Future Impact of Climate Change on Durum Wheat Growth and Productivity in Northern Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Presentation
2.2. Conceptual Flow Diagram
2.3. Climate Models
2.4. Crop Growth Models
SIMPLE Model, AquaCrop Model
3. Results
3.1. Performance Assessment of SIMPLE Crop and AquaCrop Model
3.2. Yield
3.3. Biomass
3.4. Growth Period
3.5. Projected Impact of Climate Change on Wheat Growth Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Philos. Trans. R. Soc. B 2005, 360, 2021–2035. [Google Scholar] [CrossRef]
- Sommer, R.; Glotter, M.; de Fraiture, C.; Owusu, D.; Hachigonta, S.; Laderach, P. Africa Adaptation Atlas: Transforming Agriculture and Climate Change in Africa; World Bank Publications: Washington, DC, USA, 2013. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Mohamed, H.A.; Al-Kuisi, M.; Khresat, S. Impacts of climate change on water resources in Jordan. Environ. Monit. Assess. 2022, 194, 316. [Google Scholar]
- Warsame, A.A.; Gasmi, A.; Sivakumar, M.V.K.; Ouled Belgacem, A.; Bacha, H. Climate change impacts on rainfed agriculture in the Mediterranean region: A review. Earth-Sci. Rev. 2022, 230, 103469. [Google Scholar]
- Abou Hadid, A. Final Report to Assessment of Impacts, Adaptation, and Vulnerability to Climate Change in North Africa: Food Production and Water Resources; AIACC project no. AF90; International START Secretariat: Washington, DC, USA, 2006. [Google Scholar]
- El Felah, M.; Gharbi, M.S.; Ben Ghanem, H.; Elloumi, M. Les céréAles en Tunisie Entre Mythe et RéAlité; Annales Ann l’INRATT; National Institute of Agricultural Research of Tunisia: Tunis, Tunisia, 2015; pp. 1–17. [Google Scholar]
- Gibelin, A.L.; Déqué, M. Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim. Dyn. 2003, 20, 327–339. [Google Scholar] [CrossRef]
- Jayatilleke, G.; Yiyong, C. Agricultural productivity and vulnerability to climate change: A case study of rain-fed rice in Matara, Sri Lanka. SpringerPlus 2014, 3, 641. [Google Scholar]
- Tripathi, A.; Kumar, R.; Pandey, A. Impact of climate change on food security in India: A review. J. Food Secur. 2016, 4, 29–33. [Google Scholar]
- Arshad, M.; Sher, H.; Ali, S.; Khan, M.; Ahmad, I. Climate change and its impacts on human life and biodiversity in Pakistan. Afr. J. Agric. Res. 2016, 11, 1094–1102. [Google Scholar]
- McLeman, R.; Smit, B. Migration as an adaptation to climate change. Clim. Chang. 2006, 76, 31–53. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B. Integration of economic and ecological aspects in regional land use change and climate change adaptation: A case study for bioenergy crops. Environ. Sci. Policy 2007, 10, 1–10. [Google Scholar]
- Barnett, J. Security and climate change. Glob. Environ. Chang. 2003, 13, 7–17. [Google Scholar] [CrossRef]
- Lionello, P.; Bhend, J.; Buzzi, A.; Della-Marta, P.M.; Krichak, S.O.; Jansa, A.; Maheras, P.; Sanna, A.; Trigo, I.F.; Troccoli, A.; et al. Past and future climate changes in the Mediterranean region: A multidisciplinary assessment. Reg. Environ. Chang. 2014, 14, 7–18. [Google Scholar]
- Nefzaoui, A.; Ben Salem, H. Agricultural and Environmental Research at ICARDA for the Central and West Asia and North Africa Region; ICARDA: Aleppo, Syria, 2012. [Google Scholar]
- Latiri, K. Les Céréales en Tunisie. Bull. Econ. Et Financ. 1991, 28, 89–102. [Google Scholar]
- Hu, T.; Zhang, X.; Khanal, S.; Wilson, R.; Leng, G.; Toman, E.M.; Wang, X.; Li, Y.; Zhao, K. Climate change impacts on crop yields: A review of empirical findings, statistical crop models, and machine learning methods. Environ. Model. Softw. 2024, 179, 106119. [Google Scholar] [CrossRef]
- Jones, A. Effects of carbon dioxide and temperature on crop irrigation requirements. Agric. Water Manag. 2017, 15, 45–57. [Google Scholar]
- Kone, S.; Balde, A.; Zahonogo, P.; Sanfo, S. A systematic review of recent estimations of climate change impact on agriculture and adaptation strategies perspectives in Africa. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 18. [Google Scholar] [CrossRef]
- Green, S. Agricultural technologies for mitigating climate change impacts. Agric. Tech. Rev. 2020, 8, 321–335. [Google Scholar]
- Black, T. Projection of climate change impacts on global food systems. Glob. Food Sec. 2022, 4, 210–225. [Google Scholar]
- Miller, M. Role of crop simulation models in agricultural planning. Agric. Syst. 2019, 12, 87–98. [Google Scholar]
- Wilson, W. Integration of crop modeling for soil fertility dynamics. Soil Sci. Soc. Am. J. 2021, 5, 178–190. [Google Scholar]
- Anderson, A. Genetic traits influencing crop yields. Crop Sci. 2018, 30, 201–215. [Google Scholar]
- Robinson, R. Role of De Wit school models in crop research. Field Crop. Res. 2017, 18, 56–67. [Google Scholar]
- Araya, A.; Keesstra, S.D.; Stroosnijder, L. Simulating yield response to water of Teff (Eragrostis tef) with FAO’s AquaCrop model. Field Crop. Res. 2010, 116, 196–204. [Google Scholar] [CrossRef]
- García-Vila, M.; Fereres, E.; Mateos, L.; Orgaz, F.; Steduto, P. Deficit irrigation optimization of cotton with AquaCrop. Agron. J. 2009, 101, 477–487. [Google Scholar] [CrossRef]
- Todorovic, M.; Albrizio, R.; Zivotic, L.; Saab, M.-T.A.; Stöckle, C.; Steduto, P. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agron. J. 2009, 101, 509–521. [Google Scholar] [CrossRef]
- Wellens, J.; Raes, D.; Tychon, B. On the use of decision-support tools for improved irrigation management: AquaCrop-Based applications. Curr. Perspect. Irrig. Drain. 2017, 53–67. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2019, 116, 10406–10411. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Fathian, M.; Bazrafshan, O.; Jamshidi, S.; Ghanbari, A.; Khademi, H.; Kamrani, E.; Heydari, N.; Keshavarz, M.; Gohari, M.; Alijani, B.; et al. Impacts of climate change on water footprint components of rainfed and irrigated wheat in a semi-arid environment. Environ. Monit. Assess. 2023, 195, 324. [Google Scholar] [CrossRef]
- Demirdogen, A.; Karapinar, B.; Özertan, G. The impact of climate change on wheat in Turkey. Reg. Environ. Chang. 2024, 24, 20. [Google Scholar] [CrossRef]
- Lhomme, J.P.; Mougou, R.; Mansour, M. Potential impact of climate change on durum wheat cropping in Tunisia. Clim. Chang. 2009, 96, 549–564. [Google Scholar] [CrossRef]
- Bahri, H.; Annabi, M.; Cheikh M’Hamed, H.; Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Sci. Total Environ. 2019, 692, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Lundstad, E.; Brugnara, Y.; Pappert, D.; Gubler, S.; Steiner, A.K.; Villiger, L.; Brönnimann, S.; Schraner, M. The global historical climate database HCLIM. Sci. Data 2023, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Peters, G.P.; Gasser, T.; Andrew, R.M.; Schwingshackl, C.; Gütschow, J.; Houghton, R.A.; Friedlingstein, P.; Pongratz, J.; Le Quéré, C. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci. Data 2023, 10, 155. [Google Scholar] [CrossRef]
- World Bank. Climate Data Historical. Climate Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/tunisia/climate-data-historical (accessed on 10 March 2024).
- Ttiaoui, I.; Boufateh, T. Impacts of climate change on cereal farming in Tunisia: A panel ARDL–PMG approach. Environ. Sci. Pollut. Res. 2019, 26, 13334–13345. [Google Scholar] [CrossRef]
- African Development Bank. Tunisie: Pacte Pour l’Alimentation et l’Agriculture. Available online: https://www.afdb.org/en/documents/tunisie-pacte-pour-lalimentation-et-lagriculture (accessed on 1 February 2022).
- Jung, T. Systematic errors of the atmospheric circulation in the ECMWF forecasting system. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 1045–1073. [Google Scholar] [CrossRef]
- Korea-African Food Agriculture Cooperation Initiative (KAFACI). Korea-African Food Agriculture Cooperation Initiative. Available online: https://www.kafaci.org/site/about/view?pageId=02010600&pageName=Organization (accessed on 10 April 2024).
- Van Gaelen, H. AquaCrop Training Handbooks – Book II Running AquaCrop. 2016. Available online: https://www.researchgate.net/publication/294872377 (accessed on 29 August 2024).
- Woli, P.; Rötter, R.P.; Olesen, J.E.; Kersebaum, K.C.; Fangueiro, D.; Bindi, M.; Trnka, M.; Brüggemann, N.; Buis, S.; Cammarano, D.; et al. Agricultural management model improvements for Climate Change Studies: Agricultural Research Data for Integrated Use in Modelling Tools. Field Crop. Res. 2012, 136, 112–129. [Google Scholar] [CrossRef]
- Latiri-Souki, K.; Nortcliff, S.; Lawlor, D.W. Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions. Eur. J. Agron. 1998, 9, 21–34. [Google Scholar] [CrossRef]
- Beji, S. Effet du Choix Variétal et de la Fertilisation Organique sur le Rendement et la Qualité Technologique du blé dur (Triticum durum Desf.) Cultivé en Agriculture Biologique. Ph.D. Thesis, Institut National Agronomique de Tunisie, Tunis, Tunisie, 2010. [Google Scholar]
- Mellouli, H.J.; Ben Naceur, M.; El Felah, M.; El Gharbi, M.S.; Kaabia, M.; Nahdi, H.; Slafer, G.A.; Karrou, M. Efficience de l’utilisation de l’eau chez le blé et l’orge sous différents régimes hydriques et de fertilisation azotée dans des conditions subhumides de Tunisie. In Water Saving in Mediterranean Agriculture and Future Research Needs. Options Méditerranéennes: Série B. Etudes et Recherches Vol. 1; Lamaddalena, N., Bogliotti, C., Todorovic, M., Scardigno, A., Eds.; CIHEAM: Bari, Italy, 2007; pp. 179–189. [Google Scholar]
- FAOSTAT. Soil Maps for Tunisia. Available online: https://data.apps.fao.org/map/catalog/static/search?keyword=Tunisie (accessed on 10 August 2024).
- Food and Agriculture Organization (FAO). FAO Crop Calendar; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Addiscott, T.M.; Whitmore, A.P. Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J. Agric. Sci. 1987, 109, 141–157. [Google Scholar] [CrossRef]
- Fox, D.G. Judging air quality model performance: A summary of the AMS workshop on dispersion model performance. Bull. Am. Meteorol. Soc. 1981, 62, 599–609. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Salehie, M.; Todorovic, M.; Olesen, J.E.; Kersebaum, K.C.; Fangueiro, D.; Bindi, M.; Trnka, M.; Brüggemann, N.; Buis, S.; Cammarano, D.; et al. Projection of future climate change impacts on agricultural production: A review of the main modeling approaches. Earth-Sci. Rev. 2022, 223, 104394. [Google Scholar]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; et al. Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dyn. 2013, 40, 2123–2165. [Google Scholar] [CrossRef]
- Dunne, J.P.; John, J.G.; Adcroft, A.J.; Griffies, S.M.; Hallberg, R.W.; Shevliakova, E.; Ronald, S.; Cooke, W.F.; Dunne, K.A.; Zadeh, N.; et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate 2012, 25, 6646–6665. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- CNRM-CERFACS. CNRM-CM5.1 Climate Model. Available online: https://www.cerfacs.fr/cme/ (accessed on 18 March 2024).
- GFDL. GFDL-ESM2M Model Documentation. Available online: https://www.gfdl.noaa.gov/gfdl-esm2-part-ii/ (accessed on 18 March 2024).
- Lindström, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergström, S. Development and testing of the distributed HBV-96 hydrological model. J. Hydrol. 1997, 201, 272–288. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkerson, G.G.; Singh, U.; Gijsman, A.J.; Ritchie, J.T.; et al. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Corbeels, M.; Berre, D.; Rusinamhodzi, L.; Lopez-Ridaura, S.; Tittonell, P.; Cadisch, G. Modelling crop residue mulching effects on soil organic carbon and nitrogen dynamics in a maize cropping system in Zimbabwe. Agric. Ecosyst. Environ. 2018, 252, 46–58. [Google Scholar] [CrossRef]
- Rötter, R.P.; Tao, F.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Olesen, J.E.; Bindi, M.; et al. Modelling shifts in agroclimate and crop cultivar response under climate change. Ecol. Model. 2018, 368, 154–165. [Google Scholar] [CrossRef]
- Rötter, R.P.; Carter, T.R.; Olesen, J.E.; Porter, J.R. Crop-climate models need an overhaul. Nat. Clim. Chang. 2011, 1, 175–177. [Google Scholar] [CrossRef]
- Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D.; et al. Multimodel ensembles of wheat growth: Many models are better than one. Glob. Chang. Biol. 2015, 21, 911–925. [Google Scholar] [CrossRef]
- Wallach, D.; Martre, P.; Liu, B.; Asseng, S.; Ewert, F.; Thorburn, P.J.; van Wart, J.; Aggarwal, P.K.; Ahmed, M.; Basso, B.; et al. Lessons from climate modeling and agriculture: Collaborative regional and global modeling of agricultural systems. J. Exp. Bot. 2016, 67, 671–681. [Google Scholar] [CrossRef]
- Ritchie, J.T. A Model for Predicting Evaporation from a Row Crop with Incomplete Cover. Water Resour. Res. 1981, 17, 1338–1342. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Steduto, P.; Fereres, E.; Raes, D. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agron. J. 2014, 106, 349–358. [Google Scholar] [CrossRef]
- Kostková, M.; Hlavinka, P.; Pohanková, E.; Kersebaum, K.C.; Nendel, C.; Gobin, A.; Olesen, J.E.; Ferrise, R.; Dibari, C.; Takáč, J.; et al. Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe. J. Agric. Sci. 2021, 159, 69–89. [Google Scholar] [CrossRef]
- Sanchez-Salguero, R.; Camarero, J.J.; Gutiérrez, E.; Gazol, A.; Sangüesa-Barreda, G.; Moiseev, P.; Linares, J.C. Climate Warming Alters Age-Dependent Growth Sensitivity to Temperature in Eurasian Alpine Treelines. Forests 2018, 9, 688. [Google Scholar] [CrossRef]
- Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; BeauA, I.; Alias; Chevallier, M.; et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Garcia Vila, M.; Mejias Moreno, P. AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.J.; Girousse, C.; Motzo, R.; Giunta, F.; Babar, M.A.; et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 2015, 21, 420–426. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Amthor, J.S. Effects of atmospheric CO2 concentration on wheat yield: Review of results from experiments using various approaches. Field Crop. Res. 2001, 73, 1–34. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; Rabbinge, R.; Haverkort, A.J. Climate change and agricultural ecosystems: Comparison of effects and adaptation strategies across three European case studies. Environ. Sci. Policy 2003, 6, 257–269. [Google Scholar]
- Ludwig, F.; Asseng, S. Climate change impacts on wheat production in a Mediterranean environment. Agric. Syst. 2006, 90, 78–96. [Google Scholar] [CrossRef]
- Fernando, N.; Panozzo, J.; Tausz, M.; Norton, R.M.; Fitzgerald, G.J.; Seneweera, S. Rising atmospheric CO2 concentration affects mineral nutrient and protein concentration of wheat grain. Food Chem. 2011, 127, 197–202. [Google Scholar] [CrossRef]
- Jamieson, P.D.; Semenov, M.A.; Brooking, I.R.; Francis, G.S. Sirius: A mechanistic model of wheat response to environmental variation. Eur. J. Agron. 2000, 13, 123–127. [Google Scholar] [CrossRef]
- Erbs, M.; Manderscheid, R.; Jansen, G.; Seddig, S.; Pacholski, A.; Weigel, H.-J. Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agric. Ecosyst. Environ. 2010, 136, 59–68. [Google Scholar] [CrossRef]
- Wessolek, G.; Asseng, S. Trade-offs between wheat yield and deep drainage under future climate change. Agric. Water Manag. 2006, 86, 154–161. [Google Scholar]
- Monzon, J.P.; Sadras, V.O.; Andrade, F.H. Model-based assessment of maize, wheat, and soybean yield gaps and water limitations in the Southern Pampas. Agric. Syst. 2007, 94, 381–393. [Google Scholar]
- Wang, E.; van Oosterom, E.; Meinke, H.; Hammer, G.L. Simulating the influence of temperature on wheat phenological development. Field Crop. Res. 2012, 137, 176–182. [Google Scholar]
Region | rLat * | rLong ** | Raw1 | Raw2 | Id | Lat | Long |
---|---|---|---|---|---|---|---|
Slougia | −13.695 | −6.925 | 32 | 140 | 189 | 36.66 | 9.60 |
−13.585 | −6.815 | 33 | 140 | 174 | 36.78 | 9.72 | |
Medjez el Bab | −13.695 | −6.815 | 33 | 142 | 190 | 36.67 | 9.74 |
−13.585 | −6.705 | 34 | 142 | 175 | 36.80 | 9.85 |
Model | Institution | Full Name | Resolution | References |
---|---|---|---|---|
CNRM-CM5.1 | CNRM | CNRM Coupled Model 5.1 | 0.22° × 0.22° | [57,61] |
GFDL-ESM2M | NOAA/GFDL | Geophysical Fluid Dynamics Laboratory Earth System Model 2M | 0.22° × 0.22° | [58,62] |
Parameter | Description | Value |
---|---|---|
Tsum | Cumulative temperature requirement from sowing to maturity (°C·d) | 2200 |
HI | Potential harvest index | 0.36 |
I50A | Cumulative temperature requirement for leaf area development to intercept 50% of radiation (°C·d) | 480 |
I50B | Cumulative temperature till maturity to reach 50% radiation interception due to leaf senescence (°C·d) | 200 |
Tbase | Base temperature for phenology development and growth (°C) | 0 |
Topt | Optimal temperature for biomass growth (°C) | 15 |
RUE | Radiation use efficiency (above ground only and without respiration) (g·MJ−1·m−2) | 1.24 |
I50maxH | The maximum daily reduction in I50B due to heat stress (°C·d) | 100 |
I50maxW | The maximum daily reduction in I50B due to drought stress (°C·d) | 25 |
Tmax | Threshold temperature to start accelerating senescence from heat stress (°C) | 34 |
Text | The extreme temperature threshold when RUE becomes 0 due to heat stress (°C) | 45 |
SCO2 | Relative increase in RUE per ppm elevated CO2 above 350 ppm | 0.08 |
Swater | Sensitivity of RUE (or harvest index) to drought stress (ARID index) | 0.4 |
Crop Model | Site | Growth Cycle Duration (days) | Biomass | Yield | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MBE (q/ha) | RMSE (q/ha) | IA | MBE (q/ha) | RMSE (q/ha) | IA | MBE (q/ha) | RMSE (q/ha) | IA | ||
SIMPLE Crop | Slougia | |||||||||
Medjez El Beb | ||||||||||
AquaCrop | Slougia | |||||||||
Medjez El Beb |
Combination | Average | STD | Minimum | Maximum |
---|---|---|---|---|
CNRM-CM5.1, RCP 4.5, AquaCrop | 7.55 | 1.12 | 5.62 | 9.20 |
CNRM-CM5.1, RCP 4.5, SIMPLE Crop | 7.36 | 1.06 | 5.25 | 8.98 |
CNRM-CM5.1, RCP 8.5, AquaCrop | 6.89 | 1.14 | 5.74 | 9.47 |
CNRM-CM5.1, RCP 8.5, SIMPLE Crop | 7.53 | 1.17 | 5.61 | 9.33 |
GFDL-ESM2M, RCP 4.5, AquaCrop | 8.06 | 1.16 | 6.10 | 9.88 |
GFDL-ESM2M, RCP 4.5, SIMPLE Crop | 7.73 | 1.12 | 5.79 | 9.21 |
GFDL-ESM2M, RCP 8.5, AquaCrop | 6.97 | 1.16 | 5.81 | 9.36 |
GFDL-ESM2M, RCP 8.5, SIMPLE Crop | 7.89 | 1.21 | 5.86 | 9.37 |
Source of Variation | Sum of Squares | df | Mean Squares | F-Value | p-Value |
---|---|---|---|---|---|
Climate Model (M) | 7.92 | 1 | 7.92 | 4.57 | 0.045 |
RCP Scenario (R) | 4.15 | 1 | 4.15 | 2.40 | 0.135 |
Growth Model (C) | 11.87 | 1 | 11.87 | 6.86 | 0.017 |
Interaction M × R | 0.84 | 1 | 0.84 | 0.49 | 0.490 |
Interaction M × C | 1.29 | 1 | 1.29 | 0.75 | 0.395 |
Interaction R × C | 0.47 | 1 | 0.47 | 0.27 | 0.610 |
Error | 34.55 | 20 | 1.73 | ||
Total | 61.08 | 26 |
Region | Climate Model | Growth Model | Average Biomass (q/ha) |
---|---|---|---|
Medjez El Beb | CNRM-CM5.1 | AquaCrop | 17.99 |
CNRM-CM5.1 | SIMPLE Crop | 18.73 | |
Sloughia | GFDL-ESM2M | AquaCrop | 18.90 |
GFDL-ESM2M | SIMPLE Crop | 19.04 |
Climate Model | RCP/Historical | Crop Model | Mean | Std |
---|---|---|---|---|
CNRM-CM5.1 | Historical | AquaCrop | 8.63 | 1.07 |
RCP 4.5 | AquaCrop | 6.94 | 0.98 | |
RCP 8.5 | AquaCrop | 6.74 | 1.07 | |
GFDL-ESM2M | Historical | AquaCrop | 9.02 | 1.09 |
RCP 4.5 | AquaCrop | 7.65 | 1.03 | |
RCP 8.5 | AquaCrop | 7.39 | 1.07 | |
CNRM-CM5.1 | Historical | SIMPLE Crop | 8.77 | 0.92 |
RCP 4.5 | SIMPLE Crop | 6.44 | 0.88 | |
RCP 8.5 | SIMPLE Crop | 6.52 | 0.95 | |
GFDL-ESM2M | Historical | SIMPLE Crop | 6.62 | 1.08 |
RCP 4.5 | SIMPLE Crop | 7.68 | 0.92 | |
RCP 8.5 | SIMPLE Crop | 7.22 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melki, M.N.E.; Soussi, I.; Al-Khayri, J.M.; Al-Dossary, O.M.; Alsubaie, B.; Khlifi, S. Future Impact of Climate Change on Durum Wheat Growth and Productivity in Northern Tunisia. Agronomy 2024, 14, 2022. https://doi.org/10.3390/agronomy14092022
Melki MNE, Soussi I, Al-Khayri JM, Al-Dossary OM, Alsubaie B, Khlifi S. Future Impact of Climate Change on Durum Wheat Growth and Productivity in Northern Tunisia. Agronomy. 2024; 14(9):2022. https://doi.org/10.3390/agronomy14092022
Chicago/Turabian StyleMelki, Mohamed Nejib El, Imen Soussi, Jameel Mohammed Al-Khayri, Othman M. Al-Dossary, Bader Alsubaie, and Slaheddine Khlifi. 2024. "Future Impact of Climate Change on Durum Wheat Growth and Productivity in Northern Tunisia" Agronomy 14, no. 9: 2022. https://doi.org/10.3390/agronomy14092022