents of Proline(Pro) Under Different Low-Temperature Inductions
3.4. Correlation Analysis Between Physiological and Biochemical Indices and LT50
3.5. Evaluation and Analysis of Cold Resistance in Peach Resources (Varieties) Using the Mean Membership Function Method
3.6. Observation of Adaptability of Different Peach Varieties
3.7. Correlation Analysis of Freezing Damage Index, LT50, and Membership Function Across Various Peach Varieties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toumi, I.; Zarrouk, O.; Ghrab, M.; Nagaz, K. Improving peach fruit quality traits using deficit irrigation strategies in southern Tunisia arid area. Plants 2022, 11, 1656. [Google Scholar] [CrossRef]
- Jia, W. Temporal and spatial variations in extreme temperatures in the Qilian Mountains-Hexi Corridor over the period 1960–2013. J. Mt. Sci. 2016, 13, 2224–2236. [Google Scholar] [CrossRef]
- Wang, L.R. Historical review and prospect of peach variety improvement in China. J. Fruit Sci. 2021, 38, 2178–2195. [Google Scholar]
- Niu, R.; Cheng, Y.; Wang, F.; Zhang, Y.; Wang, C. Transcriptome Analysis Provides Insights into the Safe Overwintering of Local Peach Flower Buds. Curr. Issues Mol. Biol. 2024, 46, 13903–13921. [Google Scholar] [CrossRef]
- Li, C.; Junttila, O.; Palva, E.T. Environmental regulation and physiological basis of freezing tolerance in woody plants. Acta Physiol. Plant. 2004, 26, 213–222. [Google Scholar] [CrossRef]
- Yang, Y.J.; Hu, H.; Huang, W. The light dependence of mesophyll conductance and relative limitations on photosynthesis in evergreen Sclerophyllous Rhododendron species. Plants 2020, 9, 1536. [Google Scholar] [CrossRef]
- Yan, L.; Liu, S.; Li, R.; Li, Z.; Piao, J.; Zhou, R. Calcium enhanced the resistance against Phoma arachidicola by improving cell membrane stability and regulating reactive oxygen species metabolism in peanut. BMC Plant Biol. 2024, 24, 501. [Google Scholar] [CrossRef]
- Li, R.X.; Jin, X.L.; Hu, X.J.; Chai, Y.X.; Cai, M.Y.; Luo, F.; Zhang, F.J. Analysis and comprehensive evaluation on cold resistance of six varieties of Michelia. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2017, 28, 1464–1472. [Google Scholar]
- Recalde, L.; Vázquez, A.; Groppa, M.D.; Benavides, M.P. Reactive oxygen species and nitric oxide are involved in polyamine-induced growth inhibition in wheat plants. Protoplasma 2018, 255, 1295–1307. [Google Scholar] [CrossRef]
- Maruta, T.; Sawa, Y.; Shigeoka, S.; Ishikawa, T. Diversity and evolution of ascorbate peroxidase functions in chloroplasts: More than just a classical antioxidant enzyme? Plant Cell Physiol. 2016, 57, 1377–1386. [Google Scholar] [CrossRef]
- Bolton, J.L.; Dunlap, T. Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chem. Res. Toxicol. 2017, 30, 13–37. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, H.; Wang, L.; Zhao, Q.; Wang, D.; Zhang, T. Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves. Plant Signal. Behav. 2022, 17, 2013638. [Google Scholar] [CrossRef]
- Kour, J.; Bhardwaj, T.; Chouhan, R.; Singh, A.D.; Gandhi, S.G.; Bhardwaj, R.; Alsahli, A.A.; Ahmad, P. Phytomelatonin maintained chromium toxicity induced oxidative burst in Brassica juncea L. through improving antioxidant system and gene expression. Environ. Pollut. 2024, 356, 124256. [Google Scholar] [CrossRef]
- Sofy, M.; Mohamed, H.; Dawood, M.; Abu-Elsaoud, A.; Soliman, M. Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants. Arch. Agron. Soil Sci. 2022, 68, 2005–2026. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, L.; Fu, X.; Mei, X.; Cheng, S.; Liao, Y.; Deng, R.; Xu, X.; Jiang, Y.; Duan, X.; et al. The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato. Sci. Rep. 2016, 6, 38742. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, J.; Ibrahim, M.; Jiao, X.; Song, X.; Bai, P.; Li, J. Effects of the interaction between vapor-pressure deficit and potassium on the photosynthesis system of tomato seedlings under low temperature. Sci. Hortic. 2021, 283, 110089. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, J.; Li, J.; Lu, G.Y.; Li, C.S.; Fu, G.P.; Zhang, X.K.; Ma, H.Q.; Liu, Q.Y.; Zou, X.L.; et al. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J. Integr. Agric. 2018, 17, 328–335. [Google Scholar]
- Li, Q.; Guan, C.; Zhao, Y.; Duan, X.; Yang, Z.; Zhu, J. Salicylic acid alleviates Zn-induced inhibition of growth via enhancing antioxidant system and glutathione metabolism in alfalfa. Ecotoxicol. Environ. Saf. 2023, 265, 115500. [Google Scholar] [CrossRef]
- Zhang, W.; Kumar, M.; Zhou, Y.; Yang, J.; Mao, Y. Analytically derived fuzzy membership functions. Clust. Comput. 2019, 22 (Suppl. S5), 11849–11876. [Google Scholar] [CrossRef]
- Dunne, J.C.; Tuong, T.D.; Livingston, D.P.; Reynolds, W.C.; Milla-Lewis, S.R. Field and laboratory evaluation of bermudagrass germplasm for cold hardiness and freezing tolerance. Crop Sci. 2019, 59, 392–399. [Google Scholar] [CrossRef]
- Cui, L.; Wang, X.S.; Tan, R.; Zhang, Y.B.; Chen, L. Optimization and evaluation of identification method for branch cold resistance of apricot germplasm under natural overwintering conditions. Agric. Technol. 2023, 43, 72–75. [Google Scholar]
- Gao, D.T.; Bai, R.; Lu, X.Y.; Wei, Z.F.; Guo, J.N. Study on the cold resistance of five grapevine rootstocks introduced to Shihezi. J. Fruit Sci. 2015, 32, 232–237. [Google Scholar]
- Yang, H.F. Cultivation technology of yellow bud green onion in Jiayuguan City. Gansu Agric. Sci. Technol. 2014, 01, 61–62. [Google Scholar]
- Xu, H.; Wang, X.D.; Zhou, Y.N.; Du, Z.J.; Zhuo, H. Study on the cold resistance of grape rootstocks and wine grape cultivars. Sino-Overseas Grapevine Wine 2003, 6, 20–23. [Google Scholar]
- Draper, H.H.; Squires, E.J.; Mahmoodi, H.; Wu, J.; Agarwal, S.; Hadley, M. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic. Biol. Med. 1993, 15, 353–363. [Google Scholar] [CrossRef]
- John, A.; Barnett, G.; Miller, T.B. The determination of soluble carbohydrate in dried samples of grass silage by the anthrone method. J. Sci. Food Agric. 1950, 1, 336–339. [Google Scholar] [CrossRef]
- Zhang, Z.L. Experimental Guidance of Plant Physiology; Higher Education Press: Beijing, China, 2003. [Google Scholar]
- Schweet, R.S. The quantitative determination of proline and pipecolic acid with ninhydrin. J. Biol. Chem. 1954, 208, 603–613. [Google Scholar] [CrossRef]
- Mehrotra, S.; Verma, S.; Kumar, S.; Kumari, S.; Mishra, B.N. Transcriptional regulation and signalling of cold stress response in plants: An overview of current understanding. Environ. Exp. Bot. 2020, 180, 104243. [Google Scholar] [CrossRef]
- Dhaliwal, L.K.; Angeles-Shim, R.B. Cell membrane features as potential breeding targets to improve cold germination ability of seeds. Plants 2022, 11, 3400. [Google Scholar] [CrossRef]
- Passot, S.; Bouix, M.; Gautier, J.; Lieben, P.; Cenard, S.; Ghorbal, S.; Fonseca, F. 50. Relevance of cell biophysical behaviour and membrane fluidity for explaining freezing resistance of lactic acid bacteria. Cryobiology 2012, 65, 355. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Hill, R.S. Increases in water potential gradient reduce xylem conductivity in whole plants. Evidence from a low-pressure conductivity method. Plant Physiol. 2000, 123, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Warmund, M.R. Ice Distribution inEarliglow’Strawberry Crowns and Tissue Recovery following Extracellular Freezing. J. Am. Soc. Hortic. Sci. 1993, 118, 644–648. [Google Scholar] [CrossRef]
- Lindén, L.; Palonen, P.; Lindén, M. Relating freeze-induced electrolyte leakage measurements to lethal temperature in red raspberry. J. Am. Soc. Hortic. Sci. 2000, 125, 429–435. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Niu, L.; Savigny, D.C. Use of electrical conductivity to assess irrigation impacts on grapevine winter hardiness. Int. J. Fruit Sci. 2014, 14, 267–283. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Kang, Y.; Wang, Y.; Liu, R.; Dong, S. Physiological Response to Low-Temperature Stress and Cold Resistance Evaluation of Ziziphus jujuba var. spinosa Clones from Different Provenances. Forests 2024, 15, 1130. [Google Scholar] [CrossRef]
- Liu, T.M.; Zhang, Z.W.; Li, H.; Ren, Z.B.; Zhou, C.T. Study on cold tolerance of peach varieties. Fruit Sci. 1998, 15, 107–111. [Google Scholar]
- Valizadeh-Kamran, R.; Toorchi, M.; Mogadam, M.; Mohammadi, H.; Pessarakli, M. Effects of freeze and cold stress on certain physiological and biochemical traits in sensitive and tolerant barley (Hordeum vulgare) genotypes. J. Plant Nutr. 2018, 41, 102–111. [Google Scholar] [CrossRef]
- Nazir, F.; Fariduddin, Q.; Khan, T.A. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 2020, 252, 126486. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, S.W.; Pan, Y.; Li, Y.L.; Li, S.D. Identification and comprehensive evaluation of cold resistance of wine grape germplasms in Northern Tianshan Region, Xinjiang. J. Fruit Sci. 2019, 41, 1933–1946. [Google Scholar]
- Chen, L.; Liu, L.; Lu, B.; Ma, T.; Jiang, D.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Bai, Z.; et al. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS ONE 2020, 15, e0228241. [Google Scholar] [CrossRef]
- Kwon, J.H.; Nam, E.Y.; Yun, S.K.; Kim, S.J.; Yu, D.J.; Lee, H.J. Comparative carbohydrate metabolism in the shoots of a cold-hardy and a cold-sensitive peach (Prunus persica) cultivar during cold acclimation and deacclimation. Hortic. Environ. Biotechnol. 2022, 63, 39–53. [Google Scholar] [CrossRef]
- Han, X.; Yao, F.; Xue, T.; Wang, Z.L.; Wang, Y.; Cao, X.; Hui, M.; Wu, D.; Li, Y.; Wang, H.; et al. Sprayed biodegradable liquid film improved the freezing tolerance of cv. Cabernet Sauvignon by up-regulating soluble protein and carbohydrate levels and alleviating oxidative damage. Front. Plant Sci. 2022, 13, 1021483. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Zuo, Y.; Gu, W.; Wei, S.; Li, J. Exogenous Proline Optimizes Osmotic Adjustment Substances and Active Oxygen Metabolism of Maize Embryo under Low-Temperature Stress and Metabolomic Analysis. Processes 2022, 10, 1388. [Google Scholar] [CrossRef]
- Raza, A.; Charagh, S.; Abbas, S.; Hassan, M.U.; Saeed, F.S.; Sharif, R.; Anand, A.; Corpas, F.; Jin, W.; Varshney, R.K. Assessment of proline function in higher plants under extreme temperatures. Plant Biol. 2023, 25, 379–395. [Google Scholar] [CrossRef]
- Jankovska-Bortkevič, E.; Gavelienė, V.; Koryznienė, D.; Jankauskienė, J.; Mockevičiūtė, R.; Sigita, J. Response of winter oilseed rape to imitated temperature fluctuations in autumn-winter period. Environ. Exp. Bot. 2019, 166, 103801. [Google Scholar] [CrossRef]
- Yu, Z.F. Study on Response Mechanism of ‘Late Abundance’ Almond Under Low Temperature Stress Based on Combined Transcriptional Metabolism. Ph.D. thesis, Xinjiang Agricultural University, Urumqi, China, 2023. [Google Scholar]
- Farooq, M.; Hussain, M.; Nawaz, A.; Lee, D.; Alghamdi, S.S.; Siddique, K.H. Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiol. Biochem. 2017, 111, 274–283. [Google Scholar] [CrossRef]
- Ma, X.Y.; Hu, H.Y.; Li, J.Y.; Hou, C.Y.; Li, D.M. Comparative study on cold resistance and drought tolerance of different grape rootstocks. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2024, 44, 41–51. [Google Scholar]
- Luo, Y.X.; Guo, R.R.; Li, X.X.; Liu, R.C.; Wang, Y.J. Evaluation of cold resistance of 7 table grape varieties based on membership function method. J. Guizhou Agric. Sci. 2018, 46, 38–44. [Google Scholar]
- Niu, R.; Zhao, X.; Wang, C.; Wang, F. Physiochemical responses and ecological adaptations of peach to low-temperature stress: Assessing the cold resistance of local peach varieties from Gansu, China. Plants 2023, 12, 4183. [Google Scholar] [CrossRef]
- Ma, Y.; Niu, Z.; Sun, D.; Wang, X. Spatiotemporal evolution of dry and wet and quantitative analysis of the influence of meteorological factors based on MI and the FAO P–M model. Sci. Rep. 2024, 14, 21343. [Google Scholar] [CrossRef]
- Sellin, A. The dependence of water potential in shoots of Picea abies on air and soil water status. In Annales Geophysicae; Springer: Göttingen, Germany, 1998; Volume 16, pp. 470–476. [Google Scholar]
- Amuti, A. Study on Dry and Cold Resistance of Fruiting Branches of Early Fruiting Walnut in Wen 185 and Xin Xin2. Master’s Thesis, Tarim University, Alar, China, 2017. [Google Scholar]
- Wang, Z.Y.; Zhang, L.S.; Chang, R.F.; Liu, G.J.; Han, J.C.; Chen, H. Study on the relationship between tissue structure and cold resistance of peach branches. J. Hebei Agric. Sci. 2014, 18, 29–33. [Google Scholar]
- Ma, X.H.; Tang, X.P.; Dong, Z.G.; Zhao, Q.F.; Li, X.M.; Wang, M.; Ren, R. Comparison of cold resistance for 6 grapewine cultivars. J. Shanxi Agric. Univ. Nat. Sci. Ed. 2013, 33, 1–5. [Google Scholar]
Variety | Logistics Equation | LT50/°C | R2 | Sequence of Cold Resistance |
---|---|---|---|---|
Ganlu Shumi | Y = 100/(1 + 4.04 e−0.1253x) | −32.24 | 0.92 | 1 |
Ziyan Ruiyang | Y = 100/(1 + 5.65 e−0.1904x) | −29.67 | 0.84 | 2 |
Ganlu Qiumi | Y = 100/(1 + 4.90 e−0.1652x) | −29.58 | 0.87 | 3 |
Ziyan Ruiqiu | Y = 100/(1 + 4.79 e−0.1669x) | −28.73 | 0.96 | 4 |
Ganlu Shuangmi | Y = 100/(1 + 3.68 e−0.1293x) | −28.50 | 0.76 | 5 |
Qingpi Liguang | Y = 100/(1 + 3.95 e−0.0487x) | −28.19 | 0.88 | 6 |
Ziyan Ruiyu | Y = 100/(1 + 5.37 e−0.1922x) | −27.24 | 0.96 | 7 |
Indexes | X1 | X2 | X3 | X4 | X5 | X6 | LT50 |
---|---|---|---|---|---|---|---|
X1 | 1 | ||||||
X2 | 0.890 ** | 1 | |||||
X3 | −0.889 ** | 0.835 ** | 1 | ||||
X4 | −0.778 ** | −0.708 * | −0.794 ** | 1 | |||
X5 | −0.756 ** | 0.903 ** | 0.887 ** | −0.933 ** | 1 | ||
X6 | 0.835 ** | 0.520 * | 0.587 * | −0.840 ** | 0.581 * | 1 | |
LT50 | 0.824 ** | −0.874 ** | −0.733 ** | 0.752 ** | −0.878 ** | 0.833 ** | 1 |
Variety | REC | MDA | H2O2 | Pro | SP | SS | Subordinative Level | Order of Cold Resistance |
---|---|---|---|---|---|---|---|---|
Ganlu Qiumi | 0.77 | 0.90 | 0.81 | 1.00 | 1.00 | 1.00 | 0.91 | 1 |
Ziyan Ruiyang | 1.00 | 0.40 | 0.74 | 1.23 | 0.77 | 0.43 | 0.76 | 2 |
Ganlu Sunmi | 0.35 | 1.00 | 1.00 | 0.30 | 0.51 | 0.57 | 0.62 | 3 |
Ziyan Ruiqiu | 0.73 | 0.00 | 0.44 | 2.12 | 0.01 | 0.41 | 0.62 | 4 |
Qingpi Liguang | 0.52 | 0.27 | 0.20 | 0.64 | 0.28 | 0.18 | 0.35 | 5 |
Ganlu Shuangmi | 0.00 | 0.50 | 0.07 | 0.00 | 0.78 | 0.53 | 0.31 | 6 |
Ziyan Ruiyu | 0.22 | 0.51 | 0.00 | 0.53 | 0.00 | 0.00 | 0.21 | 7 |
Variety Name | Strip Index (%) | Survival Rate (%) |
---|---|---|
Ganlu Sunmi | 18.52 ± 1.38 d | 100 a |
Ganlu Qiumi | 20.16 ± 1.53 cd | 90 b |
Ganlu Shuangmi | 38.48 ± 3.21 b | 76 c |
Ziyan Ruiyang | 17.74 ± 0.85 d | 100 a |
Ziyan Ruiqiu | 22.33 ± 1.11 c | 100 a |
Ziyan Ruiyu | 81.35 ± 5.24 a | 40 d |
Qingpi Liguang | 20.87 ± 0.54 c | 100 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, R.; Huang, J.; Zhang, Y.; Wang, F.; Wang, C. Physiological Response and Comprehensive Evaluation of Cold-Resistant Peach Varieties to Low-Temperature Stress. Agronomy 2025, 15, 182. https://doi.org/10.3390/agronomy15010182
Niu R, Huang J, Zhang Y, Wang F, Wang C. Physiological Response and Comprehensive Evaluation of Cold-Resistant Peach Varieties to Low-Temperature Stress. Agronomy. 2025; 15(1):182. https://doi.org/10.3390/agronomy15010182
Chicago/Turabian StyleNiu, Ruxuan, Juanjuan Huang, Yiwen Zhang, Falin Wang, and Chenbing Wang. 2025. "Physiological Response and Comprehensive Evaluation of Cold-Resistant Peach Varieties to Low-Temperature Stress" Agronomy 15, no. 1: 182. https://doi.org/10.3390/agronomy15010182
APA StyleNiu, R., Huang, J., Zhang, Y., Wang, F., & Wang, C. (2025). Physiological Response and Comprehensive Evaluation of Cold-Resistant Peach Varieties to Low-Temperature Stress. Agronomy, 15(1), 182. https://doi.org/10.3390/agronomy15010182